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Abstract 

Recently, nonlinear differential equations corresponding to pure spinor instanton 

solutions have been obtained by using Heisenberg ansatz in the 2D Thirring Model, 

which is used as a subject model in Quantum field theory. In addition, the evolution 

of spinor type instanton solutions in phase space was investigated according to the 

change in the constant parameter β. Spinor instanton dynamics is a special case in 

which nonlinear terms play an important role. Chaos describes certain nonlinear 

dynamical systems that depend very precisely on initial conditions. Lyapunov 

exponents are an important method for measuring stability and deterministic chaos 

in dynamical systems. Lyapunov exponents characterize and quantify the dynamics 

of small perturbations of a state or orbit in state space. In this study, The chaotic 

behavior of spinor type instanton solutions is analyzed by numerical study of the time 

evolution of the Lyapunov exponents. Moreover, the Lyapunov spectrum of spinor 

type instanton solutions with respect to varying the parameter are plotted. As a result 

of the Lyapunov Spectrum, it was determined that the spinor type instanton solutions 

exhibit chaotic behavior at parameter value β= 2. Periodic and quasi periodic 

behaviors were detected when the parameter values were β<2. In cases of β>2, weak 

chaotic behaviors were observed. This study demonstrates that Thirring Instantons, 

which are spinor type instanton solutions, exhibit chaotic properties. 

 

 
1. Introduction 

 

Instantons are classical solutions that spontaneously 

break conformal symmetry with zero energy in finite 

and non-zero actions. In quantum field theories, 

instantons are defined as tunneling processes between 

vacuums with different topological structures [1]. 

This property plays a significant role in understanding 

the problems of quark confinement within particles. 

The Thirring Model was proposed by Walter 

Thirring in 1958 as a test model for quantum field 

theories [2]. The model is a 2-dimensional conformal 

invariant pure fermionic a model [2]. In addition, the 

model is an important known model for fermions in 

(1 + 1) space-time dimensions with a nonlinear term 

[3]. Akdeniz–Smailagic found a class of pure spinor 

type instanton solutions of the Thirring Model  by 
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breaking of the conformal symmetry i.e. 〈0|�̅��̅�|0〉 ≠

0 in 1979 [3]. Later, it was shown that the spinor type 

instanton solutions are stable [4]. A decade ago, 

nonlinear differential equations corresponding to pure 

spinor instanton solutions were obtained by 

Heisenberg ansatz in the Thirring Model [5]. 

Moreover, the evolution of these spinor-type 

instanton solutions in phase space and the role of 

coupling constant in this evolution were examined 

[5]. A few years ago, the stability of the spinor type 

instanton solutions was investigated by the scale 

index method [6]. Recently, the chaotic behavior of 

the spinor type instanton solutions was investigated 

using the General Alignment Index (GALI) method 

[7]. 

Chaos describes certain nonlinear dynamical 

systems that depend very precisely on initial 
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conditions [8]. Instability is one of the most 

fundamental properties of nonlinear dynamical 

systems. Generally, Lyapunov exponents are 

characterized by exponential deviation rates of 

infinitesimal irregularities given an orbit. Lyapunov 

exponents are also known to characterize properties 

of chaotic systems other than instability, such as 

metric entropy and attractive size. Also, for large 

systems, the extent of chaos is defined on the basis of 

the spectrum of Lyapunov exponents [9].  

Lyapunov exponents (LEs) are one of the 

most common methods for determining the degree of 

sensitivity of the evolution of a dynamical system to 

initial conditions [10]. LEs measure how the distance 

between orbitals with two slightly different initial 

conditions grows or shrinks over time Having a 

positive largest Lyapunov exponent (LLE) is 

generally considered an indication that the system is 

chaotic [11]. The LLE value is an indicator of 

chaoticity, but numerical computation can take a lot 

of time before they manifest themselves, especially 

for orbits that adhere to regular orbits for a long time. 

Since the chaotic behavior LLE is defined as the t → 

∞ limit of the system, the time required for the system 

to converge to the limit value may be excessively long 

[12]. LLE provides more information than 

characterizing a trajectory as regular or chaotic, 

because it also quantifies the concept of chaoticity by 

providing a characteristic time scale for the dynamical 

system studied. In a detailed analysis of the time 

evolution of the LLE, a sloping decrease of the power-

law 𝜆1 ∝ 𝑡−1 indicates regular state and any deviation 

from this law signifies chaos or weak chaos [12]. 

Also, staying constant to a positive value according to 

increasing time durations indicates that the system is 

in a chaotic or weakly chaotic state. 

In this study, chaotic behavior of spinor type 

instanton solutions [5] is investigated by Lyapunov 

exponents. The chaotic behavior is analyzed by 

performing a numerical study of the time evolution of 

the Lyapunov exponents (LEs). Lyapunov exponent 

(LE) spectrum of system of two nonlinear ordinary 

differential equations corresponding spinor type 

instanton solutions with varying the parameters is 

plotted. Additionally, the behaviors in phase space 

and Lyapunov exponents of the spinor type instanton 

solutions are demonstrated comparatively. 

2. Material and Method 

 

2.1. Thirring Model 

 

The Thirring model [2] is described by the two-

dimensional pure fermionic, conformal invariant 

Lagrange equation. 

                                             

𝐿 = 𝑖�̅�𝜎𝜇𝜕𝜇𝜓 +
𝑔

2
(�̅�𝜓)2                                          (1) 

Here, the positive coupling constant is 𝑔 [3].The 

equation of motion is, 

 

𝑖𝜎𝜇𝜕𝜇𝜓 + 𝑔(�̅�𝜓)𝜓 = 0                                              (2) 

       

The Euclidean configuration of the Heisenberg 

approximation [13], 

 

  𝜓 = [𝑖𝑥𝜇𝛾𝜇𝜒(𝑠) + 𝜑(𝑠)]𝐶                                       (3) 

       

is given by the equation. Here 𝐶 is an arbitrarily 

chosen spinor constant, 𝜒(𝑠) and 𝜑(𝑠) of  𝑠 = 𝑥2 +

𝑡2(𝑥1 ≡ 𝑥, 𝑥2 ≡ 𝑡) are the real functions. 

Substituting equation (3) for equation (2), we get 

 

𝜒(𝑠) + 𝑠
𝑑𝜒(𝑠)

𝑑𝑠
+ 𝛼[𝑠𝜒(𝑠)2 + 𝜑(𝑠)2]𝜑(𝑠) = 0 (4a) 

   

𝑑𝜑(𝑠)

𝑑𝑠
− 𝛼[𝑠𝜒(𝑠)2 + 𝜑(𝑠)2]𝜒(𝑠) = 0                  (4b) 

       

The dimensionless form of nonlinear simple 

differential equation system pair (4a) and (4b), 

 

2
𝑑𝑝(𝑡)

𝑑𝑡
+

1

2
𝑝(𝑡) − 𝛼𝐴𝐵(𝑝(𝑡)2 + 𝑞(𝑡)2)𝑞(𝑡) = 0         (5a)

        

2
𝑑𝑞(𝑡)

𝑑𝑡
−

1

2
𝑞(𝑡) − 𝛼𝐴𝐵(𝑝(𝑡)2 + 𝑞(𝑡)2)𝑝(𝑡) = 0         (5b)

      

Here, p and q are dimensionless functions of t and A, 

B are constants [5]. The solution of this system of 

equations for 𝛽=α(AB)=1 is the Thirring instantons 

[5]. The evolution of Thirring instantons has been 

investigated in phase space as seen Figure 1 [5]. 
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Figure 1. Phase diagram corresponding to the solutions of 

Thirring instantons [5]. 

 

A while ago, the stability of spinor type 

instanton solutions with different β =α(AB) values has 

been investigated by the scale index method [6]. It 

was determined that spinor type instanton solutions 

are unstable according to the scale index method for 

the value of β =2 as seen Figure 2 [6]. 

 

 
Figure 2. Scale index parameters of F(Z) and G(Z) versus 

αAB for the initial points: -1/2,-1/2 [6]. (In this study, 

Scale index parameters of F(Z) and G(Z) are q and p 

respectively) 

2.2 Computation of Lyapunov Exponents 

 

Lyapunov exponents are the rate of convergence or 

divergence of two adjacent orbits over time [14]. If 

the orbitals diverge slowly, they are periodic systems, 

and if this divergence is exponential, they are chaotic 

systems. The positive value of the Lyapunov 

exponent corresponds to the chaos, the zero value to 

the periodicity, and the negative value to the stable 

equilibrium state. In Ref. [15], a numerical technique 

was developed for calculating all LEs based on the 

time evolution of many deviation vectors kept linearly 

independent by a Gram-Schmidt orthonormalization 

procedure. In this study, the articles of Oseledec [16] 

and Benettin et al. [17, 18], whose theoretical results 

have been clearly proven, are followed. 

A dynamical system can be characterized by 

a differential equation as 

 

�̇� =
𝑑𝑥

𝑑𝑡
= 𝑓(𝑥),    𝑡 > 0                                              (6) 

 

here f is a continuous function. The LEs can be 

numerically obtained as time limits of 

appropriately computed quantities Λ𝑖, which are 

usually referred to as the finite-time LEs, i.e.  

 

𝜆𝑙 = lim
𝑡→∞

Λ𝑙 ,       𝑙 = 1, 2, … , 𝑁                                  (7) 

 

which can for example be evaluated by the so-called 

‘standard method’ [12, 18]. In particular, the largest 

Lyapunov exponent LLE (𝜆1) is estimated as the limit 

for 𝑡 → ∞ of the finite-time LLE  

 

Λ1(𝑡) =
1

𝑡
ln

‖𝜔(𝑡)‖

‖𝜔(0)‖
                                                   (8) 

 

Where 𝜔(𝑡) = 𝛿𝑥(𝑡) = (𝛿𝑞(𝑡), 𝛿𝑝(𝑡)) =

(𝛿𝑞1(𝑡), … , 𝛿𝑞𝑁(𝑡)) , 𝛿𝑝1(𝑡), … , 𝛿𝑝𝑁(𝑡)  denotes the 

phase space perturbation vector from the orbit 𝑥(𝑡) =

(𝑞(𝑡), 𝑝(𝑡)) at time t. In the case of regular orbits, 

𝜆1(𝑡) tends to zero following the power law [12, 18] 

 

𝜆1(𝑡) ∝ 𝑡−1,                                                                   (9) 

 

while for chaotic or weakly chaotic orbits, it tends to 
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a non-zero positive value. 

The Lyapunov exponents describe the 

behavior of vectors in the tangent space of the phase 

space and are defined from the Jacobian matrix 

 

𝐽𝑖,𝑗(𝑡) =
𝑑𝑓𝑖(𝑥)

𝑑𝑥𝑗
|
𝑥(𝑡)

                                                    (10)  

 

The evolution of an initial deviation vector 𝜔(0) is 

governed by the so-called variational equations [12] 

 

�̇�(𝑡) = [
𝛿�̇�𝑙(𝑡)

𝛿�̇�𝑙(𝑡)
] =  𝐽. 𝜔(𝑡), 𝑙 = 1, 2, … , 𝑁, (11) 

  

this Jacobian defines the evolution of the tangent 

vectors via the equation. 

Jacobian matrix evaluated at the position 𝑥(𝑡) 

of the orbit in the system’s phase space for all 𝑖, 𝑗 =

1, 2, … ,2𝑁. The elements of J matrix in (11) depend 

on the evolution of the orbit 𝑥(𝑡) but are independent 

of 𝜔(𝑡). 

The Lyapunov exponents are calculated for a 

long observation time of 100000 t units and with a 

step size 1.0 t unit. The time evolution of the 

Lyapunov exponents of system (5) is shown in Fig. 6. 

The (+, −) nature of the Lyapunov exponents confirms 

the chaotic nature [19]. Numerical calculations of the 

Lyapunov exponents are integrated together using the 

tangent map of the model corresponding to the spinor 

type instanton solutions (5) that describe the evolution 

of the initial excitation of the system along with the 

equations of variation (11) for one or more initial 

perturbations (deviation vectors). method and 

Verner's “Most Efficient” 9/8 Runge–Kutta solver 

with tight fault tolerances [20]. The algorithm was 

implemented on top of the DynamicalSystems.jl 

software library, which was written entirely in the 

Julia programming language [21, 22]. 

 

3. Results and Discussion 

 

The phase diagram corresponding to the spinor type 

instanton solutions found in the previous study [5] is 

given in Figure 1. As can be seen from the phase 

diagram, the stable points are (-0.5, -0.5) and 

(0.5,0.5). For 𝛽 =α(AB) =1, the solution of this 

system of equations is the Thirring instantons given 

in  Ref. [5]. Based on these stable points of the 

Thirring instantons, the Lyapunov spectrum of the 

spinor type instanton solutions (5) with varying 

parameter 𝛽 =α(AB) for (q, p) = (0.5,0.5) fixed are 

examined. Figures 3 and 4 shows LLE spectrum of 

the spinor type instanton solutions (5), plotted in the 

interval  (0, 100] and (0, 10) respectively by 

increasing the parameter β by 0.01 for initial 

condition (q, p) = (0.5, 0.5) fixed. t = 105 time units 

are used for numerical solution. 

 

 
Figure 3. Lyapunov spectrum of spinor type instanton 

solutions (5) versus parameter β varying in the range of 

(0,100] for the initial points (0.5,0.5). 

 

Looking at the trajectories in the phase 

diagram in Figure 1, it is not possible to reach a 

definite conclusion about the chaoticity. When we 

look at the Lyapunov spectrum in Figure 3, it is seen 

that the Lyapunov exponents become to 0 after a 

while from the beginning. Then a sharp increase 

occurs. Afterwards, the largest Lyapunov exponents 

(λ1) proceed in a positive constant number. The 

largest Lyapunov exponent is λ1 ≈ 0.003. Also, since 

the largest Lyapunov exponents are 0 at the value 

close to the beginning, it is seen to be periodic. 

Afterwards, the trajectories can be interpreted as 

chaotic since they are always positive. 
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Figure 4. Lyapunov spectrum of spinor type instanton 

solutions (5) versus parameter β varying in the range of  

(0,10] for the initial points (0.5,0.5). 

 

In order to observe the changes in the 

Lyapunov spectrum in more detail, a narrower area 

was chosen and the Lyapunov spectrum in Figure 4 is 

plotted. As seen in this spectrum, since largest 

Lyapunov exponents are 0 around 𝛽 = 1 and 𝛽 = 2, 

they are observed as periodic orbits. It increases 

sharply around 𝛽 = 2 and then progresses positively. 

Compared with the results obtained by the 

scale index method in Figure 2 [6], the chaotic 

situation in the Lyapunov spectrum for the value of 𝛽 

=2 has been determined. In the scale index method, 

values other than around 𝛽 =1 are slightly above 0 [6]. 

When this situation is interpreted together with the 

Lyapunov spectrum, values slightly above 0 can be 

interpreted as a weak chaotic state or a quasi-periodic 

state.

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
 

Figure 5. The time evolution of Lyapunov exponents 

(LEs) of the spinor type instanton solutions (5) for  t = 105 

time units with (a) β =0.1, (b) β =0.5, (c) β =1.5, (d) β 

=2.0, (e) β =10.0 (f) β =50.0 for initial conditions (q, p) 

=(0.5, 0.5) fixed. 

 

The time evolution of Lyapunov exponents of 

the spinor type instanton solutions at t=105 time units 

is investigated in Figure 5. With the iteration number 

t=105, 1000 points are sampled from each trajectory 

studied in Figure 5. to evaluate the time evolution of 

the Lyapunov exponents with respect to the initial 

conditions at different values for the parameter value 

with (a) β =0.1, (b) β =0.5, (c) β =1.5, (d) β =2.0, (e) 

β =10.0 (f) β =50.0 for initial conditions (q, p) =(0.5, 

0.5) fixed.  

 In Figure 5, it is seen that the Lyapunov 

exponents of the system (5) for  (a) β =0.1, (b) β =0.5, 

(c) β =1.5 converge to 0.  However, in Figure 5, it is 

seen that the Lyapunov exponents of the system (5) 

for  (a) β =2, (b) β =10.0, (c) β =50.0 converge 

towards λ =  0.005 (β =2) and λ =  0, 002 (β =10.0 

and 50.0).  According to Figure 5, the time evolution 

of LEs are very small and zero indicates that the 

system has periodic and semi-periodic orbits in 𝛽< 2. 

Moreover, positive Lyapunov exponents do not have 

large values at 𝛽>2 values, it can be concluded that 

they have weak chaotic orbits. 
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Figure 6. The time evolution of the largest Lyapunov 

exponents (LLEs) of the spinor type instanton solutions 

(5) with respect to different 6 different parameters β for t 

= 105 time units and initial conditional (q, p)=(0.5, 0.5) 

fixed.  Parameter values: β =0.1(coral, square), β 

=0.5(green, circle), β =1.5 (blue,  triangle), β =2.0 (red, 

pentagon), β =10.0 (purple, +),  β =50.0 (lime, X).  The 

axes are chosen according to the logarithmic base. 

 

Here, only the largest Lyapunov exponent 

(LLE) is taken into account, as it determines the 

predictability of the system [12]. A positive LLE is 

generally accepted as an indication that the system is 

chaotic. The time evolution of the largest Lyapunov 

exponents (LLEs) of the spinor type instanton 

solutions Eq. (5) is investigated up to t = 105 time 

units. To evaluate the time evolution of the LLE, 1000 

points are sampled from each trajectory. The time 

evolution of the LLE with 1000 test points; dots and 

lines represent linear regression with respect to the 

median in Figure 6. t = 105 is the final integration time 

of the simulations.  

The time evolution of the LLEs of the spinor 

type instanton solutions with different the parameter 

value β and keeping the initial condition (q, p)=(0.5, 

0.5) is ploted in Figure 6 (LLEs for β values; β 

=0.1(coral, square), β =0.5(green, circle), β =1.5 

(blue,  triangle), β =2.0 (red, pentagon), β =10.0 

(purple, +),  β =50.0 (lime, X) ). In Figure 6 .  In the 

case of β =0.1(coral, square), β =0.5(green, circle), β 

=1.5 (blue,  triangle), LLEs tend to zero following the 

power law, i.e. orbits are in regular state.   The other 

cases β =10.0 (purple, +),  β =50.0 (lime, X), the LEEs   

begin to deviate from the 𝜆1 ∝ t−1 decrease denoting 

regular behavior when t = 103 time and the chaotic 

nature of the orbits. In Figure 6 , it is clearly seen that 

there is a convergence of around λ1=10−3 at β =2 and 

values greater than β =2.  

Considering the time evolution of the LLEs 

according to varying β values in the initial conditions 

(q, p)=(0.5, 0.5) fixed in Figure 6, it is seen that the 

fermion-like instanton solutions exhibit weak chaotic 

behavior.  

 

(a) (b) 

  
(c) (d) 

  
(e) (f) 

     
Figure 7. The phase space of the spinor type instanton 

solutions (5) for  t = 105 time units with (a) β =0.1, (b) β 

=0.5, (c) β =1.5, (d) β =2.0, (e) β =10.0 (f) β =50.0 for 

initial conditions (q, p) =(0.5, 0.5) fixed. 

  

 The phase spaces of the system (5) were 

examined for random selected six points. In Figure 7 

d), it is seen that the point (0,0) is an unstable point 

for β =2, which is the chaotic state, and bifurcation 

occurs in the phase diagram. In Figure 7. (a) β =0.1, 

(b) β =0.5, (c) β =1.5,  values  𝛽<2,  regular states 

appears around a single attractor. In Figure 7. (e) β 

=10.0 (f) β =50.0 values 𝛽>2, the system is periodic 

around the two attractors. 

 Although the phase spaces give information 

about the general states of the orbits, they do not give 

enough information about the chaotic states. For 

parameter value 𝛽 = 2 in the system (6), the phase 

space and Lyapunov spectrum show a chaotic state. 

However, there is no chaotic situation in phase space 

for other parameter values. At 𝛽 <2 values, the 

Lyapunov exponents approach zero and decrease 

proportionally with 𝜆1(𝑡) ∝ 𝑡−1. The fact that the 
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Lyapunov exponents are very small and zero indicates 

that the system has periodic or semi-periodic orbits in 

these intervals. Since positive Lyapunov exponents 

do not have large values at 𝛽>2 values and according 

to power law (9) LLEs tends to a non-zero positive 

value, the orbits can be concluded that they have 

weakly chaotic states. 

 

4. Conclusion and Suggestions 

 

In quantum gauge theory, instantons have an 

important place in response to tunneling events 

between vacuums. In this study, the existence of 

chaos in spinor type instanton solutions found by the 

Heisenberg approach to the 2D conformal invariant 

Thirring model was investigated. The phase space and 

stable equilibrium points, which were found before 

and corresponding to the Thirring instantons, were 

taken as Ref. [5]. According to these values, the time 

evolution of the Lyapunov exponents, the time 

evolution of largest Lyapunov exponents of the spinor 

type instanton solutions (5) were plotted. Moreover 

Lyapunov spectrum of the system (5) was plotted. In 

addition, phase diagrams were examined for some 

critical situations. 

The Lyapunov exponent is one of the most 

effective methods of detecting chaos [23]. According 

to the results found in this study, the fact that the 

largest Lyapunov exponent is greater than zero shows 

that the spinor type instanton solutions exhibit chaotic 

behavior. When the Lyapunov spectrum is also 

examined, it shows that spinor type instantons have 

regular orbit when the parameter value is  𝛽 

=α(AB)=1. In general, values less than 𝛽<2 indicate 

that it has regular or quasi-periodic orbits. Lyapunov 

spectrum, time evolution of LEs, phase space and 

scale index method [6] show that spinor type 

instanton solutions exhibit chaotic state at β =2. It is 

seen that there is a weakly chaotic states when the 

parameter values are from 𝛽>2. These results are 

consistent with the results found by the GALI method 

[7] that the orbits of spinor-type instanton solutions 

are regular around the fixed point, and the orbits 

become chaotic as they move away from the fixed 

point. The fact that spinor-type instanton solutions 

have both periodic orbits and chaotic orbits is an 

important sign of the existence of chaos in spinor-type 

instanton solutions. In the Gursey model, which is 

also a model with spinor type instanton solutions, 

research on Lyapunov exponents can be done and 

more information can be learned about the behavior 

of spinor type instanton solutions[24, 25]. 
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