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Abstract

In this paper, we establish some relationships between Left and right weakly completely continuous operators
and topological centers of module actions and relationships between the factorization and the kinds of
amenability. We de�ne the locally topological center of the left and right module actions and investigate
some of its properties. Also, we want to examine some conditions that under those the duality of a Banach
algebra is strongly Connes-amenable. Finally, we generalize the concept of the weakly strongly connes
amenable to even dual in higher orders.
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1. Introduction

Suppose 𭟋∗∗ is the second dual of a Banach algebra 𭟋 endowed with the Arens multiplication. The
constructions of the two Arens multiplications in 𭟋∗∗ lead us to de�nition of topological centers for 𭟋∗∗

with respect to both Arens multiplications. The topological centers of Banach algebras, module actions and
applications of them have been studied in [1, 14, 15].

Baker, Lau and Pym in [19] proved that for Banach algebra A with bounded right approximate identity,
(A∗A)⊥ is an ideal of right annihilators in A∗∗ and A∗∗ ∼= (A∗A)∗ ⊕ (A∗A)⊥. Also in [9, 5, 11], the authors
established the Arens regularity of module actions of Banach left or right modules over Banach algebras.
They proved that if A has a bounded left approximate identity, then the right (left) module action of A on
A∗ is Arens regular if and only if A is re�exive.

Email addresses: h.eghbalisarai@gmail.com (Hossein Eghbali Sarai), hojat.afshari@yahoo.com (Hojjat Afshari)

Received January 2, 2022, Accepted March 9, 2022, Online March 11, 2022



H.E. Sarai, H. Afshari, Results in Nonlinear Anal. 5 (2022), 62�71. 63

Let X,Y, Z be normed spaces and ι : X×Y → Z is a bounded bilinear mapping. Arens in [1] introduced
two natural extensions ι∗∗∗ and ιt∗∗∗t of ι, from X∗∗ × Y ∗∗ into Z∗∗ as follows:

1. ι∗ : Z∗ ×X → Y ∗, given by ⟨ι∗(ζ ′, µ), ν⟩ = ⟨ζ ′, ι(µ, ν)⟩ where, µ ∈ X, ν ∈ Y , ζ ′ ∈ Z∗,

2. ι∗∗ : Y ∗∗ × Z∗ → X∗, given by ⟨ι∗∗(ν ′′, ζ ′), µ⟩ = ⟨ν ′′, ι∗(ζ ′, µ)⟩ where, µ ∈ X, ν ′′ ∈ Y ∗∗, ζ ′ ∈ Z∗,

3. ι∗∗∗ : X∗∗ × Y ∗∗ → Z∗∗, given by ⟨ι∗∗∗(µ′′, ν ′′), ζ ′⟩ = ⟨µ′′, ι∗∗(ν ′′, ζ ′)⟩
where, µ′′ ∈ X∗∗, ν ′′ ∈ Y ∗∗, ζ ′ ∈ Z∗.

A mapping ι∗∗∗ is the unique extension of ι with µ′′ → ι∗∗∗(µ′′, ν ′′) from X∗∗ into Z∗∗ is w∗ − to − w∗

continuous for ν ′′ ∈ Y ∗∗, but ν ′′ → ι∗∗∗(µ′′, ν ′′) is not in general w∗ − to− w∗ continuous from Y ∗∗ into Z∗∗

unless µ′′ ∈ X. Hence the �rst topological center of ι is speci�ed by:

Z1(ι) = {µ′′ ∈ X∗∗ : ν ′′ → ι∗∗∗(µ′′, ν ′′) is w∗ − to− w∗ − continuous}.

Let ιt : Y × X → Z be the transpose of ι with ιt(ν, µ) = ι(µ, ν) for µ ∈ X and ν ∈ Y . ιt is a continuous
bilinear from Y ×X to Z, hence it extended to ιt∗∗∗ : Y ∗∗×X∗∗ → Z∗∗. The mapping ιt∗∗∗t : X∗∗×Y ∗∗ → Z∗∗

in general is not equal to ι∗∗∗, (see [1]), if ι∗∗∗ = ιt∗∗∗t, then ι is called Arens regular. ν ′′ → ιt∗∗∗t(µ′′, ν ′′)
is w∗ − to − w∗ continuous for µ′′ ∈ X∗∗, but µ′′ → mt∗∗∗t(µ′′, ν ′′) from X∗∗ into Z∗∗ is not in general
w∗ − to− w∗ continuous for ν ′′ ∈ Y ∗∗. So we de�ne the second topological center of ι as

Z2(ι) = {ν ′′ ∈ Y ∗∗ : µ′′ → ιt∗∗∗t(µ′′, ν ′′) is w∗ − to− w∗ − continuous}.

Obviously ι is Arens regular if and only if Z1(ι) = X∗∗ or Z2(ι) = Y ∗∗. Arens regularity of ι is characterized
also by

lim
i
lim
j
⟨ζ ′, ι(µi, νj)⟩ = lim

j
lim
i
⟨ζ ′, ι(µi, νj)⟩,

for bounded sequences (µi)i ⊆ X , (νi)i ⊆ Y and ζ ′ ∈ Z∗, (see [7]).
The constructions of the two Arens products are as below:
The �rst Arens product is stated in three steps. For α, β in 𭟋, f in 𭟋∗ and m,n in 𭟋∗∗, the phrases f.α and
m.f of 𭟋∗ and m.n of 𭟋∗∗ are speci�ed by:

⟨f.α, β⟩ = ⟨f, αβ⟩

⟨m.f, α⟩ = ⟨m, f.α⟩

⟨m.n, f⟩ = ⟨m,n.f⟩

The second Arens: For α, β in 𭟋, f in 𭟋∗ and m,n in 𭟋∗∗, the phrases α□f , f□m of 𭟋∗ and m□n of 𭟋∗∗

are speci�ed by:
⟨α□f, β⟩ = ⟨f, βα⟩

⟨f□m,α⟩ = ⟨m,α□f⟩

⟨m□n, f⟩ = ⟨n, f□m⟩

Let α′′ and β′′ be elements of 𭟋∗∗, the second dual of 𭟋. By Goldstin,s Theorem, there exist nets (αϱ)ϱ

and (βυ)υ in 𭟋 with αϱ
w∗
→α′′ and βυ

w∗
→β′′. So for α′ ∈ 𭟋∗,

lim
ϱ

lim
υ
⟨α′, ι(αϱ, βυ)⟩ = ⟨α′′β′′, α′⟩

and



H.E. Sarai, H. Afshari, Results in Nonlinear Anal. 5 (2022), 62�71. 64

lim
υ

lim
ϱ
⟨α′, ι(αϱ, βυ)⟩ = ⟨α′′□β′′, α′⟩,

where α′′β′′ and α′′□β′′ are the �rst and second Ares products of 𭟋∗∗, respectively, (see [6]).

Let B be a Banach 𭟋-bimodule, and let

πℓ : 𭟋× B −→ B and πr : B ×𭟋 −→ B,

be the right and left module actions of 𭟋 on B. By previous description, the transpose of πr denoted by
πt
r : 𭟋× B → B. Then

π∗
ℓ : B∗ × 𭟋 −→ B∗ and πt∗t

r : 𭟋× B∗ −→ B∗.

Thus B∗ is a left Banach 𭟋-module and a right Banach 𭟋-module with respect to the module actions
πt∗t
r and π∗

ℓ , respectively. The second dual B∗∗ is a Banach 𭟋∗∗-bimodule with the following module actions

π∗∗∗
ℓ : 𭟋∗∗ × B∗∗ −→ B∗∗ and π∗∗∗

r : B∗∗ ×𭟋∗∗ −→ B∗∗,

where 𭟋∗∗ is considered as a Banach algebra with respect to the �rst Arens product. Similarly, B∗∗ is a
Banach 𭟋∗∗-bimodule with the module actions

πt∗∗∗t
ℓ : 𭟋∗∗ × B∗∗ −→ B∗∗ and πt∗∗∗t

r : B∗∗ ×𭟋∗∗ −→ B∗∗,

where 𭟋∗∗ is considered as a Banach algebra with respect to the second Arens product.
Let B be a Banach 𭟋-bimodule. Then B is called factors on the left (right) with respect to 𭟋, if

B = B𭟋 (B = 𭟋B). Thus B factors on both sides, if B = B𭟋 = 𭟋B.

The member e′′ of 𭟋∗∗ is said to be a bilateral unit if e′′ is a right unit for the �rst Arens multiplication
and a left unit for the second Arens multiplication. Indeed, e′′ is a bilateral unit if and only if, for each
α′′ ∈ 𭟋∗∗, α′′e′′ = e′′□α′′ = α′′. By [[2], p.146], an element e′′ of 𭟋∗∗ is bilateral unit if and only if it is a w∗

cluster point of some BAI (bounded approximate identity) (eϱ)ϱ∈I in 𭟋.

2. Weakly completely continuous operators and its relationships with the topological centers

of module actions

In throughout of this section, we denote weakly sequentially complete Banach algebra 𭟋 by WSC, that is
𭟋 is said to be weakly sequentially complete, if every weakly Cauchy sequence in 𭟋 has a weak limit in 𭟋.
Here we investigate some conditions that under those conditions a bilinear mapping on WSC is weakly
compact.
Suppose that 𭟋 is a Banach algebra and B is a Banach 𭟋 − bimodule. According to [7], B∗∗ is a Banach
𭟋∗∗ − bimodule, where 𭟋∗∗ is equipped with the �rst Arens product. We de�ne B∗B as a subspace of 𭟋,
that is, for all β′ ∈ B∗ and β ∈ B, we de�ne

⟨β′β, α⟩ = ⟨β′, βα⟩;

We similarly de�ne B∗∗∗B∗∗ as a subspace of 𭟋∗∗ and we take 𭟋(0) = 𭟋 and B(0) = B.
In the following, we will study some properties of topological centers of module actions and we will extend
some problems from topological centers of Banach algebras into module actions with some relationships of
them.

When there is not confused, we set πℓ(α, β) = αβ and πr(β, α) = βα, then we use the notions Zℓ
B∗∗(𭟋∗∗)

and Zr
𭟋∗∗(B∗∗) for topological centers of module actions as follows.

Zℓ
B∗∗(𭟋∗∗) = {α′′ ∈ 𭟋∗∗ : the map β′′ → α′′β′′ : B∗∗ → B∗∗
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is w∗ − to− w∗ continuous}.

Zr
𭟋∗∗(B∗∗) = {β′′ ∈ B∗∗ : the map α′′ → β′′α′′ : 𭟋∗∗ → B∗∗

is w∗ − to− w∗ continuous}

De�nition 2.1. If 𭟋 is a Banach algebra and ςα : 𭟋 −→ 𭟋 is de�ned by β 7→ αβ for all α ∈ 𭟋, then α ∈ 𭟋
is called left weakly completely continuous, if the mapping ςα be weakly compact on 𭟋. Banach algebra 𭟋
is left weakly completely continuous if every element α of 𭟋 be left weakly completely continuous. The right
weakly completely continuous is de�ned analogously. We say that 𭟋 is weakly completely continuous(wcc) if
𭟋 is left and right weakly completely continuous.

Theorem 2.2. Let 𭟋 be a WSC and wcc Arens regular Banach algebra with a BAI and B be a Banach
algebra. Then every bounded linear operator T ∈ B(𭟋,B) is weakly compact.

Proof. Assume that 𭟋 is Arens regular. We prove that 𭟋 is re�exive. In this state if 𭟋 is re�exive, then
ball 𭟋 is σ(𭟋,𭟋∗)-compact. Thus, since T : (𭟋, σ(𭟋,𭟋∗)) → (B, σ(B,B∗)) is continuous, then T (ball𭟋)

w
is

weakly compact. Then T is weakly compact.
Now we prove that 𭟋 is re�exive. Let D0 be a separable subalgebra of 𭟋. Then by Lemma 3.4 of [18] D0 is
contained in a separable subalgebra D of 𭟋 that has a sequential B𭟋I (en)n∈N. Hence by assumptions, D
will be Arens regular and WSC and by Theorem 3.1 of [18] D∗ factors(D∗D = D∗ = DD∗). Now, for any
α′ ∈ D∗ there exist µ ∈ D and β′ ∈ D∗ withα′ = β′µ. Since µen → µ, then

⟨α′, en⟩ = ⟨β′µ, en⟩ = ⟨β′, µen⟩ → ⟨β′, µ⟩.

This shows that the sequence (en)n∈N is weakly Cauchy. since D is WSC, it converges weakly to some
element e of D. Then e is the unit element of D. Thus D is unital . Now we suppose 𭟋 is wcc and let
(αn)n∈N be a bounded sequence in 𭟋. Then (αn)n∈N is contained in a unital subalgebra D. Since D is also
wcc and unital, it is re�exive. Hence (αn)n∈N has a weakly convergent subsequence, and 𭟋 is re�exive.

Example 2.3. Let G be a locally not compact group but no compact. Then the only element of L1(G) with
left weakly completely continuous, is zero. But if G is compact, then each ϕ ∈ L1(G) is left weakly completely
continuous.

De�nition 2.4. Let B be a left Banach 𭟋−module. Then B∗ is said to be left weakly completely continuous
= (L̃wcc), if for each β′ ∈ B∗, the mapping α → π∗

ℓ (β
′, α) from 𭟋 into B∗, maps weakly Cauchy sequence

into weakly convergence ones. If every β′ ∈ B∗ is L̃wcc, then we say that B∗ is L̃wcc.

The de�nition of right weakly completely continuous (= R̃wcc) is similar. We say that β′ ∈ B∗ is weakly

completely continuous (= w̃cc), if β′ is L̃wcc and R̃wcc.

Theorem 2.5. Let B be a left Banach 𭟋−module. Then by one of the following conditions, B∗ is L̃wcc.

1. 𭟋 is WSC.

2. B∗ is WSC.

3. ZB∗∗(𭟋∗∗) = 𭟋∗∗.

Proof. 1. Let (αn)n ⊆ 𭟋 be weakly Cauchy sequence. Since 𭟋 is WSC, there is α ∈ 𭟋 with αn
w→ α.

Now, let β′ ∈ B∗ and β′′ ∈ B∗∗. Then we have

⟨β′′, π∗
ℓ (β

′, αn)⟩ = ⟨π∗∗
ℓ (β′′, β′), αn⟩ → ⟨π∗∗

ℓ (β′′, β′), α⟩ = ⟨β′′, π∗
ℓ (β

′, α)⟩.

Thus π∗
ℓ (β

′, αn)
w→ π∗

ℓ (β
′, α).

2. Proof is similar to (1).
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3. Let (αn)n ⊆ 𭟋 be weakly Cauchy sequence. Since the sequence (αn)n ⊆ 𭟋 is weakly bounded in 𭟋, it
has subsequence such as (αnk

)k ⊆ 𭟋 with αnk

w∗
→ α′′ for some α′′ ∈ 𭟋∗∗. Then for each β′ ∈ B∗ and

β′′ ∈ B∗∗, we have

⟨β′′, π∗
ℓ (β

′, αnk
)⟩ = ⟨π∗∗∗

ℓ (αnk
, β′′), β′⟩ → ⟨π∗∗∗

ℓ (α′′, β′′), β′⟩
= ⟨α′′, π∗∗

ℓ (β′′, β′)⟩ = ⟨π∗∗∗∗∗
ℓ (β′′, β′), α′′⟩

= ⟨β′′, π∗∗∗∗
ℓ (β′, α′′)⟩.

It is enough, we show that π∗∗∗∗
ℓ (β′, α′′) ∈ B∗. Suppose that (β′′

ϱ )ϱ ⊆ B∗∗ with β′′
ϱ

w∗
→ β′′. Then since

ZB∗∗(𭟋∗∗) = 𭟋∗∗, we have

⟨π∗∗∗∗
ℓ (β′, α′′), β′′

ϱ ⟩ = ⟨β′, π∗∗∗
ℓ (α′′, β′′

ϱ )⟩ = ⟨π∗∗∗
ℓ (α′′, β′′

ϱ ), β
′⟩

→ ⟨π∗∗∗
ℓ (α′′, β′′), β′⟩ = ⟨π∗∗∗∗

ℓ (β′, α′′), β′′⟩.

It follows that π∗∗∗∗
ℓ (β′, α′′) ∈ (B∗∗,w∗)∗ = B∗.

Example 2.6. i) Suppose that G is a compact group and 1 ≤ p ≤ ∞. Take Lp(G) and M(G) as

L1(G) − bimodule. Since L1(G) is WSC, by using Theorem 2.5, Lp(G) and M(G)∗ are L̃wcc. We

know that c∗0 = ℓ1 and c0 is a ℓ1−bimodule. Then since ℓ1 is WSC, by using Theorem 2.5, ℓ1 is L̃wcc.

ii) Let B be a re�exive Banach space. B⊗̂B∗, N(B), the space of nuclear operator on B, K(B), the space
of compact operators on B and W (B), the space of weakly compact operators on B are Arens regular,

so, they are L̃wcc (see[6]).

De�nition 2.7. Let 𭟋 be a Banach space. The member α′′ of 𭟋∗∗ is said to be Baire− 1, if there exists a
sequence (αn)n in 𭟋 that converges to α′′ in the w∗ topology of 𭟋∗∗. The collection of Baire− 1 elements of
𭟋∗∗ is denoted by B1(𭟋).

Theorem 2.8. Let B be a left Banach 𭟋−module. Then B1(𭟋) ⊆ ZB∗∗(𭟋∗∗) if and only if B∗ is L̃wcc.

Proof. Let B∗ is L̃wcc and suppose that α′′ ∈ B1(𭟋). Then there is a sequence (αn)n ⊆ 𭟋 with αn
w∗
→ α′′. It

follows that (αn)n is weakly Cauchy sequence in 𭟋. Then there is ν ′ ∈ B∗ with π∗
ℓ (β

′, αn)
w→ ν ′.

Moreover, for β′′ ∈ B∗∗, we have:

⟨β′′, ν ′⟩ = lim
n
⟨β′′, π∗

ℓ (β
′, αn)⟩

= lim
n
⟨π∗∗

ℓ (β′′, β′), αn⟩

= lim
n
⟨αn, π

∗∗
ℓ (β′′, β′)⟩

= ⟨α′′, π∗∗
ℓ (β′′, β′)⟩

= ⟨π∗∗∗∗∗
ℓ (β′′, β′), α′′⟩

= ⟨β′′, π∗∗∗∗
ℓ (β′, α′′)⟩.

It follows that π∗∗∗∗
ℓ (β′, α′′) ∈ B∗. Suppose that (β′′

ϱ )ϱ ⊆ B∗∗ with β′′
ϱ

w∗
→ β′′. Then for each β′ ∈ B∗, we

have

⟨π∗∗∗
ℓ (α′′, β′′

ϱ ), β
′⟩ = ⟨π∗∗∗∗

ℓ (β′, α′′), β′′
ϱ ⟩

= ⟨β′′
ϱ , π

∗∗∗∗
ℓ (β′, α′′)⟩ → ⟨β′′, π∗∗∗∗

ℓ (β′, α′′)⟩
= ⟨π∗∗∗

ℓ (α′′, β′′), β′⟩.
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Therefore we have α′′ ∈ ZB∗∗(𭟋∗∗).
Conversely, Let B1(𭟋) ⊆ ZB∗∗(𭟋∗∗) and suppose that (αn)n ⊆ 𭟋 is weakly Cauchy sequence in 𭟋. Then it

has subsequence such as (αnk
)k ⊆ 𭟋 with αnk

w∗
→ α′′ for some α′′ ∈ 𭟋∗∗. It follows that α′′ ∈ B1(𭟋), and

so α′′ ∈ ZB∗∗(𭟋∗∗). It is similar to Theorem 2.5, we have π∗∗∗∗
ℓ (β′, α′′) ∈ B∗ for some β′ ∈ B∗. Then for

β′′ ∈ B∗∗, we have

lim
n
⟨β′′, π∗

ℓ (β
′, αn)⟩ = lim

n
⟨π∗∗

ℓ (β′′, β′), αn⟩

= lim
k
⟨π∗∗

ℓ (β′′, β′), αnk
⟩

= lim
k
⟨π∗∗∗

ℓ (αnk
, β′′), β′⟩

= ⟨π∗∗∗
ℓ (α′′, β′′), β′⟩

= ⟨π∗∗∗∗∗
ℓ (β′, β′′), α′′⟩

= ⟨β′′, π∗∗∗∗
ℓ (β′, α′′)⟩.

It follows that π∗
ℓ (β

′, αn)
w→ π∗∗∗∗

ℓ (β′, β′′) in B∗. Thus B∗ is L̃wcc.

De�nition 2.9. Let B be a Banach 𭟋− bimodule and α′′ ∈ 𭟋∗∗. We de�ne the locally topological center of
the left and right module actions of α′′ on B∗∗, respectively, as follows

Zt
α′′(B∗∗) = Zt

α′′(πt
ℓ) = {β′′ ∈ B∗∗ : πt∗∗∗t

ℓ (α′′, β′′) = π∗∗∗
ℓ (α′′, β′′)},

Zα′′(B∗∗) = Zα′′(πt
r) = {β′′ ∈ B∗∗ : πt∗∗∗t

r (β′′, α′′) = π∗∗∗
r (β′′, α′′)}.

It is clear that ⋂
α′′∈𭟋∗∗

Zt
α′′(B∗∗) = Zt

𭟋∗∗(B∗∗) = Z(πt
ℓ),

⋂
α′′∈𭟋∗∗

Zα′′(B∗∗) = Z𭟋∗∗(B∗∗) = Z(πr).

Theorem 2.10. Let B be a left Banach 𭟋−module. Then we have:

1. Suppose that B has a sequential B𭟋I (en)n ⊆ 𭟋 withZe′′(B∗∗)𭟋 ⊆ B where e′′ is a bilateral unit for

𭟋∗∗ and en
w∗
→ e′′. If B is WSC, then Ze′′(B∗∗) = B.

2. If B∗ is WSC, then B1(𭟋) ⊆ ZB∗∗(𭟋∗∗).

3. Assume that B has a sequential LBAI (en)n ⊆ 𭟋 and B∗ is WSC. If 𭟋 is a left ideal in 𭟋∗∗, then
ZB∗∗(𭟋∗∗) = 𭟋∗∗.

4. Assume that B∗ is WSC and 𭟋 is a right ideal in 𭟋∗∗. If Ze′′(𭟋∗∗) = 𭟋∗∗, then ZB∗∗(𭟋∗∗) = 𭟋∗∗.

Proof. 1. Since B ⊆ Ze′′(B∗∗) for every β ∈ B, we have π∗∗∗
r (β, e′′) = w∗ − limn πr(β, en) = β. Let

β′′ ∈ Ze′′(B∗∗). Suppose that (βϱ)ϱ ⊆ B withβϱ
w∗
→ β′′. Then for every β′ ∈ B∗, we have

lim
n
⟨π∗∗∗

r (β′′, en), β
′⟩ = ⟨π∗∗∗

r (β′′, e′′), β′⟩

= lim
ϱ
⟨π∗∗∗

r (βϱ, e
′′), β′⟩

= lim
ϱ
⟨β′, βϱ⟩

= ⟨β′′, β′⟩.

It follows that w∗ − limπ∗∗∗
r (β′′, en) = β′′. Since π∗∗∗

r (β′′, en) ∈ B and B is WSC, β′′ ∈ B.
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2. Assume that B∗ is WSC. Then by Theorem 2.5, B∗ is L̃wcc, by Theorem 2.8, we have B1(𭟋) ⊆
ZB∗∗(𭟋∗∗).

3. Assume that B∗ is WSC, by using part (2), we have B1(𭟋) ⊆ ZB∗∗(𭟋∗∗). Let α′′ ∈ 𭟋∗∗ and suppose

that e′′ ∈ 𭟋∗∗ is a left unit for 𭟋∗∗ with en
w∗
→ e′′. Then for every α′′ ∈ 𭟋∗∗, we have enα

′′ w∗
→ e′′α′′ = α′′.

Since 𭟋𭟋∗∗ ⊆ 𭟋, α′′ ∈ B1(𭟋). Consequently we have α′′ ∈ ZB∗∗(𭟋∗∗).

4. Proof is similar to (3).

Example 2.11. 1. Let G be a compact group. We know that L1(G) is WSC with a sequential B𭟋I.
Assume that e′′ is a bilateral unit for L1(G)∗∗. Since

Ze′′(L
1(G)∗∗)L1(G) ⊆ L1(G)∗∗L1(G) ⊆ L1(G),

by using the preceding theorem, we have

Ze′′(L
1(G)∗∗) = L1(G).

2. Let G be a locally compact group. In the preceding theorem, if we take B = c0(G) and 𭟋 = L1(G), then
it is clear that B is a Banach 𭟋− bimodule. Since L1(G) = c0(G)∗ is a WSC, ⊆ Zℓ

(ℓ1(G))∞(ℓ∞(G)∗).

3. Arens regularity and factorization property and weakly strongly Connes-amenability

A variant of that de�nition amenability was introduced in [16], but is most commonly associated with
A. Connes, paper [3]. For this reason, we refer to this notion of amenability as to Connes-amenability.

A derivation from Banach algebra𭟋 into Banach𭟋−bimodule B is a bounded linear mappingD : 𭟋 −→ B
with

D(µν) = µD(ν) +D(µ)ν for all µ, ν ∈ 𭟋.

The space of continuous derivations from 𭟋 into B is denoted by Z1(𭟋,B).
Easy examples of derivations are the inner derivations, which are given for each b ∈ B by

δβ(α) = αβ − βα for all α ∈ 𭟋.

The space of inner derivations from 𭟋 into B is denoted by B1(𭟋,B). The Banach algebra 𭟋 is said to be
amenable, if for every Banach 𭟋 − bimodule B, the inner derivations are only derivations existing from 𭟋
into B∗. It is clear that 𭟋 is amenable if and only if H1(𭟋,B∗) = Z1(𭟋,B∗)/B1(𭟋,B∗) = {0} and 𭟋 is
weakly amenable if H1(𭟋,𭟋∗) = {0}. The concept of amenability for a Banach algebra 𭟋, was introduced
by Johnson in 1972, (see [13]). For a Banach 𭟋− bimodule B, the quotient space H1(𭟋,B) of all continuous
derivations from 𭟋 into B modulo the subspace of inner derivations is called the �rst cohomology group of
𭟋 with coe�cients in B.

A Banach algebra B is said to be dual if there is a closed submodule B∗ of B∗ withB = (B∗)
∗ and we

know that B∗ need not be unique. For example, if B is Arens regular, then B∗∗ is dual, or if G is locally
compact group, then M(G) is dual (with M(G)∗ = C0(G)).
Let 𭟋 be a Banach Algebra. A dual Banach 𭟋− bimodule B is called normal if, for µ ∈ B the map α 7→ αµ
and α 7→ µα from 𭟋 into B is weak∗-to- weak∗ continuous.

A dual Banach algebra 𭟋 is strongly Connes-amenable if, for every normal, dual Banach 𭟋 − bimodule
B, every weak∗-to- weak∗ continuous derivation D ∈ Z1(𭟋,B∗) is inner. Then we write H1

w∗(𭟋,B∗) = {0}.
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Theorem 3.1. Suppose 𭟋 is a Banach algebra that (𭟋∗∗,♢) is amenable(♢ is the �rst Arens product) with𭟋
is ideal in 𭟋∗∗ and if �̂� is the image of 𭟋 in 𭟋∗∗ under the canonical mapping, with�̂�♢𭟋∗∗ ⊂ Z1. Then 𭟋∗∗

is strongly Connes-amenable.

Proof. Since (𭟋∗∗,♢) is amenable, then by Theorem 1.8 of [12], 𭟋 will be amenable. So 𭟋 has a bounded
approximate identity. Hence 𭟋∗.𭟋 = 𭟋∗(namely 𭟋∗ factors on the left). Now, if f ∈ 𭟋∗, then there exist
g ∈ 𭟋∗ and α ∈ 𭟋 withf = g.α. We prove that 𭟋 is Arens regular. Let m,n ∈ 𭟋∗∗. Then α̂♢m ∈ Z1 and
α̂♢m = α̂□m, and we have

⟨m♢n, f⟩ = ⟨m♢n, g.α⟩
= ⟨α̂♢(m♢n), g⟩
= ⟨(α̂♢m)♢n), g⟩
= ⟨(α̂♢m)□n, g⟩
= ⟨(α̂□m)□n, g⟩
= ⟨α̂□(m□n), g⟩
= ⟨m□n, g.α⟩
= ⟨m□n, f⟩,

for f ∈ 𭟋∗, m♢n = m□n, then 𭟋 is Arens regular and we get 𭟋∗∗ is dual. Since 𭟋 is amenable and Arens
regular and 𭟋 is ideal in 𭟋∗∗ and 𭟋∗∗ is dual, by Theorem 4.4 of [17], 𭟋∗∗ is strongly Connes-amenable.

Theorem 3.2. Let 𭟋 be an Arens regular dual Banach algebra with 𭟋∗ is WSC . If 𭟋∗∗ is weakly strongly
Connes-amenable. Then 𭟋 is weakly strongly Connes-amenable

Proof. Let D : 𭟋 → 𭟋∗ be a w∗−continuous derivation. Since 𭟋 is Arens regular, 𭟋∗∗ is dual and since 𭟋∗

is WSC, then every derivation, D : 𭟋 → 𭟋∗ is weakly compact. Then D∗∗(𭟋∗∗) ⊆ 𭟋∗ by (Theorem 5.5 of
[4]), hence, by Arens regularity of 𭟋, 𭟋∗ is an 𭟋∗∗−submodule of (𭟋∗∗)∗ and D∗∗(𭟋∗∗).𭟋∗∗ ⊆ 𭟋∗.𭟋∗∗ ⊆ 𭟋∗.
Thus, according to Theorem 7.1 of [7], D∗∗ : 𭟋∗∗ → 𭟋∗∗∗ is a w∗−continuous derivation. Since 𭟋∗∗ is weakly
strongly Connes-amenable, there exists α′′′ ∈ 𭟋∗∗∗ with D∗∗(F ) = F.α′′′ − α′′′.F for each F ∈ 𭟋∗∗. Now, if
E : 𭟋 → 𭟋∗∗ is the canonical map, setting f = E∗(α′′′), then D(α) = α.f − f.α for all α ∈ 𭟋 and so D is
inner.Thus 𭟋 is weakly strongly Connes-amenable.

Theorem 3.3. If 𭟋 is a Banach algebra with a left ideal in 𭟋∗∗ and 𭟋∗ factors on the right. Then 𭟋 is
Arens regular.

Proof. Consider 𭟋∗ as a Banach 𭟋-bimodule. Let β′′ ∈ 𭟋∗∗. Also, let (αϱ)ϱ be a net in 𭟋 with α′′
ϱ

w∗
−→ α′′ in

𭟋∗∗. We show that β′′α′′
ϱ

w∗
−→ β′′α′′. Let α′ ∈ 𭟋∗, Then, since 𭟋∗ factors on the right, there are β ∈ 𭟋, β′ ∈ 𭟋∗

with α′ = ββ′. Since 𭟋 is the left ideal in 𭟋∗∗, thus we have α′′
ϱβ −→ α′′β in 𭟋∗∗ if and only if α′′

ϱβ −→ α′′β

in 𭟋. Also, since 𭟋 −→ 𭟋∗ with β 7→ ββ′ is continuous, it follows that α′′
ϱββ

′ w−→ α′′ββ′ in 𭟋∗. Thus

lim
ϱ
⟨β′′α′′

ϱ, α
′⟩ = lim

ϱ
⟨β′′α′′

ϱ, ββ
′⟩

= lim
ϱ
⟨β′′, α′′

ϱ(ββ
′)⟩

= ⟨β′′, α′′(ββ′)⟩
= ⟨β′′α′′, ββ′⟩
= ⟨β′′α′′, α′⟩.

This shows that β′′ ∈ Z𭟋(𭟋∗∗). Hence 𭟋 is Arens regular.

Theorem 3.4. If 𭟋 is a Banach algebra and is a right ideal in 𭟋∗∗ with 𭟋∗ factors on the left. Then 𭟋 is
Arens regular.
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Proof. similar to Theorem 3.3

Corollary 3.5. If 𭟋 is a two-sided ideal in 𭟋∗∗ and 𭟋∗ factors. Then 𭟋 is Arens regular.

Theorem 3.6. For a Banach algebra 𭟋, suppose that 𭟋 is weakly completely continuous and 𭟋∗ factors.
Then 𭟋 is Arens regular.

Proof. By Lemma (3) of [8], since 𭟋 is weakly completely continuous then 𭟋 is an ideal in 𭟋∗∗ and if we
apply Theorem 3.4, then 𭟋 is Arens regular.

Now we can extend the Theorems 3.3 and 3.4 and Corollary 3.5 to even dual of 𭟋:

Theorem 3.7. [10] If 𭟋(2n) is a two-sided ideal in 𭟋(2n+2) and 𭟋(2n+1) factors, then 𭟋(2n) is Arens
regular.(n ≥ 0, n ∈ N).

Theorem 3.8. For a Banach algebra 𭟋, suppose that 𭟋∗∗ is an ideal in 𭟋∗∗∗∗ and 𭟋∗∗∗ factors. Then if 𭟋
is weakly amenable, then 𭟋∗∗ is weakly strongly Connes-amenable.

Proof. If we apply Corollary 3.5, then we conclude that 𭟋∗∗ is Arens regular. Now let D : 𭟋∗∗ −→ 𭟋∗∗∗ be
a w∗ − w∗-continuous derivation. First, we prove that 𭟋∗∗∗ is a normal Banach 𭟋∗∗-bimodule. Let (α′′

ϱ)ϱ is
a net in 𭟋∗∗ and α′′′ ∈ 𭟋∗∗∗. Then, by Arens regularity of 𭟋∗∗, for every β′′ ∈ 𭟋∗∗ we have

⟨(w∗ − lim
ϱ

α′′
ϱ).α

′′′, β′′⟩ = ⟨α′′′, β′′.(w∗ − lim
ϱ

α′′
ϱ)⟩

= lim
ϱ
⟨α′′′, β′′.α′′

ϱ⟩

= lim
ϱ
⟨α′′

ϱ.α
′′′, β′′⟩

= ⟨w∗ − lim
ϱ
(α′′

ϱ.α
′′′), β′′⟩.

Also

⟨α′′′.(w∗ − lim
ϱ

α′′
ϱ), β

′′⟩ = ⟨α′′′, w∗ − lim
ϱ

α′′
ϱ.β

′′⟩

= lim
ϱ
⟨α′′′, α′′

ϱ, β
′′⟩

= lim
ϱ
⟨α′′′.α′′

ϱ, β
′′⟩

= ⟨w∗ − lim
ϱ
(α′′′.α′′

ϱ), β
′′⟩.

Hence, the mapping α′′ 7→ α′′.α′′′ and α′′ 7→ α′′′.α′′ are weak∗-weak∗-contnuous from 𭟋∗∗ → 𭟋∗∗∗. Conse-
quently, 𭟋∗∗∗ is a normal Banach 𭟋∗∗−bimodule.

For each α ∈ 𭟋, we de�ne D̄ : 𭟋 −→ 𭟋∗ by

D̄(α) = D(α̂) |𭟋 .

Then D̄ is a continuous derivation from 𭟋 into 𭟋∗. Because for every α, β ∈ 𭟋, we have

D̄(αβ) = D(α̂β) = D(α̂♢β̂) = α.D(β̂) +D(α̂).β = α.D̄(β) + D̄(α).β.

Since 𭟋 is weakly amenable, thus D̄ is inner.Then there exist α′′′ ∈ 𭟋∗∗∗ with

D(α̂) = D̄(α) = α.α′′′ |𭟋 −α′′′ |𭟋 .α = α̂.α′′′ |𭟋 −α′′′ |𭟋 .α̂.

We consider canonical mapping E : 𭟋∗ −→ 𭟋∗∗∗. Then there is b′′′ ∈ 𭟋∗∗∗ with E(α′′′ |𭟋) = β′′′. So

D(α̂) = α̂.β′′′ − β′′′.α̂.
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There for D is inner. Thus 𭟋∗∗ is weakly strongly Connes-amenable.

Corollary 3.9. Let 𭟋(2n+2) be a two sided ideal in 𭟋(2n+4) and 𭟋(2n+3) factors. If 𭟋(2n) be weakly amenable,
then 𭟋(2n+2) is weakly strongly connes amenable.

Proof. It is easily followed from Theorems 3.7 and 3.8.
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