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Abstract

In this paper, all finite non-abelian groups whose commuting graphs can be embed on the
double-torus or triple-torus are classified.
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1. Introduction
Let G be a non-abelian group and Z(G) be its center. The commuting graph of G,

denoted by Γc(G), is a simple undirected graph in which the vertex set is G \ Z(G),
and two distinct vertices x and y are adjacent if and only if xy = yx. This graph is
precisely the complement of the non-commuting graph of a group considered in [1] and
[11]. Commuting graphs of groups were first mentioned in the seminal paper of Brauer and
Fowler [7] which was concerned with the classification of the finite simple groups. However,
the ever-increasing popularity of the topic is often attributed to a question, posed in 1975
by Paul Erdös and answered affirmatively by Neumann [13], asking whether or not a non-
commuting graph having no infinite complete subgraph possesses a finite bound on the
cardinality of its complete subgraphs. In recent years, the commuting graphs of groups
have become a topic of research for many mathematicians (see, for example, [2], [5], [8],
[10]). In [8], Das and Nongsiang determine (up to isomorphism) all finite non-abelian
groups whose commuting graphs are planar or toroidal. There is also a ring theoretic
version of the commuting graph (see, for example, [3], [4], [12]).

In the present paper, we deal with a topological aspect, namely, the genus of the com-
muting graphs of finite non-abelian groups. The primary objective of this paper is, to
determine (up to isomorphism) all finite non-abelian groups whose commuting graphs are
double-toroidal or triple-toroidal.
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2. Some prerequisites
In this section, we recall certain graph theoretic terminologies (see, for example, [14] and

[15]) and some well-known results which have been used extensively in the forthcoming
sections. All graphs in this paper are undirected, with no loops or multiple edges.

Let Γ be a graph with vertex set V (Γ) and edge set E(Γ). Let x, y ∈ V (Γ). Then x
and y are said to be adjacent if x 6= y and there is an edge x − y in E(Γ) joining x and y.

Given a graph Γ, let U be a nonempty subset of V (Γ). Then the induced subgraph of
Γ on U is defined to be the graph Γ[U ] in which the vertex set is U and the edge set
consists precisely of those edges in Γ whose endpoints lie in U . If {Γα}α∈Λ is a family of
subgraphs of a graph Γ, then the union ∪

α∈Λ
Γα denotes the subgraph of Γ whose vertex

set is ∪
α∈Λ

V (Γα) and the edge set is ∪
α∈Λ

E(Γα). The graph obtained by taking the union of
graphs Γ1 and Γ2 with disjoint vertex sets is the disjoint union or sum, written Γ1 + Γ2.
In general, mΓ is the graph consisting of m pairwise disjoint copies of Γ.

The genus of a graph Γ, denoted by γ(Γ), is the smallest non-negative integer n such
that the graph can be embedded on the surface obtained by attaching n handles to a
sphere. Clearly, if Γ̃ is a subgraph of Γ, then γ(Γ̃) ≤ γ(Γ). The surface with one, two
and three handles is the torus, double-torus and triple-torus, respectively. The graphs
embeddable on the surfaces of genus 0, 1, 2, 3 are the planar, toroidal, double-toroidal and
triple-toroidal graphs, respectively.

A block of a graph Γ is a connected subgraph B of Γ that is maximal with respect to the
property that removal of a single vertex (and the incident edges) from B does not make it
disconnected, that is, the graph B \ {v} is connected for all v ∈ V (B). Given a graph Γ,
there is a unique finite collection B of blocks of Γ, such that Γ = ∪

B∈B
B. The collection

B is called the block decomposition of Γ. In [6, Corollary 1], it has been proved that the
genus of a graph is the sum of the genera of its blocks.

We conclude the section with the following two useful results.

Lemma 2.1 ([15], Theorem 6-38). If n ≥ 3, then

γ(Kn) =
⌈(n − 3)(n − 4)

12

⌉
.

where Kn is the complete graph of order n.

Lemma 2.2 ([15], Theorem 6-37). If m, n ≥ 2, then

γ(Km,n) =
⌈(m − 2)(n − 2)

4

⌉
.

where Km,n is the complete bipartite graph with parts of size m and n.

3. Commuting graph
In this section, we shall determine all finite non-abelian groups whose commuting graphs

are of genus at most 3. The following theorems give all planar and toroidal commuting
graphs.

Theorem 3.1 ([8], Theorem 5.7). Let G be a finite non-abelian group. Then Γc(G) is
planar if and only if G is isomorphic to one of the following groups:

(1) S3, D8, Q8, D10, A4, D12, Q12, D8 × Z2, Q8 × Z2, Sz(2), S4, SL(2, 3),
A5,

(2) 〈a, b : a4 = b4 = 1, ab = a−1〉 ∼= Z4 o Z4,
(3) 〈a, b : a8 = b2 = 1, ab = a5〉 ∼= M16,
(4) 〈a, b | a4 = b4 = 1, ab = b−1a−1, ab−1 = ba−1〉 ∼= SG(16, 3),
(5) 〈a, b, c | a4 = b2 = c2 = 1, ab = ba, ac = ca, bc = a2cb〉 ∼= D8 ◦ Z4.
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Theorem 3.2 ([8], Theorem 6.6). Let G be a finite non-abelian group. Then Γc(G) is
toroidal if and only if G is isomorphic to one of the following groups:

(1) D14, D16, Q16, SD16, S3 × Z3, A4 × Z2,
(2) 〈a, b : a7 = b3 = 1, ab = a2〉 ∼= Z7 o Z3.
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Figure 1. The subgraph K̄ ∪ L̄ ∪ M̄ ∪ N̄ of the commuting graph Γc(S3 × S3).

Remark 3.3. Consider the group G = S3 × S3 ∼= 〈 (1, 2, 3), (1, 2), (4, 5, 6), (4, 5)〉. Let
a = (1, 2, 3), b = (4, 5, 6), x = (1, 2), y = (4, 5). Let K = {b, ba, ba2, b2a, b2a2}, L =
{b, xb, b2, xb2, x}, M = {x, xa, xa2} ∪ {y, yb, yb2} and N = {a, a2, y, ya, ya2}. Suppose
K̄ = Γc(G)[K], L̄ = Γc(G)[L], M̄ = Γc(G)[M ] and N̄ = Γc(G)[N ]. Then K̄ ∼= L̄ ∼= N̄ ∼=
K5 and M̄ ∼= K3,3. Note that K ∩ L = {b}, L ∩ M = {x} and M ∩ N = {y}. Thus the
graphs K̄ ∪ L̄ ∪ M̄ ∪ N̄ is as shown in Figure 1. Clearly, from Figure 1, K̄ ∪ L̄ ∪ M̄ ∪ N̄ has
four blocks K̄, L̄, M̄ and N̄ . Thus γ(K̄ ∪ L̄ ∪ M̄ ∪ N̄) = γ(K̄) + γ(L̄) + γ(M̄) + γ(N̄) = 4.
Thus Γc(S3 × S3) ≥ γ(K̄ ∪ L̄ ∪ M̄ ∪ N̄) = 4.

The following two lemmas will be useful in the sequel.
Lemma 3.4. Let G be a p-group of order pn, where n > 1.

(1) Then G has an abelian subgroup of order p2.
(2) If p = 3, n ≥ 3, then G has an abelian subgroup of order 27 or G \ Z(G) has four

commuting disjoint subsets of size 6.
(3) If p = 2, n ≥ 4, then G has an abelian subgroup of order 8 and if n ≥ 5 and

|Z(G)| ≥ 4, then G has an abelian subgroup of order 16.
(4) If p = 2, n ≥ 5, and |Z(G)| = 2, then G has an abelian subgroup of order 16 or

G \ Z(G) has four commuting disjoint subsets of size 5.
Proof. (a) Since G is a p−group, we have |Z(G)| > 1. Let x be a non-identity element
of Z(G) and consider the subgroup 〈x, y〉, for any y ∈ G \ 〈x〉.

(b) Consider a subgroup H of G of order 27. Suppose that H is non-abelian. Then,
|Z(H)| = 3 and the centralizers of the non-central elements of H are of order 9. Since any
two distinct centralizers of the non-central elements of H intersect at Z(H), it follows that
the number of such centralizers is 4. Thus it follows that G \ Z(G) has four commuting
disjoint subsets of size 6.

(c) This is Lemma 5.1 of [8].
(d) Consider a subgroup of G of order 32. Using GAP[9] or otherwise, one can see that

G has an abelian subgroup of order 16 or G \ Z(G) has four commuting disjoint subsets
of size 5. �

Lemma 3.5. Let G be a finite group such that 7 | |G|. If the sylow 7-subgroup is normal in
G, then either G has an abelian subgroup of order greater than or equal to 14 or |G| ≤ 42.
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Proof. Suppose G has no abelian subgroup of order greater than or equal to 14. Let P
be the sylow 7-subgroup of G. In view of Lemma 3.4, Part (a), |P | = 7. Let x ∈ G,
such that ◦(x) = 7. Then, |CG(x)| = 7; otherwise 〈x, y〉 for y ∈ CG(x) \ 〈x〉 is an abelian
subgroup of G of order atleast 14. Given that the sylow 7-subgroup is normal in G and
thus it follows that |ClG(x)| ≤ 6. Since |G| = |CG(x)||ClG(x)|, we have |G| ≤ 42. �

Theorem 3.6. Let G be a finite non-abelian group. Then, the commuting graph of G is
double-toroidal if and only if G is isomorphic to one of the following groups:

(1) D18, D20, Q20, S3 × Z2 × Z2, S3 × Z4,
(2) 〈x, y, z : x3 = y3 = z2 = [x, y] = 1, xz = x−1, yz = y−1〉 ∼= (Z3 × Z3) o Z2,
(3) 〈x, y : x8 = y3 = 1, yx = y−1〉 ∼= Z3 o Z8,
(4) 〈x, y, z : x4 = y3 = z2 = 1, yx = y−1, [x, z] = [y, z] = 1〉 ∼= (Z3 o Z4) × Z2,
(5) 〈x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1〉 ∼= (Z3 × Z3) o Z4,

(6) 〈x, y, z : x4 = y4 = z3 = 1, yx = y−1, zy2 = z−1, zx2 = z−1,
x−1zx−1 = (zy)2〉 ∼= (Z3 × Z3) o Q8.

Proof. Let G be a finite non-abelian group whose commuting graph is double-toroidal.
Then Γc(G) has no subgraphs isomorphic to K9, K8 + K5 or 3K5.

(1) Suppose |Z(G)| ≥ 8. Since G is non-abelian, we have |G/Z(G)| ≥ 4. Let xZ(G)
and yZ(G) be two distinct non-identity elements of G/Z(G). Then the induced sub-
graph of Γc(G) by the set xZ(G) ∪ yZ(G) has a subgraph isomorphic to 2K8, which is a
contradiction. Thus |Z(G)| ≤ 7.

(2) Suppose |Z(G)| = 7. If p is a prime and p = 3, 5 or p > 7, then p - |G|; otherwise, for
an element x of G of order p, 〈x, Z(G)〉 is an abelian group of order 7p. Thus |G| = 2i7j .
If i ≥ 2, then G has an abelian subgroup of order 4 and hence an abelian subgroup of
order 28, which is a contradiction. By Lemma 3.4, we have j = 1 and so |G| = 14, which
is a contradiction. Thus |Z(G)| ≤ 6.

(3) Suppose |Z(G)| = 6. If p is a prime and p ≥ 5, then p - |G|; otherwise, for an
element x of G of order p, 〈x, Z(G)〉 is an abelian group of order 6p. Thus |G| = 2i3j . By
Lemma 3.4, we have i ≤ 4 and j ≤ 2. If i = 4, then by Lemma 3.4, G has an abelian
subgroup of order 8 and hence a subgroup of order 24, a contradiction. So i ≤ 3. Similarly
if j = 2, then G has an abelian group of order 18, a contradiction. It follows that |G| = 24
and so G ∼= D8 ×Z3, Q8 ×Z3. The commuting graphs of both these groups are isomorphic
to 3K6. Hence the commuting graphs of D8 × Z3 and Q8 × Z3 are not double-toroidal.

(4) Suppose |Z(G)| = 5. If p is a prime and p = 3 or p ≥ 7, then clearly p - |G|. Thus,
we have |G| = 2i5j . If i ≥ 2, then G has an abelian subgroup of order 4 and hence an
abelian subgroup of order 20, which is a contradiction. By Lemma 3.4, we have j = 1 and
so |G| = 10, which is a contradiction. Thus |Z(G)| 6= 5.

(5) Suppose |Z(G)| = 4. If p is a prime and p ≥ 5, then clearly p - |G|. Thus |G| = 2i3j .
By Lemma 3.4 and since |Z(G)| = 4, we have i ≤ 4 and j ≤ 1 and so |G| = 16, 24 or 48.
Groups of order 16 with |Z(G)| = 4 are planar, see [8, Lemma 5.5]. Groups of order 24
with |Z(G)| = 4, are

• 〈x, y : x8 = y3 = 1, yx = y−1〉 ∼= Z3 o Z8,
• S3 × Z4,
• 〈x, y, z : x4 = y3 = z2 = 1, yx = y−1, [x, z] = [y, z] = 1〉 ∼= (Z3 o Z4) × Z2,
• S3 × Z2 × Z2.

All these groups are AC-groups, with each of them having 3 centralizers of size 8 and one
centralizer of size 12. Thus by [8, Proposition 3.4], the commuting graphs of these groups
are double-toroidal.

If |G| = 48, then |G/Z(G)| = 12. If x̄ is an element of G/Z(G) of order 6, then 〈x, Z(G)〉
is an abelian group of order 24, which is a contradiction. Thus G/Z(G) has no element of
order 6 and so G/Z(G) ∼= A4. Thus G/Z(G) has two elements x̄, ȳ of order 3, such that x̄ 6∈
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〈ȳ〉. Therefore, the induced subgraph of Γc(G) by the set xZ(G)∪x2Z(G)∪yZ(G)∪y2Z(G)
is isomorphic to 2K8, which is a contradiction.

(6) Suppose |Z(G)| = 3. If p is a prime and p ≥ 5, then clearly p - |G|. Thus, we have
|G| = 2i3j . By Lemma 3.4, we have i ≤ 4 and j ≤ 2. Suppose i ≥ 2. Then, by Lemma 3.4,
a sylow 2-subgroup of G contains an abelian subgroup of order 4 and hence G contains an
abelian subgroup of order 12, which is a contradiction. Hence i = 1. Therefore |G| = 18.
There is only one group of order 18 with |Z(G)| = 3, namely Z3 × S3 and its commuting
graph is toroidal. Thus |Z(G)| 6= 3.

(7) Suppose |Z(G)| = 2. If p is a prime and p ≥ 7, then clearly p - |G|. Thus
|G| = 2i3j5k. By Lemma 3.4, we have i ≤ 4, j ≤ 2 and k ≤ 1. Suppose j = 2. By
Lemma 3.4, a sylow 3-subgroup S of G is an abelian subgroup of order 9 and so 〈S, Z(G)〉
is an abelian subgroup of order 18, which is a contradiction. Therefore j ≤ 1 and thus
|G| | 24.3.5.

By Theorem 3.1, groups of order 6, 8, 10 and 12 are planar and by [8, Lemma 6.2],
groups of order 16 with |Z(G)| = 2 are toroidal. Groups of order 30 has an abelian
subgroup of order 15. Thus |G| ∈ {20, 24, 40, 48, 60, 80, 120, 240}.

Group of order 20 with |Z(G)| = 2 are D20 and Q20. These two groups are AC-groups,
with each of them has one centralizer of size 10 and 5 centralizers of size 4. Thus by
[8, Proposition 3.4], their commuting graphs are double-toroidal.

Groups of order 24 with |Z(G)| = 2 are
• SL(2, 3),
• Z2 × A4,
• Q24,
• D24,
• 〈x, y, z : x2 = y2 = z3 = (xz)2 = (yx)4 = 1, yz = y−1〉 ∼= (Z6 × Z2) o Z2.

The group SL(2, 3) is planar. The group Z2 × A4 is toroidal. If G is one of the groups
Q24, D24 or (Z6 × Z2) : Z2, then G has an abelian subgroup of order 12. Thus K10 is a
subgraph of Γc(G), which is a contradiction.

Note that if G has an abelian subgroup of order greater than of equal to 12, then its
commuting graph is not double-toroidal. Groups of order 40 with |Z(G)| = 2 and has no
abelian subgroup of order greater than or equal to 12 are

• 〈x, y : y5 = x8 = 1, xy = xy〉 ∼= Z5 o Z8,
• 〈x, y, z : y2 = x4 = z5 = 1, yx = y−1, yz = y−1, xz = xz〉 ∼= Z2 × (Z5 o Z4).

Each of the groups Z5 o Z8, and Z2 × (Z5 o Z4), has 5 abelian subgroups of order
8, namely the sylow 2-subgroups and intersection of any two is the center. Thus the
commuting graphs of these groups are not double-toroidal.

Groups of order 48 with |Z(G)| = 2 and has no abelian subgroup of order greater than
or equal to 12 are

• 〈x, y, z : y3 = z4 = 1, x2 = z2, yx = y−1, y−1zy−1z−1y−1z = xz−1xy−1zy = 1〉 ∼=
SL(2, 3) ◦ Z2,

• GL(2, 3),
• 〈x, y, z : x2 = y3 = z4 = (xz2)2 = 1, yz = y−1, (xxy)z = x−1〉 ∼= A4 o Z4 ,
• Z2 × S4.

The groups SL(2, 3) ◦ Z2 and GL(2, 3) are AC-groups. Each of these groups has 3
centralizers of size 8 and the rest are of size less than or equal to 6. Thus by [8, Proposition
3.4], γ(Γc(GL(2, 3))) = γ(Γc(SL(2, 3)◦Z2)) = 3, that is, Γc(GL(2, 3)) and Γc(SL(2, 3)◦Z2)
are not double-toroidal.

The group A4 o Z4 has four abelian subgroups of order 8, say A, B, C, D, such that
A ∩ B = A ∩ C = A ∩ D = B ∩ C = B ∩ D = Z(G) and |C ∩ D| = 4. Suppose
(C ∩ D) \ Z(G) = {u, v}. Then γ(Γc(G)) ≥ γ(Γc(G)[A \ Z(G)]) + γ(Γc(G)[B \ Z(G)]) +
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γ(Γc(G)[(C \ (Z(G)) ∪ {u}]) + γ(Γc(G)[(D \ (Z(G)) ∪ {v})]) = 1 + 1 + 1 + 1 = 4. Thus the
the commuting graph of A4 o Z4 is not double-toroidal.

For the group G = Z2 × S4, let A = Z2 × 〈(1, 4, 2, 3)〉 , B = Z2 × 〈(1, 3, 4, 2)〉, C =
Z2 × 〈(1, 3), (2, 4)〉 and D = Z2 × 〈(1, 2, 3, 4)〉. Then A ∩ B = A ∩ C = A ∩ D = B ∩
C = B ∩ D = Z(G) = Z2 × {()} and C ∩ D = Z2 × 〈(1, 3)(2, 4)〉. Let H = Z2 ×
〈(1, 3)(2, 4)〉. Thus γ(Γc(G)) ≥ γ(Γc(G)[A \ Z(G)]) + γ(Γc(G)[B \ Z(G)]) + γ(Γc(G)[(C \
H) ∪ {(1, (1, 2)(3, 4))}]) + γ(Γc(G)[(D \ H) ∪ {(x, (1, 2)(3, 4))}]) = 1 + 1 + 1 + 1 = 4, where
Z2 = 〈x〉. Thus the the commuting graph of A4 o Z4 is not double-toroidal.

Let G be a group of order 80. Let P1 and P2 be two sylow 5-subgroups of G. Then 2K8
is a subgraph of Γc(G)[〈P1, P2, Z(G)〉 \ Z(G)] and so 2K8 is a subgraph of Γc(G), which
is a contradiction. Thus the sylow 5-subgroup of G is normal in G. Let P = 〈x〉 be the
sylow 5-subgroup of G. Thus |ClG(x)| = 4. Now since |CG(x)||ClG(x)| = 80, we have
|CG(x)| = 20. Note that Z(G) ⊂ CG(x). Thus |Z(CG(x))| ≥ 10. But |Z(CG(x))| = 10 is
not possible; otherwise CG(x)/Z(CG(x)) is cyclic and hence CG(x) is abelian. Therefore
|Z(CG(x))| = 20, that is CG(x) is abelian and so G has an abelian subgroup of order 20.
Thus Γc(G) is not double-toroidal.

Solvable groups of order 60 and 120 has a Hall subgroup of order 15, which is abelian.
There is no non-solvable group of order 60 with |Z(G)| = 2. Non-solvable groups of
order 120 with |Z(G)| = 2 are SL(2, 5) and Z2 × A5. Each of these groups has 6 abelian
subgroups of order 10 and the intersection of any two of these subgroups is the center.
Thus the commuting graphs of SL(2, 5) and Z2 × A5 are not double-toroidal.

Solvable groups of order 240 has a Hall subgroup of order 15, which is abelian. There
are 8 non-solvable groups of order 240, but all these groups has an abelian subgroups of
order 12. Therefore, there are no commuting graphs of groups of order 240 which are
double-toroidal.

(8) Suppose |Z(G)| = 1. By Lemma 3.4, we have |G| = 2i3j5k7l, where i ≤ 4, j ≤ 2,
k ≤ 1 and l ≤ 1. Thus |G| | 24.32.5.7.

If 7 | |G|, then by Lemma 3.5, we have |G| ≤ 42. Thus |G| = 14, 21, 28, 42. Up to
isomorphism, groups of order 14 and 21 are D14 and Z7 o Z3, respectively. Both the
commuting graphs of these groups are toroidal. Thus it follows that |G| = 28, 42. There
are no group of order 28 with trivial center. Group of order 42 with trivial center are
(Z7 o Z3) o Z2 = 〈x2 = y3 = z7 = 1, (xz)2 = 1, xyx = y, zy = yz2〉 and D42. The group
(Z7 o Z3) o Z2 has 7 abelian subgroups of size 6 and one abelian subgroup of size 7 and
the intersection of these subgroups is the trivial subgroup. Thus the commuting graph of
(Z7 o Z3) o Z2 is not double-toroidal. The dihedral group D42 has an abelian subgroup
of order 21. Thus its commuting graph is not double-toroidal.

Suppose 9 | |G|. Then 7 - |G|. Let n3 be the number of sylow 3-subgroup of G. Then,
n3 ≡ 1 mod 3 and n3 | 24.5. Thus n3 = 1 or n3 ≥ 4. Suppose n3 ≥ 4. Let P1, P2 be sylow
3-subgroups of G. Let Q1 = P1 \{e}, then γ(Γc(G)[Q1]) = 2. Note that |P1 ∩ P2| ≤ 3. Let
Q2 = P2 \ P1. Then |Q2| ≥ 6. Therefore γ(Γc(G)) ≥ γ(Γc(G)[Q1]) + γ(Γc(G)[Q̄2]) = 3, a
contradiction. Hence, the sylow 3-subgroup of G is normal in G. Let P be the sylow 3-
subgroup of G. Clearly P is solvable. Thus |G/P | = 2i5j , and so, by Burnside’s theorem,
G/P is solvable. Thus if 5 | |G|, then G has a Hall subgroup of order 45, and groups of order
45 are abelian, which is a contradiction. Therefore 5 - |G| and so |G| ∈ {18, 36, 72, 144}.

There are two groups of order 18 with trivial center, namely, D18 and

〈x, y, z : x3 = y3 = z2 = [x, y] = 1, xz = x−1, yz = y−1〉 ∼= (Z3 × Z3) o Z2.

Both these groups are AC-groups. The centralizers of the non-central elements of any
of these groups are of size 9 and 2. There is exactly one centralizer of size 9 of any of these
groups. Thus by [8, Proposition 3.4], their commuting graphs are double-toroidal.
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There are two groups of order 36 with trivial center, up to isomorphism, namely S3 ×S3
and

〈x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1〉 ∼= (Z3 × Z3) o Z4.

By Remark 3.3, genus of the commuting graph of S3 × S3 is greater than or equal to
4. The group (Z3 × Z3) o Z4 is an AC-group, with centralizers of non-central elements
are of size 4 and 9. There is exactly one centralizer of size 9. By [8, Proposition 3.4],
γ(Γc((Z3 × Z3) o Z4)) = 2. Thus Γc((Z3 × Z3) o Z4) is double-toroidal.

There are 6 non-abelian groups with trivial center of order 72, up to isomorphism. They
are

• 〈x, y, z : x2 = y2 = z9 = (xz)2 = (z−1yx)2 = 1, yz = (yx)2, yz3 = y−1〉 ∼=
((Z2 × Z2) o Z9) o Z2,

• 〈x, y : x3 = y8 = (y−1x)2y2x−1 = (y4x)2 = 1〉 ∼= (Z3 × Z3) o Z8,
• 〈x2 = y2 = z3 = (xz)2 = (yx)4 = (yz−1)2(yz)2 = (z−1(yx)2)2 = 1〉 ∼= (S3 × S3) o
Z2,

• 〈x, y, z : x3 = y4 = z4 = (x−1y2)2 = (z2x)2 = yxyzx−1zx = 1, yz = y−1〉 ∼=
(Z3 × Z3) o Q8.

• 〈x, y, z, u : x2 = y2 = z3 = u3 = (xu)2 = (xz)2 = (yz)3 = (xyz)2 = 1, uz =
zu, yu = uy〉 ∼= (Z3 × A4) o Z2,

• A4 × S3.
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Figure 2. Commuting graph of the Quaternion group Q8 ∼= 〈x, y : x4 = 1, x2 =
y2, xyx−1 = y−1〉, taken all the non-identity elements as vertices.

Let Ḡ = (Z3 × Z3) o Q8. The group Ḡ consist of one sylow 3-subgroup of order 9
and 9 sylow 2-subgroups of order 8. The sylow 2-subgroups of Ḡ are isomorphic to Q8
and the sylow 3-subgroup is isomorphic to Z3 × Z3. The intersection of any two of these
subgroups is trivial. Thus Ḡ is exactly the union of these subgroups. Let L be any of these
subgroups and x ∈ L, x 6= 1. Then CḠ(x) ⊆ L. Thus the commuting graph of Ḡ consist of
10 components. One of the component is ΓcḠ[H], where H ∪ {1} is the sylow 3-subgroup
of Ḡ. The other 9 components are ΓcḠ[Ki], where Ki ∪ {1}, i = 1, 2, . . . , 9, are the sylow
2-subgroups of Ḡ. Now, ΓcḠ[H] ∼= K8 and from Figure 2, ΓcḠ[Ki], for i = 1, 2, . . . , 9, are
planar. Thus ΓcḠ is double-toroidal.

The groups ((Z2 ×Z2)oZ9)oZ2, (Z3 ×A4)oZ2 and A4 ×S3 has an abelian subgroup of
order 12. Thus the commuting graphs of these groups are not double-toroidal. The group
(Z3 × Z3) oZ8 has 9 abelian subgroups of order 8 and one of order 9. The intersection of
any two of these subgroups is trivial. Thus K8 + K5 is a subgraph of Γc((Z3 × Z3) oZ8),
showing that the commuting graph of (Z3 × Z3) o Z8 is not double-toroidal. The group
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(S3×S3)oZ2 has S3×S3 as a subgroup. By Remark 3.3, the genus of the commuting graph
of S3 × S3 is at least 4. Note that Γc(S3 × S3) is a subgraph of Γc((S3 × S3) o Z2). Thus
the genus of the commuting graph of (S3 × S3)oZ2 is atleast 4. Hence Γc((S3 × S3)oZ2)
is not double-toroidal.

There are 3 nonabelian groups of order 144 with trivial center. These are:-
• 〈x, y, z : y2 = z3 = (yz)2 = 1, xy = x3, xzxz−1x−2z =

xz−1xyxzxy = 1〉 ∼= ((Z3 × Z3) o Z8) o Z2
• S3 × S4
• A4 × A4

The group ((Z3 ×Z3)oZ8)oZ2 has 9 abelian subgroups of order 8 and one of order 9.
The intersection of any two of these subgroups is trivial. The groups S3 × S4 and A4 × A4
has an abelian subgroup of order 12. Thus, the commuting graphs of these groups are not
double-toroidal.

Suppose |G| = 2i.3.5. Then |G| ∈ {30, 60, 120, 240}. Group of order 30 are solvable, and
hence has a Hall subgroup of order 15, which is abelian. Solvable group of order 60 has
a Hall subgroup of order 15, which is abelian. Non-solvable group of order 60 is A5. But
the commuting graph of A5 is planar. Solvable group of order 120 has a Hall subgroup
of order 15 which is abelian. There is only one non-solvable group with trivial center of
order 120, namely S5. It has 10 abelian subgroups of order 6 and the intersection of any
two of these subgroups is trivial. Thus the commuting graph of S5 is not double-toroidal.

Suppose |G| = 2i.5, that is |G| ∈ {10, 20, 40, 80}. There is only one non-abelian group of
order 10 upto isomorphism, namely D10 and its commuting graph is planar. There is only
one non-abelian group with trivial center of order 20, namely, Sz(2) and its commuting
graph is planar. There is no non-abelian group of order 40 with trivial center. There is
only one non-abelian group of order 80 with trivial center, namely,

〈x, y : x2 = y5 = (xy−1xy)2 = (xy−1)5 = (xy−2xy2)2 = 1〉 ∼=
(Z2 × Z2 × Z2 × Z2) o Z5.

This group has an abelian subgroup of order 16. Therefore, its commuting graph is not
double-toroidal. This completes the proof. �

The proof of Theorem 3.7 below is as nearly the same as the proof of Theorem 3.6. But
we have put it separately for the sake of completeness of Theorem 3.7.
Theorem 3.7. Let G be a finite non-abelian group. Then, the commuting graph of G is
triple-toroidal if and only if G is isomorphic to one of the following groups:

(1) GL(2, 3), D8 × Z3, Q8 × Z3,
(2) 〈x, y, z : y3 = z4 = 1, x2 = z2, yx = y−1, y−1zy−1z−1y−1z = xz−1xy−1zy = 1〉 ∼=

SL(2, 3) ◦ Z2,

Proof. Let G be a finite non-abelian group whose commuting graph is triple-toroidal.
Then Γc(G) has no subgraphs isomorphic to K10, K9 + K5, 2K8, K8 + 2K5 or 4K5.

(1) Suppose |Z(G)| ≥ 8. Since G is non-abelian, we have |G/Z(G)| ≥ 4. Let xZ(G)
and yZ(G) be two distinct non-identity elements of G/Z(G). Then the induced sub-
graph of Γc(G) by the set xZ(G) ∪ yZ(G) has a subgraph isomorphic to 2K8, which is a
contradiction. Thus |Z(G)| ≤ 7.

(2) Suppose |Z(G)| = 7. If p is a prime and p = 3, 5 or p > 7, then p - |G|; otherwise, for
an element x of G of order p, 〈x, Z(G)〉 is an abelian group of order 7p. Thus |G| = 2i7j .
If i ≥ 2, then G has an abelian subgroup of order 4 and hence an abelian subgroup of
order 28, which is a contradiction. By Lemma 3.4, we have j = 1 and so |G| = 14, which
is a contradiction. Thus |Z(G)| ≤ 6.

(3) Suppose |Z(G)| = 6. If p is a prime and p ≥ 5, then p - |G|; otherwise, for an
element x of G of order p, 〈x, Z(G)〉 is an abelian group of order 6p. Thus |G| = 2i3j . By
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Lemma 3.4, we have i ≤ 4 and j ≤ 2. If i = 4, then by Lemma 3.4, G has an abelian
subgroup of order 8 and hence a subgroup of order 24, a contradiction. So i ≤ 3. Similarly
if j = 2, then G has an abelian group of order 18, a contradiction. It follows that |G| = 24
and so G ∼= D8 ×Z3, Q8 ×Z3. The commuting graphs of both these groups are isomorphic
to 3K6. Hence the commuting graphs of D8 × Z3 and Q8 × Z3 are triple-toroidal.

(4) Suppose |Z(G)| = 5. If p is a prime and p = 3 or p ≥ 7, then clearly p - |G|. Thus,
we have |G| = 2i5j . If i ≥ 2, then G has an abelian subgroup of order 4 and hence an
abelian subgroup of order 20, which is a contradiction. By Lemma 3.4, we have j = 1 and
so |G| = 10, which is a contradiction. Thus |Z(G)| 6= 5.

(5) Suppose |Z(G)| = 4. If p is a prime and p ≥ 5, then clearly p - |G|. Thus |G| = 2i3j .
By Lemma 3.4 and since |Z(G)| = 4, we have i ≤ 4 and j ≤ 1 and so |G| = 16, 24 or 48.
Groups of order 16 with |Z(G)| = 4 are planar, see [8, Lemma 5.5]. Groups of order 24
with |Z(G)| = 4, are

• 〈x, y : x8 = y3 = 1, yx = y−1〉 ∼= Z3 o Z8,
• S3 × Z4,
• 〈x, y, z : x4 = y3 = z2 = 1, yx = y−1, [x, z] = [y, z] = 1〉 ∼= (Z3 o Z4) × Z2,
• S3 × Z2 × Z2.

By Theorem 3.6, the commuting graphs of these groups are double-toroidal.
If |G| = 48, then |G/Z(G)| = 12. If x̄ is an element of G/Z(G) of order 6, then 〈x, Z(G)〉

is an abelian group of order 24, which is a contradiction. Thus G/Z(G) has no element of
order 6 and so G/Z(G) ∼= A4. Thus G/Z(G) has two elements x̄, ȳ of order 3, such that x̄ 6∈
〈ȳ〉. Therefore, the induced subgraph of Γc(G) by the set xZ(G)∪x2Z(G)∪yZ(G)∪y2Z(G)
is isomorphic to 2K8, which is a contradiction.

(6) Suppose |Z(G)| = 3. If p is a prime and p ≥ 5, then clearly p - |G|. Thus, we
have |G| = 2i3j . By Lemma 3.4, we have i ≤ 4 and j ≤ 2. Suppose i = 4. Then, by
Lemma 3.4, a sylow 2-subgroup of G contains an abelian subgroup of order 8 and hence
G contains an abelian subgroup of order 24, which is a contradiction. Suppose i ≥ 2 and
j = 2. Then a sylow 2-sugroup of G has an abelian subgroup M of order 4 and hence
H = 〈M, Z(G)〉 is an abelian subgroup of G of order 12. Let K be a sylow 3-subgroup of
G. Then H ∩K = Z(G). Thus K9 +K5 is a subgraph of Γc(G)[(H ∪K)\Z(G)], and hence
K9 + K5 is a subgraph of Γc(G), which is a contradiction. Note that there is no group of
order 24 with |Z(G)| = 3. Therefore |G| = 18. There is only one group of order 18 with
|Z(G)| = 3, namely Z3 × S3 and its commuting graph is toroidal. Thus |Z(G)| 6= 3.

(7) Suppose |Z(G)| = 2. If p is a prime and p ≥ 7, then clearly p - |G|. Thus
|G| = 2i3j5k. By Lemma 3.4, we have i ≤ 4, j ≤ 2 and k ≤ 1. Suppose j = 2. By
Lemma 3.4, a sylow 3-subgroup S of G is an abelian subgroup of order 9 and so 〈S, Z(G)〉
is an abelian subgroup of order 18, which is a contradiction. Therefore j ≤ 1 and thus
|G| | 24.3.5.

By Theorem 3.1, groups of order 6, 8, 10 and 12 are planar and by [8, Lemma 6.2],
groups of order 16 with |Z(G)| = 2 are toroidal. Groups of order 30 has an abelian
subgroup of order 15. Thus |G| ∈ {20, 24, 40, 48, 60, 80, 120, 240}.

Group of order 20 with |Z(G)| = 2 are D20 and Q20. By Theorem 3.6, the commuting
graphs of these groups are double-toroidal.

Groups of order 24 with |Z(G)| = 2 are

• SL(2, 3),
• Z2 × A4,
• Q24,
• D24,
• 〈x, y, z : x2 = y2 = z3 = (xz)2 = (yx)4 = 1, yz = y−1〉 ∼= (Z6 × Z2) o Z2.
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The group SL(2, 3) is planar. The group Z2 × A4 is toroidal. If G is one of the groups
Q24, D24 or (Z6 × Z2) : Z2, then G has an abelian subgroup of order 12. Thus K10 is a
subgraph of Γc(G), which is a contradiction.

Note that if G has an abelian subgroup of order greater than of equal to 12, then its
commuting graph is not triple-toroidal. Groups of order 40 with |Z(G)| = 2 and has no
abelian subgroup of order greater than or equal to 12 are

• 〈x, y : y5 = x8 = 1, xy = xy〉 ∼= Z5 o Z8,
• 〈x, y, z : y2 = x4 = z5 = 1, yx = y−1, yz = y−1, xz = xz〉 ∼= Z2 × (Z5 o Z4).

Each of the groups Z5 o Z8, and Z2 × (Z5 o Z4), has 5 abelian subgroups of order
8, namely the sylow 2-subgroups and intersection of any two is the center. Thus the
commuting graphs of these groups are not triple-toroidal.

Groups of order 48 with |Z(G)| = 2 and has no abelian subgroup of order greater than
or equal to 12 are

• 〈x, y, z : y3 = z4 = 1, x2 = z2, yx = y−1, y−1zy−1z−1y−1z = xz−1xy−1zy = 1〉 ∼=
SL(2, 3) ◦ Z2,

• GL(2, 3),
• 〈x, y, z : x2 = y3 = z4 = (xz2)2 = 1, yz = y−1, (xxy)z = x−1〉 ∼= A4 o Z4 ,
• Z2 × S4.

The groups SL(2, 3) ◦ Z2 and GL(2, 3) are AC-groups. Each of these groups has 3
centralizers of size 8 and the rest are of size less than or equal to 6. Thus by [8, Proposition
3.4], γ(Γc(GL(2, 3))) = γ(Γc(SL(2, 3)◦Z2)) = 3, that is, Γc(GL(2, 3)) and Γc(SL(2, 3)◦Z2)
are triple-toroidal.

The group A4 o Z4 has four abelian subgroups of order 8, say A, B, C, D, such that
A ∩ B = A ∩ C = A ∩ D = B ∩ C = B ∩ D = Z(G) and |C ∩ D| = 4. Suppose
(C ∩ D) \ Z(G) = {u, v}. Then γ(Γc(G)) ≥ γ(Γc(G)[A \ Z(G)]) + γ(Γc(G)[B \ Z(G)]) +
γ(Γc(G)[(C \ (Z(G)) ∪ {u}]) + γ(Γc(G)[(D \ (Z(G)) ∪ {v})]) = 1 + 1 + 1 + 1 = 4. Thus the
the commuting graph of A4 o Z4 is not triple-toroidal.

For the group G = Z2 × S4, let A = Z2 × 〈(1, 4, 2, 3)〉 , B = Z2 × 〈(1, 3, 4, 2)〉, C =
Z2 × 〈(1, 3), (2, 4)〉 and D = Z2 × 〈(1, 2, 3, 4)〉. Then A ∩ B = A ∩ C = A ∩ D = B ∩
C = B ∩ D = Z(G) = Z2 × {()} and C ∩ D = Z2 × 〈(1, 3)(2, 4)〉. Let H = Z2 ×
〈(1, 3)(2, 4)〉. Thus γ(Γc(G)) ≥ γ(Γc(G)[A \ Z(G)]) + γ(Γc(G)[B \ Z(G)]) + γ(Γc(G)[(C \
H) ∪ {(1, (1, 2)(3, 4))}]) + γ(Γc(G)[(D \ H) ∪ {(x, (1, 2)(3, 4))}]) = 1 + 1 + 1 + 1 = 4, where
Z2 = 〈x〉. Thus the the commuting graph of A4 o Z4 is not triple-toroidal.

Let G be a group of order 80. Let P1 and P2 be two sylow 5-subgroups of G. Then 2K8
is a subgraph of Γc(G)[〈P1, P2, Z(G)〉 \ Z(G)] and so 2K8 is a subgraph of Γc(G), which
is a contradiction. Thus the sylow 5-subgroup of G is normal in G. Let P = 〈x〉 be the
sylow 5-subgroup of G. Thus |ClG(x)| = 4. Now since |CG(x)||ClG(x)| = 80, we have
|CG(x)| = 20. Note that Z(G) ⊂ CG(x). Thus |Z(CG(x))| ≥ 10. But |Z(CG(x))| = 10 is
not possible; otherwise CG(x)/Z(CG(x)) is cyclic and hence CG(x) is abelian. Therefore
|Z(CG(x))| = 20, that is CG(x) is abelian and so G has an abelian subgroup of order 20.
Thus Γc(G) is not triple-toroidal.

Solvable groups of order 60 and 120 has a Hall subgroup of order 15, which is abelian.
There is no non-solvable group of order 60 with |Z(G)| = 2. Non-solvable groups of
order 120 with |Z(G)| = 2 are SL(2, 5) and Z2 × A5. Each of these groups has 6 abelian
subgroups of order 10 and the intersection of any two of these subgroups is the center.
Thus the commuting graphs of SL(2, 5) and Z2 × A5 are not triple-toroidal.

Solvable groups of order 240 has a Hall subgroup of order 15, which is abelian. There
are 8 non-solvable groups of order 240, but all these groups has an abelian subgroups of
order 12. Therefore, there are no commuting graphs of groups of order 240 which are
triple-toroidal.
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(8) Suppose |Z(G)| = 1. By Lemma 3.4, we have |G| = 2i3j5k7l, where i ≤ 4, j ≤ 2,
k ≤ 1 and l ≤ 1. Thus |G| | 24.32.5.7.

If 7 | |G|, then by Lemma 3.5, we have |G| ≤ 42. Thus |G| = 14, 21, 28, 42. Up to
isomorphism, groups of order 14 and 21 are D14 and Z7 o Z3, respectively. Both the
commuting graphs of these groups are toroidal. Thus it follows that |G| = 28, 42. There
are no group of order 28 with trivial center. Group of order 42 with trivial center are
(Z7 o Z3) o Z2 = 〈x2 = y3 = z7 = 1, (xz)2 = 1, xyx = y, zy = yz2〉 and D42. The group
(Z7 o Z3) o Z2 has 7 abelian subgroups of size 6 and one abelian subgroup of size 7 and
the intersection of these subgroups is the trivial subgroup. Thus the commuting graph of
(Z7 o Z3) o Z2 is not triple-toroidal. The dihedral group D42 has an abelian subgroup of
order 21. Thus its commuting graph is not triple-toroidal.

Suppose 9 | |G|. Then 7 - |G|. Let n3 be the number of sylow 3-subgroup of G. Then,
n3 ≡ 1 mod 3 and n3 | 24.5. Thus n3 = 1 or n3 ≥ 4. Suppose n3 ≥ 4. Let P1, P2, P3 be
sylow 3-subgroups of G. Let Q1 = P1\{e}, then γ(Γc(G)[Q1]) = 2. Note that |P1∩Pi| ≤ 3,
for i = 2, 3. Let Qi = Pi \ P1, for i = 2, 3. Then |Q2|, |Q3| ≥ 6. Also |P2 ∩ P3| ≤ 3
and so, since 1 ∈ P2 ∩ P3 and 1 6∈ Q2, Q3, we have |Q2 ∩ Q3| ≤ 2. If Q2 ∩ Q3 = ∅, then
Γc(G)[Qi] ∼= K6, i = 2, 3 and so γ(Γc(G)) ≥ γ(Γc(G)[Q1])+γ(Γc(G)[Q2])+γ(Γc(G)[Q3]) =
4, a contradiction. So, suppose |Q2 ∩ Q3| ≥ 1. Let y ∈ Q2 ∩ Q3. Let Q̄2 = Q2 \ {y} and
Q̄3 = (Q3 \ (Q2 ∩ Q3)) ∪ {y}. Then Γc(G)[̄(Qi)] ∼= K5, i = 2, 3. Therefore γ(Γc(G)) ≥
γ(Γc(G)[Q1]) + γ(Γc(G)[Q̄2]) + γ(Γc(G)[Q̄3]) = 4, a contradiction. Hence, the sylow 3-
subgroup of G is normal in G. Let P be the sylow 3-subgroup of G. Clearly P is solvable.
Thus |G/P | = 2i5j , and so, by Burnside’s theorem, G/P is solvable. Thus if 5 | |G|,
then G has a Hall subgroup of order 45, and groups of order 45 are abelian, which is a
contradiction. Therefore 5 - |G| and so |G| ∈ {18, 36, 72, 144}.

There are two groups of order 18 with trivial center, namely, D18 and

〈x, y, z : x3 = y3 = z2 = [x, y] = 1, xz = x−1, yz = y−1〉 ∼= (Z3 × Z3) o Z2.

By Theorem 3.6, the commuting graphs of these groups are double-toroidal.
There are two groups of order 36 with trivial center, up to isomorphism, namely S3 ×S3

and

〈x, y : x4 = y3 = (yx2)2 = [x−1yx, y] = 1〉 ∼= (Z3 × Z3) o Z4.

By Remark 3.3, genus of the commuting graph of S3 × S3 is greater than or equal to 4.
By Theorem 3.6, the commuting graph of the group (Z3 × Z3) o Z4 is double-toroidal.

There are 6 non-abelian groups with trivial center of order 72, up to isomorphism. They
are

• 〈x, y, z : x2 = y2 = z9 = (xz)2 = (z−1yx)2 = 1, yz = (yx)2, yz3 = y−1〉 ∼=
((Z2 × Z2) o Z9) o Z2,

• 〈x, y : x3 = y8 = (y−1x)2y2x−1 = (y4x)2 = 1〉 ∼= (Z3 × Z3) o Z8,
• 〈x2 = y2 = z3 = (xz)2 = (yx)4 = (yz−1)2(yz)2 = (z−1(yx)2)2 = 1〉 ∼= (S3 × S3) o
Z2,

• 〈x, y, z : x3 = y4 = z4 = (x−1y2)2 = (z2x)2 = yxyzx−1zx = 1, yz = y−1〉 ∼=
(Z3 × Z3) o Q8,

• 〈x, y, z, u : x2 = y2 = z3 = u3 = (xu)2 = (xz)2 = (yz)3 = (xyz)2 = 1, uz =
zu, yu = uy〉 ∼= (Z3 × A4) o Z2,

• A4 × S3.
By Theorem 3.6„ the commuting graph of the group (Z3 ×Z3)oQ8 is double-toroidal.
The groups ((Z2 ×Z2)oZ9)oZ2, (Z3 × A4)oZ2 and A4 × S3 has an abelian subgroup

of order 12. Thus the commuting graph of these groups are not triple-toroidal. The group
(Z3 × Z3) oZ8 has 9 abelian subgroups of order 8 and one of order 9. The intersection of
any two of these subgroups is trivial. Thus K8 + 2K5 is a subgraph of Γc((Z3 ×Z3)oZ8),
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showing that the commuting graph of (Z3 × Z3) o Z8 is not triple-toroidal. The group
(S3×S3)oZ2 has S3×S3 as a subgroup. By Remark 3.3, the genus of the commuting graph
of S3 × S3 is at least 4. Note that Γc(S3 × S3) is a subgraph of Γc((S3 × S3) o Z2). Thus
the genus of the commuting graph of (S3 × S3)oZ2 is atleast 4. Hence Γc((S3 × S3)oZ2)
is not triple-toroidal.

There are 3 nonabelian groups of order 144 with trivial center. These are:-
• 〈x, y, z : y2 = z3 = (yz)2 = 1, xy = x3, xzxz−1x−2z =

xz−1xyxzxy = 1〉 ∼= ((Z3 × Z3) o Z8) o Z2,
• S3 × S4,
• A4 × A4.

The group ((Z3 ×Z3)oZ8)oZ2 has 9 abelian subgroups of order 8 and one of order 9.
The intersection of any two of these subgroups is trivial. The groups S3 × S4 and A4 × A4
has an abelian subgroup of order 12. Thus, the commuting graph of these groups are not
triple-toroidal.

Suppose |G| = 2i.3.5. Then |G| ∈ {30, 60, 120, 240}. Group of order 30 are solvable, and
hence has a Hall subgroup of order 15, which is abelian. Solvable group of order 60 has
a Hall subgroup of order 15, which is abelian. Non-solvable group of order 60 is A5. But
the commuting graph of A5 is planar. Solvable group of order 120 has a Hall subgroup
of order 15 which is abelian. There is only one non-solvable group with trivial center of
order 120, namely S5. It has 10 abelian subgroups of order 6 and the intersection of any
two of these subgroups is trivial. Thus the commuting graph of S5 is not triple-toroidal.

Suppose |G| = 2i.5, that is |G| ∈ {10, 20, 40, 80}. There is only one non-abelian group of
order 10 upto isomorphism, namely D10 and its commuting graph is planar. There is only
one non-abelian group with trivial center of order 20, namely, Sz(2) and its commuting
graph is planar. There is no non-abelian group of order 40 with trivial center. There is
only one non-abelian group of order 80 with trivial center, namely,

〈x, y : x2 = y5 = (xy−1xy)2 = (xy−1)5 = (xy−2xy2)2 = 1〉
∼= (Z2 × Z2 × Z2 × Z2) o Z5.

This group has an abelian subgroup of order 16. Therefore, its commuting graph is not
triple-toroidal. This completes the proof. �
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