

RESEARCH ARTICLE

Double-toroidal and triple-toroidal commuting graph

Deiborlang Nongsiang[�](https://orcid.org/0000-0002-0213-7671)

D. Nongsiang, Department of Mathematics, North-Eastern Hill University, Shillong-793022, Meghalaya, India

Abstract

In this paper, all finite non-abelian groups whose commuting graphs can be embed on the double-torus or triple-torus are classified.

Mathematics Subject Classification (2020). 20D60, 05C25

Keywords. commuting graph, finite group, genus

1. Introduction

Let G be a non-abelian group and $Z(G)$ be its center. The *commuting graph* of G , denoted by $\Gamma_c(G)$, is a simple undirected graph in which the vertex set is $G \setminus Z(G)$, and two distinct vertices x and y are adjacent if and only if $xy = yx$. This graph is precisely the complement of the non-commuting graph of a group considered in [\[1\]](#page-11-0) and [\[11\]](#page-12-0). Commuting graphs of groups were first mentioned in the seminal paper of Brauer and Fowler [\[7\]](#page-11-1) which was concerned with the classification of the finite simple groups. However, the ever-increasing popularity of the topic is often attributed to a question, posed in 1975 by Paul Erdös and answered affirmatively by Neumann [\[13\]](#page-12-1), asking whether or not a noncommuting graph having no infinite complete subgraph possesses a finite bound on the cardinality of its complete subgraphs. In recent years, the commuting graphs of groups have become a topic of research for many mathematicians (see, for example, [\[2\]](#page-11-2), [\[5\]](#page-11-3), [\[8\]](#page-12-2), [\[10\]](#page-12-3)). In [\[8\]](#page-12-2), Das and Nongsiang determine (up to isomorphism) all finite non-abelian groups whose commuting graphs are planar or toroidal. There is also a ring theoretic version of the commuting graph (see, for example, [\[3\]](#page-11-4), [\[4\]](#page-11-5), [\[12\]](#page-12-4)).

In the present paper, we deal with a topological aspect, namely, the genus of the commuting graphs of finite non-abelian groups. The primary objective of this paper is, to determine (up to isomorphism) all finite non-abelian groups whose commuting graphs are double-toroidal or triple-toroidal.

Email addresses: ndeiborlang@yahoo.in

Received: 03.01.2022; Accepted: 31.07.2023

2. Some prerequisites

In this section, we recall certain graph theoretic terminologies (see, for example, [\[14\]](#page-12-5) and [\[15\]](#page-12-6)) and some well-known results which have been used extensively in the forthcoming sections. All graphs in this paper are undirected, with no loops or multiple edges.

Let Γ be a graph with vertex set $V(\Gamma)$ and edge set $E(\Gamma)$. Let $x, y \in V(\Gamma)$. Then x and *y* are said to be *adjacent* if $x \neq y$ and there is an edge $x - y$ in $E(\Gamma)$ joining *x* and *y*.

Given a graph Γ, let *U* be a nonempty subset of *V* (Γ). Then the *induced subgraph* of Γ on *U* is defined to be the graph Γ[*U*] in which the vertex set is *U* and the edge set consists precisely of those edges in Γ whose endpoints lie in *U*. If $\{\Gamma_{\alpha}\}_{{\alpha}\in{\Lambda}}$ is a family of subgraphs of a graph Γ , then the union $\bigcup_{\alpha \in \Lambda} \Gamma_{\alpha}$ denotes the subgraph of Γ whose vertex set is $\bigcup_{\alpha \in \Lambda} V(\Gamma_{\alpha})$ and the edge set is $\bigcup_{\alpha \in \Lambda} E(\Gamma_{\alpha})$. The graph obtained by taking the union of graphs Γ_1 and Γ_2 with disjoint vertex sets is the disjoint union or sum, written $\Gamma_1 + \Gamma_2$. In general, *m*Γ is the graph consisting of m pairwise disjoint copies of Γ.

The genus of a graph Γ, denoted by $\gamma(\Gamma)$, is the smallest non-negative integer *n* such that the graph can be embedded on the surface obtained by attaching *n* handles to a sphere. Clearly, if $\tilde{\Gamma}$ is a subgraph of Γ , then $\gamma(\tilde{\Gamma}) \leq \gamma(\Gamma)$. The surface with one, two and three handles is the torus, double-torus and triple-torus, respectively. The graphs embeddable on the surfaces of genus 0, 1, 2, 3 are the *planar*, *toroidal*, *double-toroidal* and *triple-toroidal* graphs, respectively.

A *block* of a graph Γ is a connected subgraph *B* of Γ that is maximal with respect to the property that removal of a single vertex (and the incident edges) from *B* does not make it disconnected, that is, the graph $B \setminus \{v\}$ is connected for all $v \in V(B)$. Given a graph Γ , there is a unique finite collection **B** of blocks of Γ , such that $\Gamma = \bigcup_{B \in \mathfrak{B}} B$. The collection

B is called the *block decomposition* of Γ. In [\[6,](#page-11-6) Corollary 1], it has been proved that the genus of a graph is the sum of the genera of its blocks.

We conclude the section with the following two useful results.

Lemma 2.1 ([\[15\]](#page-12-6), Theorem 6-38). If $n \geq 3$, then

$$
\gamma(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil.
$$

where K_n *is the complete graph of order n.*

Lemma 2.2 ([\[15\]](#page-12-6), Theorem 6-37). *If* $m, n \geq 2$, then

$$
\gamma(K_{m,n}) = \left\lceil \frac{(m-2)(n-2)}{4} \right\rceil.
$$

where $K_{m,n}$ *is the complete bipartite graph with parts of size m and n*.

3. Commuting graph

In this section, we shall determine all finite non-abelian groups whose commuting graphs are of genus at most 3. The following theorems give all planar and toroidal commuting graphs.

Theorem 3.1 ([\[8\]](#page-12-2), Theorem 5.7). Let *G* be a finite non-abelian group. Then $\Gamma_c(G)$ is *planar if and only if G is isomorphic to one of the following groups:*

- (1) *S*₃*, D*₈*, Q*₈*, D*₁₀*, A*₄*, D*₁₂*, Q*₁₂*, D*₈ × \mathbb{Z}_2 *, Q*₈ × \mathbb{Z}_2 *, Sz*(2*), S*₄*, SL*(2*,* 3*), A*5*,*
- $(a, b : a^4 = b^4 = 1, a^b = a^{-1}) \cong \mathbb{Z}_4 \rtimes \mathbb{Z}_4,$
- $\langle a, b : a^8 = b^2 = 1, a^b = a^5 \rangle \cong M_{16},$
- $\langle 4 \rangle$ $\langle a, b \mid a^4 = b^4 = 1, ab = b^{-1}a^{-1}, ab^{-1} = ba^{-1} \rangle \cong SG(16, 3),$
- λ *(5)* $\langle a, b, c \mid a^4 = b^2 = c^2 = 1, ab = ba, ac = ca, bc = a^2cb \approx Da \circ \mathbb{Z}_4$.

Theorem 3.2 ([\[8\]](#page-12-2), Theorem 6.6). Let *G* be a finite non-abelian group. Then $\Gamma_c(G)$ is *toroidal if and only if G is isomorphic to one of the following groups:*

 (1) $D_{14}, D_{16}, Q_{16}, SD_{16}, S_3 \times \mathbb{Z}_3, A_4 \times \mathbb{Z}_2,$

Figure 1. The subgraph $\bar{K} \cup \bar{L} \cup \bar{M} \cup \bar{N}$ of the commuting graph $\Gamma_c(S_3 \times S_3)$.

Remark 3.3. Consider the group $G = S_3 \times S_3 \cong \langle (1,2,3), (1,2), (4,5,6), (4,5) \rangle$. Let $a = (1, 2, 3), b = (4, 5, 6), x = (1, 2), y = (4, 5).$ Let $K = \{b, ba, ba^2, b^2a, b^2a^2\}, L =$ $\{b, xb, b^2, xb^2, x\}, M = \{x, xa, xa^2\} \cup \{y, yb, yb^2\}$ and $N = \{a, a^2, y, ya, ya^2\}.$ Suppose $\overline{K} = \Gamma_c(G)[K], \overline{L} = \Gamma_c(G)[L], \overline{M} = \Gamma_c(G)[M]$ and $\overline{N} = \Gamma_c(G)[N]$. Then $\overline{K} \cong \overline{L} \cong \overline{N} \cong$ *K*₅ and \overline{M} ≅ *K*_{3,3}. Note that $K \cap L = \{b\}$, $L \cap M = \{x\}$ and $M \cap N = \{y\}$. Thus the graphs $\bar{K} \cup \bar{L} \cup \bar{M} \cup \bar{N}$ is as shown in Figure [1.](#page-2-0) Clearly, from Figure [1,](#page-2-0) $\bar{K} \cup \bar{L} \cup \bar{M} \cup \bar{N}$ has four blocks \overline{K} , \overline{L} , \overline{M} and \overline{N} . Thus $\gamma(\overline{K} \cup \overline{L} \cup \overline{M} \cup \overline{N}) = \gamma(\overline{K}) + \gamma(\overline{L}) + \gamma(\overline{M}) + \gamma(\overline{N}) = 4$. Thus $\Gamma_c(S_3 \times S_3) \geq \gamma(\bar{K} \cup \bar{L} \cup \bar{M} \cup \bar{N}) = 4.$

The following two lemmas will be useful in the sequel.

Lemma 3.4. Let G be a p-group of order p^n , where $n > 1$.

- (1) *Then G* has an abelian subgroup of order p^2 .
- (2) If $p = 3$, $n \geq 3$, then *G* has an abelian subgroup of order 27 or $G \setminus Z(G)$ has four *commuting disjoint subsets of size 6.*
- (3) If $p = 2$, $n > 4$, then G has an abelian subgroup of order 8 and if $n > 5$ and $|Z(G)| \geq 4$, then *G* has an abelian subgroup of order 16.
- (4) If $p = 2$, $n \geq 5$, and $|Z(G)| = 2$, then G has an abelian subgroup of order 16 or $G \setminus Z(G)$ *has four commuting disjoint subsets of size 5.*

Proof. (a) Since *G* is a *p*−group, we have $|Z(G)| > 1$. Let *x* be a non-identity element of $Z(G)$ and consider the subgroup $\langle x, y \rangle$, for any $y \in G \setminus \langle x \rangle$.

(b) Consider a subgroup *H* of *G* of order 27. Suppose that *H* is non-abelian. Then, $|Z(H)| = 3$ and the centralizers of the non-central elements of *H* are of order 9. Since any two distinct centralizers of the non-central elements of *H* intersect at *Z*(*H*), it follows that the number of such centralizers is 4. Thus it follows that $G \setminus Z(G)$ has four commuting disjoint subsets of size 6.

(c) This is Lemma 5.1 of $[8]$.

(d) Consider a subgroup of *G* of order 32. Using GAP[\[9\]](#page-12-7) or otherwise, one can see that *G* has an abelian subgroup of order 16 or $G \setminus Z(G)$ has four commuting disjoint subsets of size 5. \Box

Lemma 3.5. *Let G be a finite group such that* 7 | |*G*|*. If the sylow 7-subgroup is normal in G*, then either *G* has an abelian subgroup of order greater than or equal to 14 or $|G| \leq 42$. *Proof.* Suppose *G* has no abelian subgroup of order greater than or equal to 14. Let *P* be the sylow 7-subgroup of *G*. In view of Lemma [3.4,](#page-2-1) Part (a), $|P| = 7$. Let $x \in G$, such that $\circ(x) = 7$. Then, $|C_G(x)| = 7$; otherwise $\langle x, y \rangle$ for $y \in C_G(x) \setminus \langle x \rangle$ is an abelian subgroup of *G* of order atleast 14. Given that the sylow 7-subgroup is normal in *G* and thus it follows that $|Cl_G(x)| \leq 6$. Since $|G| = |C_G(x)||Cl_G(x)|$, we have $|G| \leq 42$.

Theorem 3.6. *Let G be a finite non-abelian group. Then, the commuting graph of G is double-toroidal if and only if G is isomorphic to one of the following groups:*

- (1) $D_{18}, D_{20}, Q_{20}, S_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2, S_3 \times \mathbb{Z}_4,$
- $\langle 2 \rangle \langle x, y, z : x^3 = y^3 = z^2 = [x, y] = 1, x^z = x^{-1}, y^z = y^{-1} \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2,$
- $\chi^2(x, y): x^8 = y^3 = 1, y^x = y^{-1} \rangle \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_8,$
- $\langle 4 \rangle \langle x, y, z : x^4 = y^3 = z^2 = 1, y^x = y^{-1}, [x, z] = [y, z] = 1 \rangle \cong (\mathbb{Z}_3 \rtimes \mathbb{Z}_4) \times \mathbb{Z}_2,$
- (5) $\langle x, y : x^4 = y^3 = (yx^2)^2 = [x^{-1}yx, y] = 1 \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4,$
- (6) $\langle x, y, z : x^4 = y^4 = z^3 = 1, y^x = y^{-1}, z^{y^2} = z^{-1}, z^{x^2} = z^{-1}$
- $\langle x^{-1}zx^{-1}=(zy)^2\rangle \cong (\mathbb{Z}_3\times\mathbb{Z}_3)\rtimes Q_8.$

Proof. Let G be a finite non-abelian group whose commuting graph is double-toroidal. Then $\Gamma_c(G)$ has no subgraphs isomorphic to $K_9, K_8 + K_5$ or $3K_5$.

(1) Suppose $|Z(G)| \geq 8$. Since *G* is non-abelian, we have $|G/Z(G)| \geq 4$. Let $xZ(G)$ and $yZ(G)$ be two distinct non-identity elements of $G/Z(G)$. Then the induced subgraph of $\Gamma_c(G)$ by the set $xZ(G) \cup yZ(G)$ has a subgraph isomorphic to $2K_8$, which is a contradiction. Thus $|Z(G)| \leq 7$.

(2) Suppose $|Z(G)| = 7$. If *p* is a prime and $p = 3, 5$ or $p > 7$, then $p \nmid |G|$; otherwise, for an element *x* of *G* of order *p*, $\langle x, Z(G) \rangle$ is an abelian group of order 7*p*. Thus $|G| = 2^{i\gamma j}$. If $i \geq 2$, then *G* has an abelian subgroup of order 4 and hence an abelian subgroup of order 28, which is a contradiction. By Lemma [3.4,](#page-2-1) we have $j = 1$ and so $|G| = 14$, which is a contradiction. Thus $|Z(G)| \leq 6$.

(3) Suppose $|Z(G)| = 6$. If p is a prime and $p \geq 5$, then $p \nmid |G|$; otherwise, for an element *x* of *G* of order *p*, $\langle x, Z(G) \rangle$ is an abelian group of order 6*p*. Thus $|G| = 2^{i}3^{j}$. By Lemma [3.4,](#page-2-1) we have $i \leq 4$ and $j \leq 2$. If $i = 4$, then by Lemma 3.4, *G* has an abelian subgroup of order 8 and hence a subgroup of order 24, a contradiction. So $i \leq 3$. Similarly if $j = 2$, then *G* has an abelian group of order 18, a contradiction. It follows that $|G| = 24$ and so $G \cong D_8 \times \mathbb{Z}_3$, $Q_8 \times \mathbb{Z}_3$. The commuting graphs of both these groups are isomorphic to 3K₆. Hence the commuting graphs of $D_8 \times \mathbb{Z}_3$ and $Q_8 \times \mathbb{Z}_3$ are not double-toroidal.

(4) Suppose $|Z(G)| = 5$. If *p* is a prime and $p = 3$ or $p \ge 7$, then clearly $p \nmid |G|$. Thus, we have $|G| = 2^{i}5^{j}$. If $i \geq 2$, then *G* has an abelian subgroup of order 4 and hence an abelian subgroup of order 20, which is a contradiction. By Lemma [3.4,](#page-2-1) we have $j = 1$ and so $|G| = 10$, which is a contradiction. Thus $|Z(G)| \neq 5$.

(5) Suppose $|Z(G)| = 4$. If *p* is a prime and $p \geq 5$, then clearly $p \nmid |G|$. Thus $|G| = 2^{i}3^{j}$. By Lemma [3.4](#page-2-1) and since $|Z(G)| = 4$, we have $i \leq 4$ and $j \leq 1$ and so $|G| = 16, 24$ or 48. Groups of order 16 with $|Z(G)| = 4$ are planar, see [\[8,](#page-12-2) Lemma 5.5]. Groups of order 24 with $|Z(G)| = 4$, are

- $\langle x, y : x^8 = y^3 = 1, y^x = y^{-1} \rangle \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_8$
- \bullet $S_3 \times \mathbb{Z}_4$,
- \hat{y} $\langle x, y, z : x^4 = y^3 = z^2 = 1, y^x = y^{-1}, [x, z] = [y, z] = 1 \rangle \cong (\mathbb{Z}_3 \rtimes \mathbb{Z}_4) \times \mathbb{Z}_2$
- $S_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

All these groups are AC-groups, with each of them having 3 centralizers of size 8 and one centralizer of size 12. Thus by $[8,$ Proposition 3.4, the commuting graphs of these groups are double-toroidal.

If $|G| = 48$, then $|G/Z(G)| = 12$. If \bar{x} is an element of $G/Z(G)$ of order 6, then $\langle x, Z(G) \rangle$ is an abelian group of order 24, which is a contradiction. Thus $G/Z(G)$ has no element of order 6 and so $G/Z(G) \cong A_4$. Thus $G/Z(G)$ has two elements \bar{x}, \bar{y} of order 3, such that $\bar{x} \notin$

 $\langle \bar{y} \rangle$. Therefore, the induced subgraph of $\Gamma_c(G)$ by the set $xZ(G) \cup x^2Z(G) \cup yZ(G) \cup y^2Z(G)$ is isomorphic to $2K_8$, which is a contradiction.

(6) Suppose $|Z(G)| = 3$. If *p* is a prime and $p \geq 5$, then clearly $p \nmid |G|$. Thus, we have $|G| = 2^{i}3^{j}$. By Lemma [3.4,](#page-2-1) we have $i \leq 4$ and $j \leq 2$. Suppose $i \geq 2$. Then, by Lemma 3.4, a sylow 2-subgroup of *G* contains an abelian subgroup of order 4 and hence *G* contains an abelian subgroup of order 12, which is a contradiction. Hence $i = 1$. Therefore $|G| = 18$. There is only one group of order 18 with $|Z(G)| = 3$, namely $\mathbb{Z}_3 \times S_3$ and its commuting graph is toroidal. Thus $|Z(G)| \neq 3$.

(7) Suppose $|Z(G)| = 2$. If *p* is a prime and $p \ge 7$, then clearly $p \nmid |G|$. Thus $|G| = 2^{i}3^{j}5^{k}$. By Lemma [3.4,](#page-2-1) we have $i \leq 4$, $j \leq 2$ and $k \leq 1$. Suppose $j = 2$. By Lemma [3.4,](#page-2-1) a sylow 3-subgroup *S* of *G* is an abelian subgroup of order 9 and so $\langle S, Z(G) \rangle$ is an abelian subgroup of order 18, which is a contradiction. Therefore $j \leq 1$ and thus $|G|$ | $2^4.3.5$.

By Theorem [3.1,](#page-1-0) groups of order 6, 8, 10 and 12 are planar and by [\[8,](#page-12-2) Lemma 6.2], groups of order 16 with $|Z(G)| = 2$ are toroidal. Groups of order 30 has an abelian subgroup of order 15. Thus $|G| \in \{20, 24, 40, 48, 60, 80, 120, 240\}.$

Group of order 20 with $|Z(G)| = 2$ are D_{20} and Q_{20} . These two groups are AC-groups, with each of them has one centralizer of size 10 and 5 centralizers of size 4. Thus by [\[8,](#page-12-2) Proposition 3.4], their commuting graphs are double-toroidal.

Groups of order 24 with $|Z(G)| = 2$ are

- $SL(2,3)$,
- $\bullet \mathbb{Z}_2 \times A_4,$
- \bullet Q_{24} ,
- \bullet D_{24} ,
- $\langle x, y, z : x^2 = y^2 = z^3 = (xz)^2 = (yx)^4 = 1, y^z = y^{-1} \rangle \cong (\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2.$

The group $SL(2,3)$ is planar. The group $\mathbb{Z}_2 \times A_4$ is toroidal. If *G* is one of the groups Q_{24} , D_{24} or $(\mathbb{Z}_6 \times \mathbb{Z}_2) : \mathbb{Z}_2$, then *G* has an abelian subgroup of order 12. Thus K_{10} is a subgraph of $\Gamma_c(G)$, which is a contradiction.

Note that if *G* has an abelian subgroup of order greater than of equal to 12, then its commuting graph is not double-toroidal. Groups of order 40 with $|Z(G)| = 2$ and has no abelian subgroup of order greater than or equal to 12 are

- $\langle x, y : y^5 = x^8 = 1, x^y = xy \rangle \cong \mathbb{Z}_5 \rtimes \mathbb{Z}_8$,
- $\hat{y}(x, y, z : y^2 = x^4 = z^5 = 1, y^x = y^{-1}, y^z = y^{-1}, x^z = xz \rangle \cong \mathbb{Z}_2 \times (\mathbb{Z}_5 \rtimes \mathbb{Z}_4).$

Each of the groups $\mathbb{Z}_5 \rtimes \mathbb{Z}_8$, and $\mathbb{Z}_2 \times (\mathbb{Z}_5 \rtimes \mathbb{Z}_4)$, has 5 abelian subgroups of order 8, namely the sylow 2-subgroups and intersection of any two is the center. Thus the commuting graphs of these groups are not double-toroidal.

Groups of order 48 with $|Z(G)| = 2$ and has no abelian subgroup of order greater than or equal to 12 are

- $\langle x, y, z : y^3 = z^4 = 1, x^2 = z^2, y^x = y^{-1}, y^{-1}zy^{-1}z^{-1}y^{-1}z = xz^{-1}xy^{-1}zy = 1 \rangle \cong$ $SL(2,3) \circ \mathbb{Z}_2$
- $GL(2,3)$,
- $\langle x, y, z : x^2 = y^3 = z^4 = (xz^2)^2 = 1, y^z = y^{-1}, (xx^y)^z = x^{-1} \rangle \cong A_4 \rtimes \mathbb{Z}_4,$
- \bullet $\mathbb{Z}_2 \times S_4$.

The groups $SL(2,3) \circ \mathbb{Z}_2$ and $GL(2,3)$ are AC-groups. Each of these groups has 3 centralizers of size 8 and the rest are of size less than or equal to 6. Thus by $[8,$ Proposition (3.4) , $\gamma(\Gamma_c(GL(2,3))) = \gamma(\Gamma_c(SL(2,3) \circ \mathbb{Z}_2)) = 3$, that is, $\Gamma_c(GL(2,3))$ and $\Gamma_c(SL(2,3) \circ \mathbb{Z}_2)$ are not double-toroidal.

The group $A_4 \rtimes \mathbb{Z}_4$ has four abelian subgroups of order 8, say A, B, C, D , such that $A \cap B = A \cap C = A \cap D = B \cap C = B \cap D = Z(G)$ and $|C \cap D| = 4$. Suppose $(C \cap D) \setminus Z(G) = \{u, v\}.$ Then $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[A \setminus Z(G)]) + \gamma(\Gamma_c(G)[B \setminus Z(G)]) +$ $\gamma(\Gamma_c(G)[(C \setminus (Z(G)) \cup \{u\}]) + \gamma(\Gamma_c(G)[(D \setminus (Z(G)) \cup \{v\}])] = 1 + 1 + 1 + 1 = 4.$ Thus the the commuting graph of $A_4 \rtimes \mathbb{Z}_4$ is not double-toroidal.

For the group $G = \mathbb{Z}_2 \times S_4$, let $A = \mathbb{Z}_2 \times \langle (1,4,2,3) \rangle$, $B = \mathbb{Z}_2 \times \langle (1,3,4,2) \rangle$, $C =$ $\mathbb{Z}_2 \times \langle (1,3), (2,4) \rangle$ and $D = \mathbb{Z}_2 \times \langle (1,2,3,4) \rangle$. Then $A \cap B = A \cap C = A \cap D = B \cap C$ *C* = *B* ∩ *D* = $Z(G)$ = \mathbb{Z}_2 × {()} and *C* ∩ *D* = \mathbb{Z}_2 × $\langle (1,3)(2,4) \rangle$. Let *H* = \mathbb{Z}_2 × $\langle (1,3)(2,4) \rangle$. Thus $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[A \setminus Z(G)]) + \gamma(\Gamma_c(G)[B \setminus Z(G)]) + \gamma(\Gamma_c(G)[C \setminus Z(G)])$ $H\cup\{(1,(1,2)(3,4))\}\rightarrow\gamma(\Gamma_c(G)[(D\setminus H)\cup\{(x,(1,2)(3,4))\})=1+1+1+1=4$, where $\mathbb{Z}_2 = \langle x \rangle$. Thus the the commuting graph of $A_4 \rtimes \mathbb{Z}_4$ is not double-toroidal.

Let *G* be a group of order 80. Let P_1 and P_2 be two sylow 5-subgroups of *G*. Then $2K_8$ is a subgraph of $\Gamma_c(G)$ [$\langle P_1, P_2, Z(G) \rangle \setminus Z(G)$] and so 2 K_8 is a subgraph of $\Gamma_c(G)$, which is a contradiction. Thus the sylow 5-subgroup of *G* is normal in *G*. Let $P = \langle x \rangle$ be the sylow 5-subgroup of *G*. Thus $|Cl_G(x)| = 4$. Now since $|C_G(x)||Cl_G(x)| = 80$, we have $|C_G(x)| = 20$. Note that *Z*(*G*) ⊂ *C_G*(*x*). Thus $|Z(C_G(x))| \ge 10$. But $|Z(C_G(x))| = 10$ is not possible; otherwise $C_G(x)/Z(C_G(x))$ is cyclic and hence $C_G(x)$ is abelian. Therefore $|Z(C_G(x))|=20$, that is $C_G(x)$ is abelian and so G has an abelian subgroup of order 20. Thus $\Gamma_c(G)$ is not double-toroidal.

Solvable groups of order 60 and 120 has a Hall subgroup of order 15, which is abelian. There is no non-solvable group of order 60 with $|Z(G)| = 2$. Non-solvable groups of order 120 with $|Z(G)| = 2$ are $SL(2, 5)$ and $\mathbb{Z}_2 \times A_5$. Each of these groups has 6 abelian subgroups of order 10 and the intersection of any two of these subgroups is the center. Thus the commuting graphs of $SL(2,5)$ and $\mathbb{Z}_2 \times A_5$ are not double-toroidal.

Solvable groups of order 240 has a Hall subgroup of order 15, which is abelian. There are 8 non-solvable groups of order 240, but all these groups has an abelian subgroups of order 12. Therefore, there are no commuting graphs of groups of order 240 which are double-toroidal.

(8) Suppose $|Z(G)| = 1$. By Lemma [3.4,](#page-2-1) we have $|G| = 2^{i}3^{j}5^{k}7^{l}$, where $i \leq 4, j \leq 2$, $k \leq 1$ and $l \leq 1$. Thus $|G| \mid 2^4 \cdot 3^2 \cdot 5 \cdot 7$.

If $7 | |G|$, then by Lemma [3.5,](#page-2-2) we have $|G| \leq 42$. Thus $|G| = 14, 21, 28, 42$. Up to isomorphism, groups of order 14 and 21 are D_{14} and $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$, respectively. Both the commuting graphs of these groups are toroidal. Thus it follows that $|G| = 28, 42$. There are no group of order 28 with trivial center. Group of order 42 with trivial center are $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2 = \langle x^2 = y^3 = z^7 = 1, (xz)^2 = 1, xyz = y, zy = yz^2 \rangle$ and D_{42} . The group $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ has 7 abelian subgroups of size 6 and one abelian subgroup of size 7 and the intersection of these subgroups is the trivial subgroup. Thus the commuting graph of $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ is not double-toroidal. The dihedral group D_{42} has an abelian subgroup of order 21. Thus its commuting graph is not double-toroidal.

Suppose 9 | $|G|$. Then $7 \nmid |G|$. Let n_3 be the number of sylow 3-subgroup of *G*. Then, $n_3 \equiv 1 \mod 3$ and $n_3 \mid 2^4.5$. Thus $n_3 = 1$ or $n_3 \ge 4$. Suppose $n_3 \ge 4$. Let P_1, P_2 be sylow 3-subgroups of *G*. Let $Q_1 = P_1 \setminus \{e\}$, then $\gamma(\Gamma_c(G)[Q_1]) = 2$. Note that $|P_1 \cap P_2| \leq 3$. Let $Q_2 = P_2 \setminus P_1$. Then $|Q_2| \geq 6$. Therefore $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[Q_1]) + \gamma(\Gamma_c(G)[\overline{Q}_2]) = 3$, a contradiction. Hence, the sylow 3-subgroup of *G* is normal in *G*. Let *P* be the sylow 3 subgroup of *G*. Clearly *P* is solvable. Thus $|G/P| = 2^{i}5^{j}$, and so, by Burnside's theorem, G/P is solvable. Thus if $5 \mid |G|$, then *G* has a Hall subgroup of order 45, and groups of order 45 are abelian, which is a contradiction. Therefore $5 \nmid |G|$ and so $|G| \in \{18, 36, 72, 144\}.$

There are two groups of order 18 with trivial center, namely, *D*¹⁸ and

$$
\langle x, y, z : x^3 = y^3 = z^2 = [x, y] = 1, x^z = x^{-1}, y^z = y^{-1} \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2.
$$

Both these groups are AC-groups. The centralizers of the non-central elements of any of these groups are of size 9 and 2. There is exactly one centralizer of size 9 of any of these groups. Thus by [\[8,](#page-12-2) Proposition 3.4], their commuting graphs are double-toroidal.

There are two groups of order 36 with trivial center, up to isomorphism, namely $S_3 \times S_3$ and

$$
\langle x, y : x^4 = y^3 = (yx^2)^2 = [x^{-1}yx, y] = 1 \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4.
$$

By Remark [3.3,](#page-2-3) genus of the commuting graph of $S_3 \times S_3$ is greater than or equal to 4. The group $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4$ is an AC-group, with centralizers of non-central elements are of size 4 and 9. There is exactly one centralizer of size 9. By $[8,$ Proposition 3.4], $\gamma(\Gamma_c((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4)) = 2$. Thus $\Gamma_c((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4)$ is double-toroidal.

There are 6 non-abelian groups with trivial center of order 72, up to isomorphism. They are

- $\langle x, y, z : x^2 = y^2 = z^9 = (xz)^2 = (z^{-1}yx)^2 = 1, y^z = (yx)^2, y^{z^3} = y^{-1} \rangle \approx$ $((\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9) \rtimes \mathbb{Z}_2,$
- $\hat{f}(x, y : x^3 = y^8 = (y^{-1}x)^2y^2x^{-1} = (y^4x)^2 = 1$ $\approx (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$,
- $\hat{x} = y^2 = z^3 = (xz)^2 = (yx)^4 = (yz^{-1})^2(yz)^2 = (z^{-1}(yx)^2)^2 = 1$ $\cong (S_3 \times S_3) \rtimes$ $\mathbb{Z}_2,$
- $\oint (x, y, z : x^3 = y^4 = z^4 = (x^{-1}y^2)^2 = (z^2x)^2 = yxyzx^{-1}zx = 1, y^z = y^{-1}$ $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes Q_8.$
- $\langle x, y, z, u : x^2 = y^2 = z^3 = u^3 = (xu)^2 = (xz)^2 = (yz)^3 = (xyz)^2 = 1, uz =$ $\langle zu, yu = uy \rangle \cong (\mathbb{Z}_3 \times A_4) \rtimes \mathbb{Z}_2,$
- \bullet $A_4 \times S_3$.

Figure 2. Commuting graph of the Quaternion group $Q_8 \cong \langle x, y : x^4 = 1, x^2 =$ $y^2, xyx^{-1} = y^{-1}$, taken all the non-identity elements as vertices.

Let $G = (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes Q_8$. The group *G* consist of one sylow 3-subgroup of order 9 and 9 sylow 2-subgroups of order 8. The sylow 2-subgroups of \overline{G} are isomorphic to Q_8 and the sylow 3-subgroup is isomorphic to $\mathbb{Z}_3 \times \mathbb{Z}_3$. The intersection of any two of these subgroups is trivial. Thus \overline{G} is exactly the union of these subgroups. Let *L* be any of these subgroups and $x \in L$, $x \neq 1$. Then $C_{\overline{G}}(x) \subseteq L$. Thus the commuting graph of *G* consist of 10 components. One of the component is $\Gamma_c G[H]$, where $H \cup \{1\}$ is the sylow 3-subgroup of \overline{G} . The other 9 components are $\Gamma_c \overline{G}[K_i]$, where $K_i \cup \{1\}$, $i = 1, 2, \ldots, 9$, are the sylow 2-subgroups of \bar{G} . Now, $\Gamma_c \bar{G}[H] \cong K_8$ and from Figure [2,](#page-6-0) $\Gamma_c \bar{G}[K_i]$, for $i = 1, 2, \ldots, 9$, are planar. Thus $\Gamma_c \bar{G}$ is double-toroidal.

The groups $((\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9) \rtimes \mathbb{Z}_2$, $(\mathbb{Z}_3 \times A_4) \rtimes \mathbb{Z}_2$ and $A_4 \times S_3$ has an abelian subgroup of order 12. Thus the commuting graphs of these groups are not double-toroidal. The group $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$ has 9 abelian subgroups of order 8 and one of order 9. The intersection of any two of these subgroups is trivial. Thus $K_8 + K_5$ is a subgraph of $\Gamma_c((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8)$, showing that the commuting graph of $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$ is not double-toroidal. The group

 $(S_3 \times S_3) \rtimes \mathbb{Z}_2$ has $S_3 \times S_3$ as a subgroup. By Remark [3.3,](#page-2-3) the genus of the commuting graph of $S_3 \times S_3$ is at least 4. Note that $\Gamma_c(S_3 \times S_3)$ is a subgraph of $\Gamma_c((S_3 \times S_3) \rtimes \mathbb{Z}_2)$. Thus the genus of the commuting graph of $(S_3 \times S_3) \rtimes \mathbb{Z}_2$ is at least 4. Hence $\Gamma_c((S_3 \times S_3) \rtimes \mathbb{Z}_2)$ is not double-toroidal.

There are 3 nonabelian groups of order 144 with trivial center. These are:-

•
$$
\langle x, y, z : y^2 = z^3 = (yz)^2 = 1, x^y = x^3, xzxz^{-1}x^{-2}z = xz^{-1}xyxzxy = 1 \rangle \cong ((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8) \rtimes \mathbb{Z}_2
$$

- \bullet *S*₃ \times *S*₄
- \bullet $A_4 \times A_4$

The group $((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8) \rtimes \mathbb{Z}_2$ has 9 abelian subgroups of order 8 and one of order 9. The intersection of any two of these subgroups is trivial. The groups $S_3 \times S_4$ and $A_4 \times A_4$ has an abelian subgroup of order 12. Thus, the commuting graphs of these groups are not double-toroidal.

Suppose $|G| = 2^i \cdot 3 \cdot 5$. Then $|G| \in \{30, 60, 120, 240\}$. Group of order 30 are solvable, and hence has a Hall subgroup of order 15, which is abelian. Solvable group of order 60 has a Hall subgroup of order 15, which is abelian. Non-solvable group of order 60 is A_5 . But the commuting graph of A_5 is planar. Solvable group of order 120 has a Hall subgroup of order 15 which is abelian. There is only one non-solvable group with trivial center of order 120, namely S_5 . It has 10 abelian subgroups of order 6 and the intersection of any two of these subgroups is trivial. Thus the commuting graph of S_5 is not double-toroidal.

Suppose $|G| = 2^i \cdot 5$, that is $|G| \in \{10, 20, 40, 80\}$. There is only one non-abelian group of order 10 upto isomorphism, namely D_{10} and its commuting graph is planar. There is only one non-abelian group with trivial center of order 20, namely, $Sz(2)$ and its commuting graph is planar. There is no non-abelian group of order 40 with trivial center. There is only one non-abelian group of order 80 with trivial center, namely,

$$
\langle x, y : x^2 = y^5 = (xy^{-1}xy)^2 = (xy^{-1})^5 = (xy^{-2}xy^2)^2 = 1 \rangle \cong
$$

$$
(\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_5.
$$

This group has an abelian subgroup of order 16. Therefore, its commuting graph is not double-toroidal. This completes the proof.

The proof of Theorem [3.7](#page-7-0) below is as nearly the same as the proof of Theorem [3.6.](#page-3-0) But we have put it separately for the sake of completeness of Theorem [3.7.](#page-7-0)

Theorem 3.7. *Let G be a finite non-abelian group. Then, the commuting graph of G is triple-toroidal if and only if G is isomorphic to one of the following groups:*

- (1) $GL(2,3), D_8 \times \mathbb{Z}_3, Q_8 \times \mathbb{Z}_3$
- $\langle 2 \rangle \langle x, y, z : y^3 = z^4 = 1, x^2 = z^2, y^x = y^{-1}, y^{-1}zy^{-1}z^{-1}y^{-1}z = xz^{-1}xy^{-1}zy = 1 \rangle \cong$ $SL(2,3) \circ \mathbb{Z}_2$

Proof. Let G be a finite non-abelian group whose commuting graph is triple-toroidal. Then $\Gamma_c(G)$ has no subgraphs isomorphic to K_{10} , $K_9 + K_5$, $2K_8$, $K_8 + 2K_5$ or $4K_5$.

(1) Suppose $|Z(G)| \geq 8$. Since *G* is non-abelian, we have $|G/Z(G)| \geq 4$. Let $xZ(G)$ and $yZ(G)$ be two distinct non-identity elements of $G/Z(G)$. Then the induced subgraph of $\Gamma_c(G)$ by the set $xZ(G) \cup yZ(G)$ has a subgraph isomorphic to $2K_8$, which is a contradiction. Thus $|Z(G)| \leq 7$.

(2) Suppose $|Z(G)| = 7$. If p is a prime and $p = 3, 5$ or $p > 7$, then $p \nmid |G|$; otherwise, for an element *x* of *G* of order *p*, $\langle x, Z(G) \rangle$ is an abelian group of order 7*p*. Thus $|G| = 2^{i\gamma j}$. If $i \geq 2$, then *G* has an abelian subgroup of order 4 and hence an abelian subgroup of order 28, which is a contradiction. By Lemma [3.4,](#page-2-1) we have $j = 1$ and so $|G| = 14$, which is a contradiction. Thus $|Z(G)| \leq 6$.

(3) Suppose $|Z(G)| = 6$. If *p* is a prime and $p > 5$, then $p \nmid |G|$; otherwise, for an element *x* of *G* of order *p*, $\langle x, Z(G) \rangle$ is an abelian group of order 6*p*. Thus $|G| = 2^{i}3^{j}$. By

Lemma [3.4,](#page-2-1) we have $i \leq 4$ and $j \leq 2$. If $i = 4$, then by Lemma 3.4, *G* has an abelian subgroup of order 8 and hence a subgroup of order 24, a contradiction. So $i \leq 3$. Similarly if $j = 2$, then *G* has an abelian group of order 18, a contradiction. It follows that $|G| = 24$ and so $G \cong D_8 \times \mathbb{Z}_3$, $Q_8 \times \mathbb{Z}_3$. The commuting graphs of both these groups are isomorphic to 3K₆. Hence the commuting graphs of $D_8 \times \mathbb{Z}_3$ and $Q_8 \times \mathbb{Z}_3$ are triple-toroidal.

(4) Suppose $|Z(G)| = 5$. If *p* is a prime and $p = 3$ or $p \ge 7$, then clearly $p \nmid |G|$. Thus, we have $|G| = 2^{i}5^{j}$. If $i \geq 2$, then *G* has an abelian subgroup of order 4 and hence an abelian subgroup of order 20, which is a contradiction. By Lemma [3.4,](#page-2-1) we have $j = 1$ and so $|G| = 10$, which is a contradiction. Thus $|Z(G)| \neq 5$.

(5) Suppose $|Z(G)| = 4$. If *p* is a prime and $p \geq 5$, then clearly $p \nmid |G|$. Thus $|G| = 2^{i}3^{j}$. By Lemma [3.4](#page-2-1) and since $|Z(G)| = 4$, we have $i \leq 4$ and $j \leq 1$ and so $|G| = 16, 24$ or 48. Groups of order 16 with $|Z(G)| = 4$ are planar, see [\[8,](#page-12-2) Lemma 5.5]. Groups of order 24 with $|Z(G)| = 4$, are

- $\langle x, y : x^8 = y^3 = 1, y^x = y^{-1} \rangle \cong \mathbb{Z}_3 \rtimes \mathbb{Z}_8$
- \bullet $S_3 \times \mathbb{Z}_4$,
- \hat{y} $\langle x, y, z : x^4 = y^3 = z^2 = 1, y^x = y^{-1}, [x, z] = [y, z] = 1 \rangle \cong (\mathbb{Z}_3 \rtimes \mathbb{Z}_4) \times \mathbb{Z}_2$
- $S_3 \times \mathbb{Z}_2 \times \mathbb{Z}_2$.

By Theorem [3.6,](#page-3-0) the commuting graphs of these groups are double-toroidal.

If $|G| = 48$, then $|G/Z(G)| = 12$. If \bar{x} is an element of $G/Z(G)$ of order 6, then $\langle x, Z(G) \rangle$ is an abelian group of order 24, which is a contradiction. Thus $G/Z(G)$ has no element of order 6 and so $G/Z(G) \cong A_4$. Thus $G/Z(G)$ has two elements \bar{x}, \bar{y} of order 3, such that $\bar{x} \notin$ $\langle \bar{y} \rangle$. Therefore, the induced subgraph of $\Gamma_c(G)$ by the set $xZ(G) \cup x^2Z(G) \cup yZ(G) \cup y^2Z(G)$ is isomorphic to $2K_8$, which is a contradiction.

(6) Suppose $|Z(G)| = 3$. If *p* is a prime and $p \geq 5$, then clearly $p \nmid |G|$. Thus, we have $|G| = 2^{i}3^{j}$. By Lemma [3.4,](#page-2-1) we have $i \leq 4$ and $j \leq 2$. Suppose $i = 4$. Then, by Lemma [3.4,](#page-2-1) a sylow 2-subgroup of *G* contains an abelian subgroup of order 8 and hence *G* contains an abelian subgroup of order 24, which is a contradiction. Suppose $i \geq 2$ and $j = 2$. Then a sylow 2-sugroup of *G* has an abelian subgroup *M* of order 4 and hence $H = \langle M, Z(G) \rangle$ is an abelian subgroup of *G* of order 12. Let *K* be a sylow 3-subgroup of *G*. Then $H \cap K = Z(G)$. Thus $K_9 + K_5$ is a subgraph of $\Gamma_c(G)[(H \cup K) \setminus Z(G)]$, and hence $K_9 + K_5$ is a subgraph of $\Gamma_c(G)$, which is a contradiction. Note that there is no group of order 24 with $|Z(G)| = 3$. Therefore $|G| = 18$. There is only one group of order 18 with $|Z(G)| = 3$, namely $\mathbb{Z}_3 \times S_3$ and its commuting graph is toroidal. Thus $|Z(G)| \neq 3$.

(7) Suppose $|Z(G)| = 2$. If *p* is a prime and $p \ge 7$, then clearly $p \nmid |G|$. Thus $|G| = 2^{i}3^{j}5^{k}$. By Lemma [3.4,](#page-2-1) we have $i \leq 4$, $j \leq 2$ and $k \leq 1$. Suppose $j = 2$. By Lemma [3.4,](#page-2-1) a sylow 3-subgroup *S* of *G* is an abelian subgroup of order 9 and so $\langle S, Z(G) \rangle$ is an abelian subgroup of order 18, which is a contradiction. Therefore $j \leq 1$ and thus $|G|$ | $2^4.3.5$.

By Theorem [3.1,](#page-1-0) groups of order 6, 8, 10 and 12 are planar and by $[8, \text{ Lemma } 6.2]$ $[8, \text{ Lemma } 6.2]$, groups of order 16 with $|Z(G)| = 2$ are toroidal. Groups of order 30 has an abelian subgroup of order 15. Thus $|G| \in \{20, 24, 40, 48, 60, 80, 120, 240\}.$

Group of order 20 with $|Z(G)| = 2$ are D_{20} and Q_{20} . By Theorem [3.6,](#page-3-0) the commuting graphs of these groups are double-toroidal.

Groups of order 24 with $|Z(G)| = 2$ are

- $SL(2,3)$,
- $\mathbb{Z}_2 \times A_4$,
- \bullet Q_{24} ,
- \bullet D_{24} ,
- $\langle x, y, z : x^2 = y^2 = z^3 = (xz)^2 = (yx)^4 = 1, y^z = y^{-1} \rangle \cong (\mathbb{Z}_6 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_2.$

The group $SL(2,3)$ is planar. The group $\mathbb{Z}_2 \times A_4$ is toroidal. If *G* is one of the groups Q_{24} , D_{24} or $(\mathbb{Z}_6 \times \mathbb{Z}_2)$: \mathbb{Z}_2 , then *G* has an abelian subgroup of order 12. Thus K_{10} is a subgraph of $\Gamma_c(G)$, which is a contradiction.

Note that if *G* has an abelian subgroup of order greater than of equal to 12, then its commuting graph is not triple-toroidal. Groups of order 40 with $|Z(G)| = 2$ and has no abelian subgroup of order greater than or equal to 12 are

•
$$
\langle x, y : y^5 = x^8 = 1, x^y = xy \rangle \cong \mathbb{Z}_5 \rtimes \mathbb{Z}_8
$$
,

 $\hat{y}(x, y, z : y^2 = x^4 = z^5 = 1, y^x = y^{-1}, y^z = y^{-1}, x^z = xz \rangle \cong \mathbb{Z}_2 \times (\mathbb{Z}_5 \rtimes \mathbb{Z}_4).$

Each of the groups $\mathbb{Z}_5 \rtimes \mathbb{Z}_8$, and $\mathbb{Z}_2 \times (\mathbb{Z}_5 \rtimes \mathbb{Z}_4)$, has 5 abelian subgroups of order 8, namely the sylow 2-subgroups and intersection of any two is the center. Thus the commuting graphs of these groups are not triple-toroidal.

Groups of order 48 with $|Z(G)| = 2$ and has no abelian subgroup of order greater than or equal to 12 are

- $\langle x, y, z : y^3 = z^4 = 1, x^2 = z^2, y^x = y^{-1}, y^{-1}zy^{-1}z^{-1}y^{-1}z = xz^{-1}xy^{-1}zy = 1 \rangle \cong$ $SL(2,3) \circ \mathbb{Z}_2$
- \bullet *GL*(2, 3)*,*
- $\langle x, y, z : x^2 = y^3 = z^4 = (xz^2)^2 = 1, y^z = y^{-1}, (xx^y)^z = x^{-1} \rangle \cong A_4 \rtimes \mathbb{Z}_4,$
- \bullet $\mathbb{Z}_2 \times S_4$.

The groups $SL(2,3) \circ \mathbb{Z}_2$ and $GL(2,3)$ are AC-groups. Each of these groups has 3 centralizers of size 8 and the rest are of size less than or equal to 6. Thus by $[8,$ Proposition (3.4) , $\gamma(\Gamma_c(GL(2,3))) = \gamma(\Gamma_c(SL(2,3) \circ \mathbb{Z}_2)) = 3$, that is, $\Gamma_c(GL(2,3))$ and $\Gamma_c(SL(2,3) \circ \mathbb{Z}_2)$ are triple-toroidal.

The group $A_4 \rtimes \mathbb{Z}_4$ has four abelian subgroups of order 8, say A, B, C, D , such that $A \cap B = A \cap C = A \cap D = B \cap C = B \cap D = Z(G)$ and $|C \cap D| = 4$. Suppose $(C \cap D) \setminus Z(G) = \{u, v\}.$ Then $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[A \setminus Z(G)]) + \gamma(\Gamma_c(G)[B \setminus Z(G)]) +$ $\gamma(\Gamma_c(G)|(C \setminus (Z(G)) \cup \{u\}) + \gamma(\Gamma_c(G)[(D \setminus (Z(G)) \cup \{v\})]) = 1 + 1 + 1 + 1 = 4$. Thus the the commuting graph of $A_4 \rtimes \mathbb{Z}_4$ is not triple-toroidal.

For the group $G = \mathbb{Z}_2 \times S_4$, let $A = \mathbb{Z}_2 \times \langle (1,4,2,3) \rangle$, $B = \mathbb{Z}_2 \times \langle (1,3,4,2) \rangle$, $C =$ $\mathbb{Z}_2 \times \langle (1,3), (2,4) \rangle$ and $D = \mathbb{Z}_2 \times \langle (1,2,3,4) \rangle$. Then $A \cap B = A \cap C = A \cap D = B \cap C$ $C = B \cap D = Z(G) = \mathbb{Z}_2 \times \{()\}$ and $C \cap D = \mathbb{Z}_2 \times \langle (1,3)(2,4) \rangle$. Let $H = \mathbb{Z}_2 \times$ $\langle (1,3)(2,4) \rangle$. Thus $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[A \setminus Z(G)]) + \gamma(\Gamma_c(G)[B \setminus Z(G)]) + \gamma(\Gamma_c(G)[C \setminus Z(G)])$ $H) \cup \{(1, (1, 2)(3, 4))\}\$ + $\gamma(\Gamma_c(G)[(D \setminus H) \cup \{(x, (1, 2)(3, 4))\}]$ = 1 + 1 + 1 + 1 = 4, where $\mathbb{Z}_2 = \langle x \rangle$. Thus the the commuting graph of $A_4 \rtimes \mathbb{Z}_4$ is not triple-toroidal.

Let *G* be a group of order 80. Let P_1 and P_2 be two sylow 5-subgroups of *G*. Then $2K_8$ is a subgraph of $\Gamma_c(G)$ [$\langle P_1, P_2, Z(G) \rangle \setminus Z(G)$] and so 2 K_8 is a subgraph of $\Gamma_c(G)$, which is a contradiction. Thus the sylow 5-subgroup of *G* is normal in *G*. Let $P = \langle x \rangle$ be the sylow 5-subgroup of *G*. Thus $|Cl_G(x)| = 4$. Now since $|C_G(x)||Cl_G(x)| = 80$, we have $|C_G(x)| = 20$. Note that *Z*(*G*) ⊂ *C_{<i>G*}(*x*). Thus $|Z(C_G(x))| ≥ 10$. But $|Z(C_G(x))| = 10$ is not possible; otherwise $C_G(x)/Z(C_G(x))$ is cyclic and hence $C_G(x)$ is abelian. Therefore $|Z(C_G(x))|=20$, that is $C_G(x)$ is abelian and so G has an abelian subgroup of order 20. Thus $\Gamma_c(G)$ is not triple-toroidal.

Solvable groups of order 60 and 120 has a Hall subgroup of order 15, which is abelian. There is no non-solvable group of order 60 with $|Z(G)| = 2$. Non-solvable groups of order 120 with $|Z(G)| = 2$ are $SL(2, 5)$ and $\mathbb{Z}_2 \times A_5$. Each of these groups has 6 abelian subgroups of order 10 and the intersection of any two of these subgroups is the center. Thus the commuting graphs of $SL(2,5)$ and $\mathbb{Z}_2 \times A_5$ are not triple-toroidal.

Solvable groups of order 240 has a Hall subgroup of order 15, which is abelian. There are 8 non-solvable groups of order 240, but all these groups has an abelian subgroups of order 12. Therefore, there are no commuting graphs of groups of order 240 which are triple-toroidal.

(8) Suppose $|Z(G)| = 1$. By Lemma [3.4,](#page-2-1) we have $|G| = 2^{i}3^{j}5^{k}7^{l}$, where $i \leq 4, j \leq 2$, $k \leq 1$ and $l \leq 1$. Thus $|G| \mid 2^4 \cdot 3^2 \cdot 5 \cdot 7$.

If 7 | $|G|$, then by Lemma [3.5,](#page-2-2) we have $|G| \leq 42$. Thus $|G| = 14, 21, 28, 42$. Up to isomorphism, groups of order 14 and 21 are D_{14} and $\mathbb{Z}_7 \rtimes \mathbb{Z}_3$, respectively. Both the commuting graphs of these groups are toroidal. Thus it follows that $|G| = 28, 42$. There are no group of order 28 with trivial center. Group of order 42 with trivial center are $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2 = \langle x^2 = y^3 = z^7 = 1, (xz)^2 = 1, xyz = y, zy = yz^2 \rangle$ and D_{42} . The group $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ has 7 abelian subgroups of size 6 and one abelian subgroup of size 7 and the intersection of these subgroups is the trivial subgroup. Thus the commuting graph of $(\mathbb{Z}_7 \rtimes \mathbb{Z}_3) \rtimes \mathbb{Z}_2$ is not triple-toroidal. The dihedral group D_{42} has an abelian subgroup of order 21. Thus its commuting graph is not triple-toroidal.

Suppose 9 | $|G|$. Then $7 \nmid |G|$. Let n_3 be the number of sylow 3-subgroup of *G*. Then, *n*₃ ≡ 1 mod 3 and *n*₃ | 2⁴.5. Thus *n*₃ = 1 or *n*₃ ≥ 4. Suppose *n*₃ ≥ 4. Let *P*₁*, P*₂*, P*₃ be sylow 3-subgroups of *G*. Let $Q_1 = P_1 \setminus \{e\}$, then $\gamma(\Gamma_c(G)[Q_1]) = 2$. Note that $|P_1 \cap P_i| \leq 3$, for $i = 2, 3$. Let $Q_i = P_i \setminus P_1$, for $i = 2, 3$. Then $|Q_2|, |Q_3| \geq 6$. Also $|P_2 \cap P_3| \leq 3$ and so, since $1 \in P_2 \cap P_3$ and $1 \notin Q_2, Q_3$, we have $|Q_2 \cap Q_3| \leq 2$. If $Q_2 \cap Q_3 = \emptyset$, then $\Gamma_c(G)[Q_i] \cong K_6, i = 2, 3$ and so $\gamma(\Gamma_c(G)) \geq \gamma(\Gamma_c(G)[Q_1]) + \gamma(\Gamma_c(G)[Q_2]) + \gamma(\Gamma_c(G)[Q_3]) =$ 4, a contradiction. So, suppose $|Q_2 \cap Q_3| \geq 1$. Let $y \in Q_2 \cap Q_3$. Let $\overline{Q}_2 = Q_2 \setminus \{y\}$ and $\overline{Q}_3 = (Q_3 \setminus (Q_2 \cap Q_3)) \cup \{y\}$. Then $\Gamma_c(G)[\overline{(Q_i)}] \cong K_5, i = 2,3$. Therefore $\gamma(\Gamma_c(G)) \ge$ $\gamma(\Gamma_c(G)[Q_1]) + \gamma(\Gamma_c(G)[\overline{Q_2}]) + \gamma(\Gamma_c(G)[\overline{Q_3}]) = 4$, a contradiction. Hence, the sylow 3subgroup of *G* is normal in *G*. Let *P* be the sylow 3-subgroup of *G*. Clearly *P* is solvable. Thus $|G/P| = 2^{i}5^{j}$, and so, by Burnside's theorem, G/P is solvable. Thus if 5 | $|G|$, then *G* has a Hall subgroup of order 45, and groups of order 45 are abelian, which is a contradiction. Therefore $5 \nmid |G|$ and so $|G| \in \{18, 36, 72, 144\}.$

There are two groups of order 18 with trivial center, namely, *D*¹⁸ and

$$
\langle x, y, z : x^3 = y^3 = z^2 = [x, y] = 1, x^z = x^{-1}, y^z = y^{-1} \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_2.
$$

By Theorem [3.6,](#page-3-0) the commuting graphs of these groups are double-toroidal.

There are two groups of order 36 with trivial center, up to isomorphism, namely $S_3 \times S_3$ and

$$
\langle x, y : x^4 = y^3 = (yx^2)^2 = [x^{-1}yx, y] = 1 \rangle \cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4.
$$

By Remark [3.3,](#page-2-3) genus of the commuting graph of $S_3 \times S_3$ is greater than or equal to 4. By Theorem [3.6,](#page-3-0) the commuting graph of the group $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_4$ is double-toroidal.

There are 6 non-abelian groups with trivial center of order 72, up to isomorphism. They are

- $\langle x, y, z : x^2 = y^2 = z^9 = (xz)^2 = (z^{-1}yx)^2 = 1, y^z = (yx)^2, y^{z^3} = y^{-1} \rangle \cong$ $((\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9) \rtimes \mathbb{Z}_2,$
- $\hat{y} \times (x, y : x^3 = y^8 = (y^{-1}x)^2y^2x^{-1} = (y^4x)^2 = 1$ $\cong (\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$,
- $\hat{x} = y^2 = z^3 = (xz)^2 = (yx)^4 = (yz^{-1})^2(yz)^2 = (z^{-1}(yx)^2)^2 = 1$ $\cong (S_3 \times S_3) \rtimes$ $\mathbb{Z}_2,$
- $\oint (x, y, z : x^3 = y^4 = z^4 = (x^{-1}y^2)^2 = (z^2x)^2 = yxyzx^{-1}zx = 1, y^z = y^{-1}$ $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes Q_8,$
- $\langle x, y, z, u : x^2 = y^2 = z^3 = u^3 = (xu)^2 = (xz)^2 = (yz)^3 = (xyz)^2 = 1, uz =$ $\langle zu, yu = uy \rangle \cong (\mathbb{Z}_3 \times A_4) \rtimes \mathbb{Z}_2,$
- \bullet $A_4 \times S_3$.

By Theorem 3.6, the commuting graph of the group $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes Q_8$ is double-toroidal. The groups $((\mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_9) \rtimes \mathbb{Z}_2$, $(\mathbb{Z}_3 \times A_4) \rtimes \mathbb{Z}_2$ and $A_4 \times S_3$ has an abelian subgroup of order 12. Thus the commuting graph of these groups are not triple-toroidal. The group $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$ has 9 abelian subgroups of order 8 and one of order 9. The intersection of any two of these subgroups is trivial. Thus $K_8 + 2K_5$ is a subgraph of $\Gamma_c((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8)$,

showing that the commuting graph of $(\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8$ is not triple-toroidal. The group $(S_3 \times S_3) \rtimes \mathbb{Z}_2$ has $S_3 \times S_3$ as a subgroup. By Remark [3.3,](#page-2-3) the genus of the commuting graph of $S_3 \times S_3$ is at least 4. Note that $\Gamma_c(S_3 \times S_3)$ is a subgraph of $\Gamma_c((S_3 \times S_3) \rtimes \mathbb{Z}_2)$. Thus the genus of the commuting graph of $(S_3 \times S_3) \rtimes \mathbb{Z}_2$ is at least 4. Hence $\Gamma_c((S_3 \times S_3) \rtimes \mathbb{Z}_2)$ is not triple-toroidal.

There are 3 nonabelian groups of order 144 with trivial center. These are:-

- $\langle x, y, z : y^2 = z^3 = (yz)^2 = 1, x^y = x^3, xzxz^{-1}x^{-2}z =$ $\chi^2 z^{-1}xyxzxy = 1 \rangle \cong ((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8) \rtimes \mathbb{Z}_2,$
- \bullet $S_3 \times S_4$,
- \bullet $A_4 \times A_4$

The group $((\mathbb{Z}_3 \times \mathbb{Z}_3) \rtimes \mathbb{Z}_8) \rtimes \mathbb{Z}_2$ has 9 abelian subgroups of order 8 and one of order 9. The intersection of any two of these subgroups is trivial. The groups $S_3 \times S_4$ and $A_4 \times A_4$ has an abelian subgroup of order 12. Thus, the commuting graph of these groups are not triple-toroidal.

Suppose $|G| = 2^i \cdot 3 \cdot 5$. Then $|G| \in \{30, 60, 120, 240\}$. Group of order 30 are solvable, and hence has a Hall subgroup of order 15, which is abelian. Solvable group of order 60 has a Hall subgroup of order 15, which is abelian. Non-solvable group of order 60 is *A*5. But the commuting graph of A_5 is planar. Solvable group of order 120 has a Hall subgroup of order 15 which is abelian. There is only one non-solvable group with trivial center of order 120, namely S_5 . It has 10 abelian subgroups of order 6 and the intersection of any two of these subgroups is trivial. Thus the commuting graph of $S₅$ is not triple-toroidal.

Suppose $|G| = 2^i \cdot 5$, that is $|G| \in \{10, 20, 40, 80\}$. There is only one non-abelian group of order 10 upto isomorphism, namely D_{10} and its commuting graph is planar. There is only one non-abelian group with trivial center of order 20, namely, $Sz(2)$ and its commuting graph is planar. There is no non-abelian group of order 40 with trivial center. There is only one non-abelian group of order 80 with trivial center, namely,

$$
\langle x, y : x^2 = y^5 = (xy^{-1}xy)^2 = (xy^{-1})^5 = (xy^{-2}xy^2)^2 = 1 \rangle
$$

$$
\cong (\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2) \rtimes \mathbb{Z}_5.
$$

This group has an abelian subgroup of order 16. Therefore, its commuting graph is not triple-toroidal. This completes the proof.

Acknowledgment. The author would like to thank the referee for his/her valuable comments and suggestions.

References

- [1] A. Abdollahi, S. Akbari and H. R. Maimani, *Non-commuting graph of a group*, J. Algebra **298**(2), 468–492, 2006.
- [2] M. Afkhami, M. Farrokhi, K. Khashyarmanesh, *Planar, toroidal and projective commuting and non-commuting graphs*, Commun. Algebra **43**(7), 2964–2970, 2015.
- [3] S. Akbari, M. Ghandehari, M. Hadian and A. Mohammadian, *On commuting graphs of semisimple rings*, Linear Algebra Appl. **390**, 345–355, 2004.
- [4] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, *On the diameters of commuting graphs*, Linear Algebra Appl. **418**(1), 161–176, 2006.
- [5] C. Bates, D. Bundy, S. Hart and P. Rowley, *A Note on Commuting Graphs for Symmetric Groups*, Electron. J. Comb. **16**(1), 1–13, 2009.
- [6] J. Battle, F. Harary, Y. Kodama and J. W. T. Youngs, *Additivity of the genus of a graph*, Bull. Amer. Math. Soc. **68**, 565–568, 1962.
- [7] R. Brauer and K. A. Fowler, *On groups of even order*, Ann. Math. **62**(3), 565–583, 1955.
- [8] A. K. Das, D. Nongsiang, *On the genus of the commuting graphs of finite non-abelian groups*, IEJA **19**, 91–109, 2016.
- [9] The GAP Group, *GAP – Groups, Algorithms, and Programming, Version 4.6.4*, 2013. (http://www.gap-system.org/).
- [10] A. Iranmanesh and A. Jafarzadeh, *Characterization of finite groups by their commuting graph*, Acta Math. Acad. Paedagog. Nyíregyháziensis **23**(1), 7–13, 2007.
- [11] A. R. Moghaddamfar, W. J. Shi, W. Zhou and A. R. Zokayi, *On the noncommuting graph associated with a finite group*, Sib. Math. J. **46**(2), 325–332, 2005.
- [12] A. Mohammadian, *On commuting graphs of finite matrix rings*, Commun. Algebra **38**(3), 988–994, 2010.
- [13] B.H. Neumann, *A problem of Paul Erdös on groups*, J. Aust. Math. Soc. (Series A) **21**(4), 467–472, 1976.
- [14] D. B. West, *Introduction to Graph Theory* (Second Edition), PHI Learning Private Limited, New Delhi, 2009.
- [15] A. T. White, Graphs, Groups and Surfaces, North-Holland Mathematics Studies, 8, American Elsevier Publishing Co., Inc., New York, 1973.