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Abstract: Planar mappings, defined by Dembowski and Ostrom, are identified as a means to 

construct projective planes. Then, many important applications of planar mappings appear in 

different fields such as cryptography and coding theory. In this paper, we provide sufficient and 

necessary conditions for the planarity of certain Dembowski-Ostrom polynomials over the finite 

field extension of degree three with odd characteristic. In particular, we completely determine 

the coefficients of the given Dembowski-Ostrom polynomials to be planar. 
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Bazı Dembowski-Ostrom Polinomlarının Planaritesi Üzerine 
 

Öz: Dembowski ve Ostrom tarafından tanımlanan planar dönüşümler projektif düzlemler 

oluşturmanın bir yolu olarak ortaya çıkmıştır. Sonrasında, planar dönüşümlerin kriptografi ve 

kodlama teorisi gibi farklı alanlarda birçok önemli uygulaması yapılmıştır. Bu çalışmada, tek 

karakteristiğe sahip üçüncü dereceden sonlu cisim genişlemeleri üzerinde tanımlanan belirli bir 

formdaki Dembowski-Ostrom polinomlarının planaritesi için gerek ve yeter koşullar elde 

edilmiştir. Özel olarak, verilen Dembowski-Ostrom polinomlarının planar olmasını sağlayan 

katsayılar tamamıyla belirlenmiştir. 

 

Anahtar kelimeler: Lineerize polinomlar, Dembowski-Ostrom polinomları, Planar dönüşümler 
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1. Introduction and Preliminaries 

Let nq
F  be a finite field of characteristic p , then a linearized polynomial over ,nq

F  

which is also so-called q -polynomial over ,nq
F  is defined by  

: n nq q
L F F  
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with coefficients .i qa F  These polynomials have been investigated by Ore [19, 20]. A 

linearized polynomial particularly defines a bijective mapping if and only if its root is 

only 0.x   On the other hand, a well-known result of Dickson shows that a linearized 

polynomial 
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is non-singular [15]. It means that a permutation polynomial is just a linearized 

polynomial of rank n . Linearized polynomials have also plenty applications in 

cryptography and coding theory [2, 12, 21, 25]. 

 

Note that a mapping is called quadratic if it is represented by a polynomial with 

algebraic degree 2. The following important class of polynomials with algebraic degree 

2 defined over nq
F  

,
 

,
, 0 , 1

jiq q
i j

i j n
i j

a x 

  


  

is so-called Dembowski-Ostrom polynomials [6]. These polynomials, defined by 

Dembowski and Ostrom, have an importance in the study of specific projective planes. 

They construct many translation planes and finite commutative semifields which are the 

subjects of finite geometry [6,8]. For more information about these polynomials, please 

see [5,6,7,27]. 

 

Let q  be a power of odd prime p . Then,  

, : n nf q q
D  F F  

                                             ( ) ( ) ( )x f x f x f     

is called difference mapping of f  defined by   for : n nq q
f F F  and 

* \{0}n nq q
  F F . 

In [6], Dembowski-Ostrom polynomials have been characterized by difference 

mappings. According to this characterization, a polynomial f  is Dembowski-Ostrom 
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polynomial if and only if all difference mappings are linearized polynomial for each 
*
nq

 F . Moreover, a mapping : n nq q
f F F  is called planar if its all difference mappings 

are bijective.  

 

Planar mappings, defined by Dembowski and Ostrom, have been identified as a means 

to construct projective planes [7]. In cryptography, planar mappings are called perfect 

nonlinear (PN) functions and they supply the best resistance to differential attack when 

used as an S-box in block ciphers [17,18]. Perfect nonlinear functions, defined by Meier 

and Staffelbach [16], have been used to construct as authentication codes [9], optimal 

constant-composition codes [11], secret sharing schemes resulting from particular linear 

codes [4] and signal sets [10]. Perfect nonlinear functions have been also used to 

construct DES-like cryptosystems. Planar mappings are not available over finite fields 

of even characteristic since if x  is a solution for difference mappings so is x  . In 

recent times, Zhou [28] introduces a native analogue of planar mappings over finite 

fields of even characteristic which has similar manner for planar functions over finite 

fields of odd characteristic [24,28]. He showed that a function 
2 2

: n nf F F  is called 

planar if the map ( ) ( )x f x f x x     is bijective for each *

2
.n F  Dembowski and 

Ostrom claim that every planar mapping over nq
F  is necessarily a Dembowski-Ostrom 

polynomial. This is rearticulated as a conjecture in [22]. Coulter and Matthews [6] and 

Singh [26] describe new classes of planar polynomials which provide counter examples 

to this conjecture in 
3nF  and in np

F  with 3,p   respectively. 

 

A polynomial that can be written as a product of two linearized polynomials  1L x  and 

 2L x  is called bilinear polynomial [23], otherwise it can be so-called non-bilinear. If 

2q  , all bilinear polynomials over nq
F  are Dembowski-Ostrom polynomials [3]. If 

2q  , bilinear polynomial  P x  defines Dembowski-Ostrom polynomial over 
2nF  for 

linearized polynomials except that 1 2.L L  However, every Dembowski-Ostrom 

polynomial does not have to be the bilinear polynomial. For example, 
10 6 2( )f x x x x    over 

3eF  is a non-bilinear Dembowski-Ostrom polynomial which 

is planar if and only if 2e   or e  is odd [6]. Also, 
(3 1)/2( )f x x   over 

3
,eF  which is 

not a bilinear Dembowski-Ostrom polynomial, is planar if and only if gcd( , ) 1e   and 

  is odd [6]. Kyureghyan and Özbudak investigate the planarity of bilinear 

Dembowski-Ostrom polynomials in the form 1 2( ) ( )L x L x  over nq
F , which are extended 

affine equivalent (EA-equivalent) to ( )x L x  [13]. In particular, they show under what 

condition certain forms of Dembowski-Ostrom polynomials over 2q
F and 3q

F  are planar. 

Then, Kyureghyan, Özbudak and Pott completely classify  q -quadratic planar 

binomials over 3q
F  using the related algebraic function fields [14]. In recent times, 

Bartoli and Bonini provide planar polynomials of the form 
2

, ( ) ( )q q

A Bf x x x Ax Bx    

over 3q
F , where , qA BF , by utilizing the connections with algebraic curves over 

finite fields [1]. 
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1.1 Our contribution 

In this paper, we suggest the planarity of Dembowski-Ostrom polynomials over 3q
F

with odd characteristic of the form 

2 2 22 2 2 1 1 ,( ) , , ,q q q q q q

qf x x x x Ax Bx Cx A B C        F       

which cannot be written as a product of two linearized polynomials. Therefore, this type 

of polynomials can be so-called non-bilinear Dembowski-Ostrom polynomials. In 

particular, we completely determine the triples 3( , , ) qA B C F  such that  f x  is planar 

by applying connections with algebraic curves over finite fields, inspiring the work in 

[1]. This was also carried out by combining some q -quadratic binomials over 3q
F  used 

in [14]. 

 

1.2 Outline 

The remainder of the paper is structured as follows. In Section 2 we first introduce a 

certain class of non-bilinear Dembowski-Ostrom polynomials. Based on the fact that all 

difference mappings must be bijective for a polynomial to define planar mappings, and 

that the difference mappings of Dembowski-Ostrom polynomials are linearized 

polynomials, we use the Dickson matrices that allow us to learn whether linear 

polynomials are permutation polynomials. Then, using the relationship between the 

determinant polynomial obtained from Dickson matrix and the algebraic curves defined 

over finite fields, we state sufficient and necessary conditions for the planarity of our 

polynomial class. We conclude the paper in Section 3. 

 

2. Main Results  

Let  

                        
2 2 22 2 2 1 1( ) q q q q q qf x x x x Ax Bx Cx                                         (1) 

be a polynomial over 3q
F  with odd characteristic, where  , , qA B CF . Eq. (1) can also 

be expressed as follows: 

2 22 1( ) ( ) ( ),q q q qf x Tr x x Ax Bx Cx       

where Tr  is the trace function from 3q
F  to qF . It is easy to see that Eq. (1) cannot be 

written as a product of two linearized polynomials. Therefore, it defines a non-bilinear 

Dembowski-Ostrom polynomial. Eq. (1) is planar if and only if for each  3

* ,
q

 F  the 

difference mapping 

                
, ( ) ( ) ( ) ( )fD x f x f x f       

                                
2 2 2 2

(2 ) ( 2 ) ( 2 )q q q q q q q qC B x C A x B A x                  

is a permutation polynomial. 
,fD 

 is a permutation polynomial if and only if the 

Dickson matrix  
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is non-singular. We obtain the determinant polynomial from the Dickson matrix LD  as 

follows: 

2 2 1 3 3 3( , , ) (2 2 2 6 )q q q qG A B C ABC                    
2 2 2 22 2 1 2 2 2 1 2 2 2 2( )(2 2 2 2 2 2 )q q q q q q q q A B C AB AC BC                    

 
23 3 3 2 2 2( )( 2 2 2 2 2 2 ).q q A B C AB AC BC                                                    (2) 

We rewrite Eq. (2) using the affine coordinates ,X   
q Y   and 

2

1q   to find the 

affine form. Consequently, we get  

         
2 2 2 3 3( , ) 2( )( 1)F X Y A B C AB AC BC X Y        

                         
2 2 2 2 2 2 22( )( )A B C AB AC BC X Y X Y Y X X Y            

                              
3 3 32( 3 )( ),A B C ABC XY                                                                         (3) 

that is associated with difference mappings 
,fD 

 of Eq. (1). 

Lemma 1. Let C be a cubic curve defined by 

         
2 2 2 3 3( , ) 2( )( 1)F X Y A B C AB AC BC X Y        

                         
2 2 2 2 2 2 22( )( )A B C AB AC BC X Y X Y Y X X Y            

                              
3 3 32( 3 )( ) 0,A B C ABC XY      

where  , , qA B CF . If the cubic curve C has a factor of the form Y aX b   with 

0,ab   then either of the followings holds  

(i) 3 3 3 2 2 22( ),3A B C A B CA AB C BCBC A         

(ii) 3 3 3 2 2 2( ).3 6A B C A B CC AB AC BCAB         

Proof. If a cubic curve is reducible, it has at least a line as a factor. We assume that the 

cubic curve Chas a factor of the form Y aX b   with 0ab  . Then, it must satisfy the 

following condition 

                                                     ,  0.F X aX b                                                    (4) 

By direct computations, Eq. (4) is satisfied if and only if the following equations are 

provided: 

                     
2 2 2 22( 1) ( 1)( ) 0,a a A B C AB AC BC                                 (5) 

 

           
2 2 2 22( 1) ( 1)( ) 0,b b A B C AB AC BC                                (6) 
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3 3 3

2 2 2 2 2

2 ( 3 )

(2 2 4 2 )6 ( ) 0,

a A B C ABC

a ab b a A Ab B C B AC BC

   

      
                    (7)

   

     

3 3 3

2 2 2 2 2

2

.

( 3 )

(2 2 4 2 6 ( )) 0

b A B C ABC

b ab a ab A B C AB AC BC 

   

      
        (8)            

We now examine the above equations in three cases considering the roots of Eq. (5): 

1) 1.a   

 If  1b   or  1b   , then using Eq. (7) and Eq. (8) we obtain  

 

                        
3 3 3 2 2 22( )3A B C A B C AB AC BCABC                 (9) 

 

  If  
2 2 2 0,A B C AB AC BC     we have  

 
3 3 3 3 0A B C ABC     

from Eq. (7) and  

 
3 3 3( 3 ) 0b A B C ABC     

  from Eq. (8). 

   

2)  1.a    

 If  1b  , then using Eq. (7) and Eq. (8) we obtain 

 

      
3 3 3 2 2 22( )3A B C A B C AB AC BCABC       

 

 If  1b   , then using Eq. (7) and Eq. (8) we obtain 

    

                       
3 3 3 2 2 2( )3 6A B C A B C AB AC BCABC                 (10) 

 

 If  
2 2 2 0,A B C AB AC BC      we have  

3 3 3 3 0A B C ABC     

 

  from Eq. (7) and   

 
3 3 3( 3 ) 0b A B C ABC     

             from Eq. (8). 

 

3)  
2 2 2 0.A B C AB AC BC      

 

                     
3 3 3( 3 ) 0a A B C ABC     

             from Eq. (7) and 

 

                                            
3 3 3( 3 ) 0b A B C ABC                                                 
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  from Eq. (8). Since 0,ab   we obtain 

                                          3 3 3 3 0A B C ABC                                                  (11) 

If we insert Eq. (9) into Eq. (3) and Eq. (10) into Eq. (3) respectively, we obtain the 

reduced polynomials 
 

2 2 2( , ) 2( )( 1)( 1)( 1)F X Y A B C AB AC BC Y X Y X Y X              
 

and  
 

2 2 2 2 2( , ) 2( )( 1)( 2 2 2 1).F X Y A B C AB AC BC Y X X Y X Y XY               
 

If we insert Eq. (11) into Eq. (3), we have the polynomial 
 

2 2 2 3 3 2 2 2 2( , ) 2( )( 1),F X Y A B C AB AC BC X Y X Y X Y Y X X Y              

 
 

which is irreducible. Therefore, this situation is ignored so as not have a factor of the 

form .Y aX b    

      

In the following main theorem, we reduce the problem of finding planarity of 

polynomial   f x  to the problem of reducibility of cubic curve.   

 

Theorem 2.  Let q  be a power of odd prime p  and consider the polynomial  

3( ) [ ]
q

f x xF  of the form 

2 2 22 2 2 1 1( ) ,q q q q q qf x x x x Ax Bx Cx         

 

where  , , qA B CF and 2 2 2 0A B C AB AC BC      . Then,  f x  is planar if and 

only if either of the followings holds  

(i) 3 3 3 2 2 22( ),3A B C A B CA AB C BCBC A          

(ii) 
3 3 3 2 2 26( ).3A B C A B CA AB AC BCBC          

Proof. Eq. (1) is planar if and only if  Ldet(D ) 0 . This is analogous to the determinant 

polynomial 
2

( , , )q qG    of the Dickson matrix LD , which is not zero.   By applying 

the homogenization to Eq. (2), we obtain the cubic polynomial in Eq. (3). 
2

( , , ) 0q qG      corresponds to circumstances in which the cubic polynomial is 

irreducible. To find these cases, we need to determine and rule out those that are 

reducible. If a cubic curve is reducible, it must have at least one line as a factor. In 

Lemma 1, assuming that the cubic curve has a factor in the type  Y aX b  , we find 

the following cases  

3 3 3 2 2 22( )3A B C A B C AB AC BCABC       

and 

3 3 3 2 2 26( ),3A B C A B CA AB AC BCBC         

where the cubic curve is reducible, and so the planarity is disappeared. On the other 

hand, the cubic polynomial is irreducible in the case of Eq. (11). Therefore, there is no 
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need to consider the situation in Eq. (11). As a result, Eq. (1) is planar except that the 

two situations of Eq. (9) and Eq. (10). 

Corollary 3. Let q  be a power of odd prime p  and consider the polynomial 

3( ) [ ]
q

f x xF  of the form 

2 2 22 2 1 12( ) ,q q q q q qf x x x x Ax Bx Cx         

where , , qA B CF and 
2 2 2 0A B C AB AC BC      . Then,  f x  is planar if and 

only if either of the followings holds 

(i) 2,A B C      

(ii) 6.A B C     

Proof. We indicate that the cubic curve Cdefined by  , 0F X Y   is reducible when it 

satisfy either of the conditions (i) or (ii) in Lemma 1. By using 

3 3 3 2 2 23 2( )A B C ABC A B C AB BC AC           

from the condition (i) of Theorem 2 and the identity 

3 3 3 2 2 23 ( )( ).A B C ABC A B C A B C AB BC AC            

Hence, we obtain 

                                                                 2A B C      

since 
2 2 2 0.A B C AB AC BC      Similarly, using the following equation 

                        
3 3 3 2 2 23 6( )A B C ABC A B C AB BC AC          

from the condition (ii) of Theorem 2 and the identity 

                   
3 3 3 2 2 23 ( )( ),A B C ABC A B C A B C AB BC AC            

we get 

                                                              6.A B C    

 

3. Conclusion and Future Work 

Dembowski-Ostrom polynomials have important applications in many fields such as 

cryptography and coding theory. In this manuscript, we propose the complete 

classification of planar Dembowski-Ostrom polynomial of the form  
2 2 22 2 2 1 1( ) q q q q q qf x x x x Ax Bx Cx         over 3q

F  with odd characteristic, 

where ., , qA B CF  For future research, we intend to use the method described in this 

manuscript or analogous algebraic function fields to obtain the planarity of certain 

Dembowski-Ostrom polynomials over field extensions greater than 3 or any field of 

characteristic 2. 
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