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Abstract

Our goal in this paper is to use combined Laplace transform (CLT) and Adomian decomposition method
(ADM) (that will be explained in section 3), to study approximate solutions for non-linear time-fractional
Burger's equation, fractional Burger's Kdv equation and the fractional modi�ed Burger's equation for the
Caputo and Conformable derivatives. Comparison between the two solutions and the exact solution is made.
Here we report that the Laplace transform decomposition method (LTDM) proved to be e�cient and be
used to obtain new analytical solutions of nonlinear fractional di�erential equations (FDEs).

Keywords: Conformable fractional derivative Caputo fractional derivative conformable di�erential
equations Burger's equation modi�ed Burger's equation Burger's Kdv equation Laplace transform
Adomian decomposition method.

1. Introduction

Fractional partial di�erential equations (FPDEs) proved to be important in applications in physics,
engineering, chemistry, electromagnetic, acoustics, electrochemistry, and material science,..., etc [5]. In
general, there exists no method that yields an exact solution for fractional partial di�erential equations.
Only approximate and numerical solutions can be derived.
Burger's equation :

∂u

∂t
+ u

∂u

∂x
=

∂2u

∂x2
, (1)

Email addresses: alh9170456@ju.edu.jo (Ilhem Kadri), horani@ju.edu.jo (Mohammed Al-Horani), roshdi@ju.edu.jo
(Roshdi Khalil)

Received January 4, 2022, Accepted March 20, 2022, Online March 22, 2022



I.Kadri, M.Al-Horani, R.Khalil, Results in Nonlinear Anal. 5 (2022), 131�150. 132

is a fundamental nonlinear partial di�erential equation in �uid mechanics. It is also a very important
model encountered in several areas of applied mathematics, such as heat conduction, acoustic waves, gas
dynamics, and tra�c �ow. It was actually �rst introduced by Bateman (1915), [6], when he mentioned it as
worthy of study and gave its steady solutions. It was later proposed by Burger (1948), [7], as one of a class of
equations describing mathematical models of turbulence. In (1972), Benton and Platzman [8] surveyed the
exact solution of one-dimensional Burger's equation. Investigating and reaching exact or numerical solutions
to these types of equations has great importance in applied mathematics. Many studies were conducted by
scientists in order to determine the numerical or analytical solution to Eq.(1). For example, T. Ozis and A.
Ozdes [10] used a direct variational method to solve Burger's equation. E. Aksan and A. Ozdes [11] used
a variational method constructed on the method of discretization in time to solve Burger's equation. S.
Kutluay et al. [12] obtained a numerical solution of Burger's equation by using �nite di�erence methods. E.
Varoglu and L. Finn [13] made use of a weighted residue method. J. Caldwell and P. Wanless [14] used �nite
elements. D.J. Evans and A.R. Abdullah [15] used the group explicit method. R.C. Mittal and P. Singhal
[16] used the Galerkin method to determine numerical solutions to Burger's equation. Therefore, it can be
concluded that scientists have devoted much attention to obtaining the numerical and/or analytical solution
for the fractional Burger's equation.
For instance, in (2005), Gorguis [9] gave a comparison between the Cole-Hopf transformation and the de-
composition method for solving Burger's equation.

In this paper, we use the Laplace transform decomposition method (LTDM), which is a known method for
�nding approximate solutions of nonlinear equations. A comparative analysis of the temperature distribu-
tions obtained in both cases will be established. The following equations are of great interest in applied
sciences :

Non-homogenous fractional Burger's equation :

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− 2u(x, t)

∂u(x, t)

∂x
+

∂u2(x, t)

∂x
= f(x, t), (2)

time-fractional Burger's Kdv equation :

∂αu(x, t)

∂tα
+

∂3u(x, t)

∂x3
+ 6u(x, t)

∂u(x, t)

∂x
= 0, (3)

and fractional modi�ed Burger's equation :

∂αu(x, t)

∂tα
+ u2(x, t)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
= 0, (4)

where 0 < α ≤ 1, u(x, t) represents the velocity for spatial dimension x and time t.

As a consequence of this importance, scientists paid great attention to obtain the exact or numerical solutions
of Burger's type equations.

2. Preliminaries

Here we present basic known material needed in this paper.

De�nition 2.1. [2] Given a function f : [0,∞) → R, t > 0 and α ∈ (0, 1), the conformable derivative of f
with respect to t of order α is de�ned by :

Dα
t (f)(t) = lim

ϵ→0

f(t+ εt1−α)− f(t)

ϵ
, (5)
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If f is α-di�erentiable in some (0, a), a > 0, and lim
t→0+

Dα
t (f)(t) exists, then Dα

t (f)(0) = lim
t→0+

Dα
t (f)(t).

De�nition 2.2. [18] Let 0 < α ≤ 1 and f : [0,∞) → R be a real valued function. Then the conformable
Laplace transform of order α is de�ned by :

Lα {f(t)} (s) =
∞∫
0

exp(−s
tα

α
)f(t)dαt = Fα(s). (6)

De�nition 2.3. [18] The function f(t), t ≥ 0 is said to be of conformable exponential order m if there exists
K > 0 and T > 0 such that :

|f(t)| ≤ Kem
tα

α , for all t ≥ T.

Theorem 2.4. [1] Let f : [0,∞) → R be a continuous function, f (α) is piecewise continuous real valued
function and 0 < α ≤ 1. If f is of conformable exponential order m, then

Lα {Dα
t f(t)} (s) = sFα(s)− f(0), s > m. (7)

For more on conformable Laplace transform (CLT), we refer to [1, 18, 21].

De�nition 2.5. [3] The Caputo fractional derivative of order α, 0 < α < 1, is de�ned by :

Dα
t f(t) =

1

Γ(1− α)

∫ t

0
(t− τ)−αf ′(τ)dτ, (8)

where Γ(.) is the gamma function with the following integral representation :

Γ(x) =

∫ ∞

0
e−ttx−1dt.

De�nition 2.6. [3] The Laplace transform for the Caputo's fractional derivative is given by the following
form :

Lα {Dα
t f(t)} = sαFα(s)−

n−1∑
k=0

sα−k−1fk(0), n− 1 < α < n (9)

De�nition 2.7. [3] The Mittag-Le�er function that arises in fractional calculus is de�ned for complex t and
α > 0 as :

Eα(t) =

∞∑
k=0

tk

Γ(αk + 1)
. (10)
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3. Laplace Transform Decomposition Method (LTDM)

To show the basic idea of LTDM, we consider the following fractional PDE's in its general operator form
:

Dα
t u(x, t) +Dα

xu(x, t) +R(u(x, t)) +N(u(x, t)) = f(x, t), (11)

with the initial condition

u(x, 0) = g(x), x > 0, t > 0, 0 < α ≤ 1, (12)

where, Dα
t is the linear derivative operator in conformable sense of order α in t, Dα

x is the highest order
linear di�erential operator in x, R is a linear term with lower derivative, N is a nonlinear term and f(x, t)
is the nonhomogeneous part.

In order to solve equation (11), we follow the following steps :

Step 1 : Applying the conformable Laplace transform on both sides of equation (11) with respect to t, it
becomes :

Lα {Dα
t u(x, t)}+ Lα {Dα

xu(x, t)}+ Lα {R(u(x, t)) +N(u(x, t))} = Lα {f(x, t)} . (13)

Using Theorem (2.1) and equation (12), in equation (13), we obtain :

sLα {u(x, t)} − u(x, 0) + Lα {Dα
xu(x, t)}+ Lα {R(u(x, t)) +N(u(x, t))} = Lα {f(x, t)} . (14)

Step 2 : Devide by s, and apply the conformable inverse Laplace transform to equation (14). This gives
:

u(x, t) = L−1
α

{
1

s
[u(x, 0) + Lα {f(x, t)}]

}
− L−1

α

{
1

s
Lα {Dα

xu}
}
− L−1

α

{
1

s
Lα[R(u) +N(u)]

}
. (15)

Step 3 : Considering the conformable Laplace transform decomposition method, let the solution of
equation (11) be an in�nite series :

u(x, t) =

∞∑
n=0

un(x, t), (16)

and the nonlinear term can be decomposed as follows :

N(u(x, t)) =

∞∑
n=0

An, (17)

where An is called Adomian polynomials of u0, u1, u2, ..., un, and it can be calculated by the following formula

:
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An =
1

n!

{
∂n

∂λn
(N(

n∑
i=0

λiui))

}
λ=0

, where n = 0, 1, 2, 3, 4, ... (18)

Substituting equations (16) and (17) in equation (15), we obtain :

∞∑
n=0

un(x, t) = L−1
α

{
1

s
[u(x, 0) + Lα {f(x, t)}]

}
− L−1

α

{
1

s
Lα

{
Dα

x (
∞∑
n=0

un(x, t))

}}

−L−1
α

{
1

s
Lα[R(

∞∑
n=0

un(x, t)) +
∞∑
n=0

An]

}
. (19)

Step 4 : Now, by comparing both sides of equation (19), we get the following iterative algorithm :

u0(x, t) = L−1
α

{
1

s
[u(x, 0) + Lα {f(x, t)}]

}
. (20)

un+1(x, t) = −L−1
α

{
1

s
Lα

{
Dα

x (
∞∑
n=0

un)

}}
− L−1

α

{
1

s
Lα[R(

∞∑
n=0

un) +
∞∑
n=0

An]

}
. (21)

Hence by calculating as many un components as needed, the solution u(x, t) can be obtained from equation
(16).

When α is in Caputo's derivative sense with the same process, we get :

u0 = u(x, 0) + L−1
α

{
1

sα
Lα {f(x, t)}

}
. (22)

un+1 = −L−1
α

{
1

sα
Lα

{
Dα

x (

∞∑
n=0

un)

}}
− L−1

α

{
1

sα
Lα[R(

∞∑
n=0

un) +

∞∑
n=0

An]

}
. (23)

Thus, the approximate analytical solution of equations (11)-(12) is determined by the series given in (16).

4. Main Results

In this section, we discuss three types of Burger's equations involving nonlinear partial di�erential equa-
tions using the LTDM described above with the fractional derivatives under consideration.

4.1. A Numerical Solution of the Fractional Burger's equation

Consider the following homogenous fractional Burger's equation :

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− 2u(x, t)

∂u(x, t)

∂x
+

∂u2(x, t)

∂x
= 0, (24)

with initial condition :

u(x, 0) = sin(x), (25)
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where 0 < α ≤ 1, t > 0, x ∈ R, and ∂αu(x,t)
∂tα means the conformable derivative of the function u(x, t)

with respect to t.

By applying the above steps, we obtain :

u0(x, t) = sin(x), (26)

un+1(x, t) = L−1
α

{
1

s
Lα

{
∂2un
∂x2

− ∂An

∂x

}}
+ L−1

α

{
2

s
Lα {Bn}

}
. (27)

where An and Bn are the so-called Adomian polynomials, given by

An =

∞∑
n=0

u2n,

Bn =
∞∑
n=0

ununx.

(28)

The nonlinear terms uux and u2 are represented as :

A0 =u20,

A1 =2u0u1,

A2 =2u0u2 + u21, and so on...

B0 =u0u0x,

B1 =u0u1x + u1u0x,

B2 =u0u2x + u1u1x + u2u0x, and so on...

(29)

Based on the LTDM, we obtain :

u1(x, t) =L−1
α

{
1

s
Lα

{
∂2u0
∂x2

− ∂A0

∂x
+ 2B0

}}
,

=− tα

α
sin(x).

(30)

In a similar manner, we obtain that :

u2(x, t) =L−1
α

{
1

s
Lα

{
∂2u1
∂x2

− ∂A1

∂x
+ 2B1

}}
,

=
t2α

2!α2
sin(x).

(31)

Also,

u3(x, t) =L−1
α

{
1

s
Lα

{
∂2u2
∂x2

− ∂A2

∂x
+ 2B2

}}
,

=− t3α

3!α3
sin(x).

(32)

By adding all the terms, the series solution of equation (24) can be found as :
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u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...

=sin(x)[1− tα

α
+

t2α

2!α2
− t3α

3!α3
+ ...]

=e−
tα

α sin(x).

(33)

By taking α = 1, the exact solution of the classical form of equation (24) is given by:

u(x, t) = e−t sin(x). (34)

Figure 1: Temperature plots for equation (24) at various α with x = 3.1, M = 5
.

When α is in Caputo sense, using equation (22)-(23) with the same process, we get :

u0(x, t) = sin(x), (35)

un+1(x, t) = L−1
α

{
1

sα
Lα

{
∂2un
∂x2

− ∂An

∂x
+ 2Bn

}}
. (36)

Thus, we get :

u1(x, t) =L−1
α

{
1

sα
Lα

{
∂2u0
∂x2

− ∂A0

∂x
+ 2B0

}}
,

=− tα

Γ(α+ 1)
sin(x).

(37)

u2(x, t) =L−1
α

{
1

sα
Lα

{
∂2u1
∂x2

− ∂A1

∂x
+ 2B1

}}
,

=
t2α

Γ(2α+ 1)
sin(x).

(38)

u3(x, t) =L−1
α

{
1

sα
Lα

{
∂2u2
∂x2

− ∂A2

∂x
+ 2B2

}}
,

=− t3α

Γ(3α+ 1)
sin(x).

(39)
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Thus, we get the numerical solution of equation (24) in a series form :

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=sin(x)[1− tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
− t3α

Γ(3α+ 1)
+ ...],

=sin(x)
∞∑
n=0

(−t)n

Γ(nα+ 1)
,

=sin(x)Eα(−t).

(40)

Figure 2: Temperature plots for equation (24) at various α with x = 3.1, M = 5
.

(a) (b)

Figure 3: The fractional solutions u(x, t) for equation (24) at α = 1 for −4 ≤ x ≤ 14 and 0 ≤ t ≤ 2.5
.
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Figure 4: The exact solution for equation (24) for −4 ≤ x ≤ 14 and 0 ≤ t ≤ 2.5
.

Remark 4.1. Caputo fractional di�erential problem (24)-(25) has similar shaped solutions to the classical
one compared to those obtained for the conformable di�erential problem.

Let us now consider the following non-homogenous fractional Burger's equation:

∂αu(x, t)

∂tα
− ∂2u(x, t)

∂x2
− 2u(x, t)

∂u(x, t)

∂x
+

∂u2(x, t)

∂x
= x2 − 2

tα

α
, (41)

with initial condition :

u(x, 0) = 0, (42)

where 0 < α ≤ 1, t > 0, x ∈ R, and ∂αu(x,t)
∂tα means the conformable derivative of the function u(x, t)

with respect to t.

By applying the above steps, we obtain :

u0(x, t) = x2
tα

α
− t2α

α2
, (43)

un+1(x, t) = L−1
α

{
1

s
Lα

{
∂2un
∂x2

− ∂An

∂x
+ 2Bn

}}
. (44)

Based on the LTDM, we obtain :

u1(x, t) =L−1
α

{
1

s
Lα

{
∂2u0
∂x2

− ∂A0

∂x
+ 2B0

}}
,

=
t2α

α2
.

(45)

In a similar manner, we obtain that :

u2(x, t) =L−1
α

{
1

s
Lα

{
∂2u1
∂x2

− ∂A1

∂x
+B1

}}
= 0.

u3(x, t) =0, ....

(46)
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Thus,

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=x2
tα

α
− t2α

α2
+

t2α

α2
+ 0 + 0 + ...,

=x2
tα

α
.

(47)

By taking α = 1, the exact solution of the classical form of equation (41) is given by:

u(x, t) = x2t. (48)

Figure 5: Temperature plots for equation (41) at various α with x = 2.

When α is in Caputo sense, using equation (41)-(42) with the same process, we get :

u0(x, t) =L−1
α

{
1

sα
Lα

{
x2 − 2

tα

α

}}
,

=x2
tα

Γ(α+ 1)
− 2Γ(α)

t2α

Γ(2α+ 1)
.

(49)

u1(x, t) =L−1
α

{
1

sα
Lα

{
∂2u0
∂x2

− ∂A0

∂x
+ 2B0

}}
.

=
2t2α

Γ(2α+ 1)
.

(50)

u2(x, t) =L−1
α

{
1

sα
Lα

{
∂2u1
∂x2

− ∂A1

∂x
+B1

}}
= 0.

u3(x, t) =0, ....

(51)

By adding all the terms, the series solution of equation (41) can be found as :
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u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=x2
tα

Γ(α+ 1)
− 2Γ(α)

t2α

Γ(2α+ 1)
+

2t2α

Γ(2α+ 1)
+ 0 + 0 + ...,

=x2
tα

Γ(α+ 1)
+ 2(1− Γ(α))

t2α

Γ(2α+ 1)
.

(52)

Figure 6: Temperature plots for equation (41) at various α with x = 2
.

(a) Approximate solution u(x, t) in
Conformable sense for α = 0.85.

(b) Approximate solution u(x, t) in
Conformable sense for α = 1.

(c) Exact solution u(x, t). (d) Approximate solution u(x, t) in
Caputo sense for α = 1.

Figure 7: The classical (α = 1) and fractional solutions u(x, t) of equation (41) for −2 ≤ x ≤ 5 and
0 ≤ t ≤ 1.5.

Remark 4.2. The nonhomogeneous conformable di�erential problem (41)-(42) has similar shaped solutions
to the classical one compared to those obtained for the Caputo di�erential problem.
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Another equation of interest is the following fractional Burger's equation :

∂αu(x, t)

∂tα
+ u(x, t)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
= 0, (53)

with initial condition :

u(x, 0) = x, (54)

where, 0 < α ≤ 1, t > 0, 0 < x < 1, and ∂αu(x,t)
∂tα means the conformable derivative of the function u(x, t).

By applying the above steps, we obtain :

u0(x, t) = x. (55)

un+1(x, t) = L−1
α

{
1

s
Lα

{
∂2un
∂x2

−An

}}
. (56)

Based on the LTDM, we obtain :

u1(x, t) =L−1
α

{
1

s
Lα

{
∂2u0
∂x2

−A0

}}
,

=− x
tα

α
.

(57)

In a similar manner, we obtain that :

u2(x, t) =L−1
α

{
1

s
Lα

{
∂2u1
∂x2

−A1

}}
,

=x
t2α

α2
,

(58)

and,

u3(x, t) =L−1
α

{
1

s
Lα

{
∂2u2
∂x2

−A2

}}
,

=− x
t3α

α3
.

(59)

Thus, we have :



I.Kadri, M.Al-Horani, R.Khalil, Results in Nonlinear Anal. 5 (2022), 131�150. 143

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=x− x
tα

α
+ x

t2α

α2
− x

t3α

α3
+ ...

=x(1− tα

α
+

t2α

α2
− t3α

α3
+ ...)

=x(1− tα

α
+ (

tα

α
)2 − (

tα

α
)3 + ...)

=x

∞∑
n=0

(
−tα

α
)n

=
x

1 + tα

α

.

(60)

For α = 1, the exact solution of the classical form of equation (53) is given by :

u(x, t) =
x

1 + t
. (61)

Figure 8: Temperature plots for equation (53) at various α in conformable sense for x = 0.5, M = 10
.

When α is in Caputo sense, using equation (53)-(54) with the same process, we get :

u0(x, t) = x. (62)

un+1(x, t) = L−1
α

{
1

sα
Lα

{
∂2un
∂x2

−An

}}
. (63)

Thus,

u1(x, t) =L−1
α

{
1

sα
Lα

{
∂2u0
∂x2

−A0

}}
.

=− x
tα

Γ(α+ 1)
.

(64)

u2(x, t) =L−1
α

{
1

sα
Lα

{
∂2u1
∂x2

−A1

}}
.

=2x
t2α

Γ(2α+ 1)
.

(65)
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u3(x, t) =L−1
α

{
1

sα
Lα

{
∂2u2
∂x2

−A2

}}
.

=− 6x
t3α

Γ(3α+ 1)
.

(66)

Summing the above terms yields :

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + u3(x, t) + ...,

=x− x
tα

Γ(α+ 1)
+ 2x

t2α

Γ(2α+ 1)
− 6x

t3α

Γ(3α+ 1)
+ ...,

=x(1− tα

Γ(α+ 1)
+ 2

t2α

Γ(2α+ 1)
− 6

t3α

Γ(3α+ 1)
+ ...),

=x(1 +
∞∑
n=1

n!(−1)ntnα

Γ(nα+ 1)
).

(67)

Figure 9: Temperature plots for equation (53) at various α in Caputo sense for x = 0.5, M = 10
.

Remark 4.3. The solutions of the Caputo di�erential problem (53)-(54) converge (as α → 1) to the classical
one better than those obtained from the conformable di�erential problem.

4.2. A Numerical Solution of the time-fractional Burger's Kdv Equation

Consider the time-fractional Burger's Kdv equation :

∂αu(x, t)

∂tα
+

∂3u(x, t)

∂x3
+ 6u(x, t)

∂u(x, t)

∂x
= 0, (68)

with initial condition :

u(x, 0) =
1

2
sech2(

1

2
x), (69)

where, 0 < α ≤ 1, t > 0, x ∈ R, and ∂αu(x,t)
∂tα means the conformable derivative of the function u(x, t)

with respect to t.

By applying the above steps, we obtain :

u0(x, t) =
1

2
sech2(

1

2
x), (70)
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un+1 = −L−1
α

{
1

s
Lα

{
∂3un
∂x3

+ 6An

}}
. (71)

Based on the LTDM, we obtain :

u1(x, t) =− L−1
α

{
1

s
Lα

{
∂3u0
∂x3

+ 6A0

}}
,

=(
1

2
sech4(

1

2
x) tanh(

1

2
x) +

1

2
sech2(

1

2
x) tanh3(

1

2
x))

tα

α
.

(72)

In a similar manner, we obtain that :

u2(x, t) =− L−1
α

{
1

s
Lα

{
∂3u1
∂x3

+ 6A1

}}
,

=
1

8
(−2 + cosh(x))sech4(

1

2
x)

t2α

α
.

(73)

Therefore,

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + ...,

=
1

2
sech2(

1

2
x) +

1

2
sech2(

1

2
x) tanh3(

1

2
x)

tα

α
+

1

2
sech4(

1

2
x) tanh(

1

2
x))

tα

α
+ ...

(74)

By taking α = 1, the exact solution of equation (68) is given by :

u(x, t) =
1

2
sech2(

1

2
(x− t)). (75)

(a) Exact solution u(x, t). (b) Approximate solution u(x, t) in conformable sense for α = 1.

Figure 10: The exact and approximate solution u(x, t) of equation (68) for α = 1, −4 ≤ x ≤ 8 and 0 ≤ t ≤ 4.

When α is in Caputo sense, using equation (68)-(69) with the same process, we get :

u0(x, t) =
1

2
sech2(

1

2
x), (76)

un+1(x, t) = −L−1
α

{
1

sα
Lα

{
∂3un
∂x3

+ 6An

}}
. (77)

Thus, we obtain :
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u1(x, t) =− L−1
α

{
1

sα
Lα

{
∂3u0
∂x3

+ 6A0

}}
,

=(
1

2
sech4(

1

2
x) tanh(

1

2
x) +

1

2
sech2(

1

2
x) tanh3(

1

2
x))

tα

Γ(α+ 1)
.

(78)

In a similar manner, we obtain that :

u2(x, t) =− L−1
α

{
1

sα
Lα

{
∂3u1
∂x3

+ 6A1

}}
,

=
1

4
(−2 + cosh(x))sech4(

1

2
x)

t2α

Γ(2α+ 1)
.

(79)

Therefore,

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + ...,

=
1

2
sech2(

1

2
x) +

1

2
sech2(

1

2
x) tanh3(

1

2
x)

tα

Γ(α+ 1)
+

1

2
sech4(

1

2
x) tanh(

1

2
x))

tα

Γ(α+ 1)
+ ...

(80)

Figure 11: The approximate solution u(x, t) for α = 1, −4 ≤ x ≤ 8 and 0 ≤ t ≤ 4.

Remark 4.4. Both conformable and Caputo fractional di�erential problem (68)-(69) generate similar ap-
proximate solutions to the classical one when α → 1.

4.3. A Numerical Solution of the Fractional Modi�ed Burger's Equation

Consider the following fractional modi�ed Burger's equation :

∂αu(x, t)

∂tα
+ u2(x, t)

∂u(x, t)

∂x
− ∂2u(x, t)

∂x2
= 0, (81)

with initial condition :

u(x, 0) =
−
√
3√

1− cosh(2x)− sinh(2x)
, (82)

where, 0 < α ≤ 1, t > 0, x ∈ R, and ∂αu(x,t)
∂tα means the conformable derivative of the function u(x, t).

By applying the above steps, we obtain :
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u0(x, t) =
−
√
3√

1− cosh(2x)− sinh(2x)
. (83)

un+1(x, t) = L−1
α

{
1

s
Lα

{
∂2un
∂x2

−An
∂un
∂x

}}
. (84)

Based on the LTDM, we obtain :

u1(x, t) =L−1
α

{
1

s
Lα

{
∂2u0
∂x2

−A0
∂u0
∂x

}}
=

−
√
3

(1− e2x)
3
2

tα

α
,

(85)

and,

u2(x, t) =L−1
α

{
1

s
Lα

{
∂2u1
∂x2

−A1
∂u1
∂x

}}
=

18
√
3e2x

(1− e2x)
9
2

t3α

3α3
+

9
√
3e6x − 3

√
3e4x − 6

√
3e2x

(1− e2x)
9
2

t2α

2α2
.

(86)

Therefore,

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + ...,

=
−
√
3√

1− cosh(2x)− sinh(2x)
+

−
√
3

(1− e2x)
3
2

tα

α
+

18
√
3e2x

(1− e2x)
9
2

t3α

3α3

+
9
√
3e6x − 3

√
3e4x − 6

√
3e2x

(1− e2x)
9
2

t2α

2α2
+ ... (87)

For α = 1, the exact solution of equation (81) is given by :

u(x, t) =
−
√
3√

1− cosh(2(x− t))− sinh(2(x− t))
. (88)
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Figure 12: The classical solution u(x, t) for −6 ≤ x ≤ 1 and 1 ≤ t ≤ 2.

When α is in Caputo sense with the same process, we get :

u0(x, t) =
−
√
3√

1− cosh(2x)− sinh(2x)
. (89)

un+1(x, t) = L−1
α

{
1

sα
Lα

{
∂2un
∂x2

−An
∂un
∂x

}}
. (90)

Thus, we obtain :

u1(x, t) =L−1
α

{
1

sα
Lα

{
∂2u0
∂x2

−A0
∂u0
∂x

}}
=

−
√
3

(1− e2x)
3
2

tα

Γ(α+ 1)
,

(91)

and,

u2(x, t) =L−1
α

{
1

sα
Lα

{
∂2u1
∂x2

−A1
∂u1
∂x

}}
=
9
√
3e6x − 3

√
3e4x − 6

√
3e2x

(1− e2x)
9
2

t2α

Γ(2α+ 1)
+

18
√
3e2x

(1− e2x)
9
2

t3α

Γ(3α+ 1)

(92)

Therefore,

u(x, t) =u0(x, t) + u1(x, t) + u2(x, t) + ...,

=
−
√
3√

1− cosh(2x)− sinh(2x)
+

−
√
3

(1− e2x)
3
2

tα

Γ(α+ 1)
+

9
√
3e6x − 3

√
3e4x − 6

√
3e2x

(1− e2x)
9
2

t2α

Γ(2α+ 1)

+
18
√
3e2x

(1− e2x)
9
2

t3α

3α3
+ ...
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Figure 13: The Exact and approximate solution u(x, t) of equation (81) for x = −4 and 0 ≤ t ≤ 4.

Remark 4.5. Both conformable and Caputo fractional di�erential problem (81)-(82) generate the same
approximate solution to the classical one when α → 1.

5. Conclusion

In this work, we apply the LTDM method to solve fractional Burger's equation, fractional Burger's Kdv
equation, and fractional modi�ed Burger's equation. Some applications are given to show that LTDM is
an e�ective and easy method for obtaining exact and approximated solutions to such previous equations.
We observe, from the graphs studied, that the di�erent values of the fractional-order of the derivative allow
very di�erent behaviors of the solution. In addition, if we let α = 1 in the given examples, we obtain
the exact solutions that are studied in [26, 27]. There are a few important points to make here. Firstly,
LT and ADM provide the solution in terms of easily computable components. They provide more realistic
solutions that have very rapid convergence on real physical problems. The analytic solutions of these three
applications, found by these two methods, are compared with exact solutions for both conformable fractional
derivative and Caputo fractional derivative. The numerical results show that the solutions are in good
agreement with their respective exact solutions. Secondly, the methods were used in a direct way without
using linearization, perturbation, or restrictive assumptions. The results show that this technique can be
extended to solve various linear and nonlinear fractional problems in applied science. Mathematica has been
used, in this paper, for presenting graphs of solutions.
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