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Abstract 
 
The occurrence of spurious complex eigenvalues is a serious stability problem in many differential quadrature 
methods (DQMs). This paper studies the accuracy and stability of a variety of different differential quadrature 
formulations. Special emphasis is given to two local DQMs. One utilizes both fictitious grids and banded 
matrices, called local adaptive differential quadrature method (LaDQM). The other has banded matrices without 
using fictitious grids to facilitate boundary conditions, called finite difference differential quadrature methods 
(FDDQMs). These local DQMs include the classic DQMs as special cases given by extending their banded 
matrices to full matrices. LaDQMs and FDDQMs are implemented on a variety of treatments of boundary 
conditions, distributions of grids (i.e., uniform grids and Chebyshev grids), and lengths of stencils. A 
comprehensive comparison among these methods over beams of six different combinations of supporting edges 
sheds light on the stability and accuracy of DQMs. 
 
Keywords: Stability analysis; Local adaptive differential quadrature method; Differential quadrature method; 
Beam; Vibration analysis. 
 

 
1. Introduction 

Beams are fundamental components in structures and machines. They also prove to be useful for 
modeling more complex structural behavior. A large number of approximation methods have been 
developed to obtain solutions for beams of practical applications. As the Euler-Bernoulli beam 
has analytical solution for simply-supported, clamped and free edges, it is an ideal model to 
analyze the accuracy and stability of different numerical methods. 

Differential quadrature method (DQM) is a collocation scheme and was first introduced 
by Bellman et al. [1, 2] as a numerical method to solve partial differential equations. Its early 
applications include the Hodgkin-Huxley model by Bellman et al. [3], chemical reactor 
analysis by Naadimuthu et al. [4] and transient nonlinear diffusion by Mingle [5]. Civan has 
also applied the DQM successfully to the Poisson equation [7] and multidimensional problems 
[8]. Due to certain difficulties in implementing boundary conditions, the DQM was virtually 
ignored for many years until Bert and co-workers [9, 10] brought in back to life in late 1980s. 
They proposed the δ-technique to implement multiple boundary conditions [9, 10].  
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The DQM using the δ-technique to implement boundary conditions has been applied 
successfully to many problems such as nonlinear bending analysis of thin circular plates by Striz et 
al. [11], nonlinear bending analysis of orthotropic plates by Bert et al. [12], free vibration and 
buckling analysis of beams, membrane and thin plates by Bert et al. [10] and free vibration 
analysis of rectangular plates with non-uniform boundary conditions by Laura et al. [13].  

The δ-technique consists of placing two grid points separated from each other by a small 
distance δ near the boundary edge. For two boundary conditions to be satisfied at the boundary 
edge, one is located at the grid points on the boundary edge while the other is placed to the 
adjacent δ-grid point. In order to obtain an accurate numerical solution, δ must be very small 
(possibly not greater than 10-4L where L is the length of the computational domain). However, 
when one mesh spacing (δ) is much smaller than the others mesh spacing, the DQ weighting 
coefficients matrices may become highly ill-conditioned, which then causes the solution to 
oscillate. Hence, the numerical solution becomes less accurate. 

To overcome some drawback of the δ-technique, Shu and Hu proposed a new approach to 
implement simply supported and clamped boundary conditions for the free vibration analysis of 
beams and plates using the GDQ method. The proposed approach directly substitutes the 
boundary conditions into the governing equations (SBCGE) [14]. The SBCGE was subsequently 
generalized to directly couple the boundary conditions with the governing equations (CBCGE) 
[15]. The CBCGE can be used to implement in any general boundary equations including free 
edges for plate vibration analysis. The key difference between the δ-technique and CBCGE is that 
the boundary conditions are satisfied on the boundaries in the CBCGE while only one 
boundary condition is exactly satisfied in the δ-technique. The GDQ using the SBCGE or 
CBCGE to implement boundary conditions has been applied successfully to many problems such 
as the free vibration analysis of plates with mixed and nonuniform boundary conditions by Shu and 
Wang [16], free vibration analysis of laminated conical shells with variable stiffness by Wu [17] 
and analysis of elliptical waveguides by Shu [18]. The detail of the CBCGE is given in Section 
II. Wu and Liu [19] proposed the generalized differential quadrature rule (GDQR) to improve 
the drawback of the δ-technique. The GDQR chooses the function values and some of the 
derivatives whenever necessary as independent variables. The GDQR’s weighting coefficients can 
be obtained using the Hermite interpolation function. Hence, the δ-grid points arrangement used 
in the δ-technique is exempted while applying the boundary conditions exactly on the 
boundaries. Wu and Liu have applied the GDQR successfully to many fourth-order differential 
equations including vibration analysis of beams, circular plates and arches [20]. Recently, Wu 
and Liu further extend the GDQR to solving sixth-order differential equations [21]. 

The DQM is based on the idea that the derivative of a function with respect to a spatial 
variable at a given discrete point can be expressed as a weighted linear sum of the function values at 
all the discrete points in the computational domain. One important aspect of the DQM is to 
determine the weighting coefficients for the first derivative approximation. Bellman et al. [2] 
proposed two methods to compute the weighting coefficients. In the first method, the weighting 
coefficients are determined by solving an algebraic equation system. In the second method, the 
weighting coefficients are determined by a simple algebraic formula and the grid points are chosen as 
the roots of shifted Legendre polynomial. Between these two methods, the first method is 
usually used as it allows the coordinate of the grid points to be chosen arbitrary. However, as the 
order of the algebraic equation system is enlarged, the condition number of the corresponding 
differential matrix becomes increasely large, which leads to an ill-conditioned matrix. Thus, 
using the first method, it is very difficult to obtain the weighting coefficients for a large number 
of grid points. In early practical applications of the first method, the number of grid points is 
usually chosen to be equal to or less than 13 [22]. A mian contribution to this field was due to 
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Shu et al. [23]. These authors proposed the generalized differential quadrature (GDQ) method 
which uses the Lagrange interpolation polynomial as the basis function. An algebraic expression is 
presented to compute the weighting coefficients of the first order derivative approximation 
directly. A convenient recurrence formula is also presented to compute the weighting coefficients 
for higher order derivatives without restriction on the choice of the grid points [23]. Shu and 
Chew [24] show that the GDQ is equivalent to the highest order finite difference scheme. 

Recently, the discrete singular convolution (DSC) algorithm has been proposed as a wavelet 
collocation scheme for the computer realization of singular convolutions [25, 26, 41]. The un-
derlying mathematical structure of the DSC algorithm is the theory of distributions [42] and 
wavelet analysis. The DSC algorithm has global methods’ accuracy and local methods’ flexibility 
for handling complex geometry and boundary conditions in fluid dynamics [43] and electrody-
namics [44]. The DSC algorithm has found its success in structural analysis, including the 
vibration and buckling of beams [45], plate vibration under various edge and internal supports 
[46, 47, 48, 49, 50, 51, 52, 53, 54]. It provides a unified framework for Galerkin, collocation and 
generalized finite difference methods [26]. The good performance of the DSC algorithm for the 
vibration analysis has been independently verified by Civalek [27, 28, 29, 30, 31, 32, 33, 34, 35]. 
One of the important features of the DSC algorithm is that it admits a banded matrix. Another 
important feature of the DSC is that it utilizes fictitious grid points to accommondate 
boundary conditions. The use of banded Lagrange kernel with fictitious grid points for treating 
boundary conditions in the collocation formulation was proposed in an earlier work by Wei and 
his co-workers [55]. The matched interface and boundary (MIB) method [36, 37, 38, 39] has 
been utlized to improve the boundary treatment of the DSC method [40]. Stability analysis 
has been presented. The combination of local Lagrange kernel and fictitious grids was imple-
mented for plate vibration analysis [47, 56]. Recently, this combination has been extended for 
treating multiple boundary conditions raised in high-order differential equations [57] via the use 
of the CBCGE [15]. To accommodate multiple boundary conditions, the number of fictitious 
grid points was restricted to the number of nontrivial boundary conditions, and the scheme 
was called local adaptive differential quadrature method (LaDQM) to acknowledge its similarity 
to the DQM or GDQ. In general, the LaDQM generates a banded matrix which has a lower 
condition number and improves the numerical stability. In this work, another local DQM 
which utilizes the local Lagrange kernel while without using the fictitious grid points is 
denoted as finite difference differential quadrature method (FDDQM). The length of stencils 
in both the LaDQM and FDDQM can vary from 3 to the size of the whole domain. 

Since there exist a variety of different local differential quadrature formulations based on 
Langrange polynomials by varying the degree of the polynomials, treatment of boundary con-
ditions, and use of regular/irregular grid points, it is often very confusing for researchers and 
engineers to make a choice of a DQM for solving practical problems. Such a choice can be 
quite dangerous as DQMs can admit spurious complex eigenvalues [56], i.e., the stability 
problem, whose occurrence is not well understood in general. The main objective of the 
present work is to analyze the accuracy and stability of different local differential quadrature 
formulations, varying from the treatment of boundary conditions, the length of stencils, to the 
distribution of grid meshes. 

The rest of this paper is organized as the follows. Section II is devoted to the formulation 
of beam vibration, the FDDQM and LaDQM formalism. The numerical results of the 
FDDQM and LaDQM are presented and discussed in Section III. Finally, conclusion is given 
in Section IV. 
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2. Theory and Algorithm 

For integrity and completeness, this section accounts for the theory of beam analysis and 
methods of solution. Particular emphasis is given to a comparison of both the LaDQM and 
FDDQM algorithms. 

2.1. Theory of beam vibration 

For an Euler-Bernoulli beam of length L, the governing equation of free vibration is 

 
 

 
 
where w is the transverse displacement of the beam, X is the Cartesian coordinate in the 
middle axis of the beam, ρ is the mass density of the beam, A is the cross-section area of the 
beam, ω is the angular frequency of the beam, E is Young’s modulus of elasticity and I is the 
constant area moment of inertia about the neutral axis. For generality, dimensionless 
governing equation is used 
 

 
 
where W is the dimensionless displacement (W = w/L), Ω is the dimensionless frequency 
parameter (Ω = ωL2(ρA/EI)1/2), x is the dimensionless coordinate along the X-direction (x = 
X/L). In this paper, three types of boundary 
 

 
 

Six possible combinations of these three edge supports are used in numerical experiments. 
 

2.2. Finite difference type of differential quadrature methods 

The DQ approximates the derivative of a function with respect to a spatial variable at a given 
discrete point by a weighted linear sum of the function values at all the discrete points in the 
computational domain. For example, the mth derivative of a function u(x) at the ith point, xi, 
is approximated as 
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where u(m)(xi) is the mth order derivative of u(x) at xi, N is the total number of grid points 
employs to discretize the beam. cij

(
,
m) (j = 1,..., N), are the weighting coefficients for the mth 

derivative approximation of the ith point. These coefficients have to be pre-determined. In the 
generalized differential quadrature (GDQ) method [23], the global Lagrange interpolation 
polynomial is used as the test function 
 
 

 
 
where 
 

 
 

where l(1)(x) is the first derivative of l(x). Thus, the weighting coefficients cij
(1 )(i,j = 1, 2, ...,N) 

can be obtained analytically from the differentiation of Eq. (7) to obtain 
 
 

 
 
The weighting coefficients for higher order derivatives can be obtained in the same manner. 
Actually, a recurrence relationship had been found for the mth order weighting coefficients cij

(m) 
(See Ref. [23]) 
 
 

 
 
Eqs. (6-11) give a convenient and general form for determining the weighting coefficients for 
the first to (N - 1)-th order derivatives. There is no restriction on the choice of the coordinates of 
the grid points. There is no need to solve the weighting coefficients from a set of algebraic 
equations like in the original DQ method. Thus, the ill conditioned problem in the determination 
of weighting coefficients in the original DQM no longer exists in the GDQ. 

The DQ discretization, Eq. (6), described above uses all the grid points to approximate the 
derivative of a function. It is possible to use just part of the grid points to achieve the 
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approximation. For example, the mth derivative of a function u(x) at the ith point, xi, can be 
approximated with xS1, xS1+1, . . . , xS2, instead of x1, x2, . . . , xN. Thus, Eqs. (6-11) can be rewrite as 

 
 

 

 

 
 

For simplicity, Eq. (12) is expressed as 
 

 
 
Eq. (18) is equivalence to Eq. (12) as C(m) i,j is zero for j < S1 and j > S2. When S1 = 1 and 
S2 = N, where N is the total number of grid points employs to discretize the beam, Eq. (12) 
will reduce to the GDQ Eq. (6).  
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This paper presents two methods to select the value of S1 and S2 in Eq. (12). The first 
method uses 2M +1 grid points to approximate the derivative at a discrete point, i.e., a central 
scheme. This method generally produces a box-banded differential matrix and is referred to as 
a DQ box banded, i.e., DQ(BB). The second method uses M + 1 grid points to approximate 
the derivative at the boundaries, i.e., one side approximation. For discrete points further away 
from the boundaries, the number of grid points used in the approximation of its derivative will 
linearly increase to a maximum of 2M + 1 grid points. This method generally produces 
uniformly-banded differential matrix and is referred to as DQ uniformly banded, i.e., 
DQ(UB). 
Thus, the value S1 and S2 for the approximation of the derivative at xi (see Eq. (12)) are 
 

 
 
where N is the number of grid points employed to discretize the beam, 1 ≤ i ≤ N and 2M+1 ≤ 
N. The DQ(BB) and DQ(UB) produce box-banded and banded matrix respectively while the 
GDQ method produces dense (full) differential matrix. Thus, the DQ(BB) and DQ(UB) have 
a distinct advantage over the GDQ in large scale computation. For 2M + 1 = N, the DQ(BB) 
reduces to the GDQ method.   

Finally, the DQ(BB) and DQ(UB) approximations can be applied to Eq. (2) at each 
discrete point on the grid and the discretized governing equation at (xi) is given by 
 
 

 
 
The boundary conditions can be similarly discretized as 
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The boundary conditions are implemented by coupling all the boundary conditions with the 
discretized governing equations, a technique referred to as the CBCGE [14, 15, 16, 17, 18]. 
Taking an FF beam as an example, the boundary equations can be discretized as 
 

 
 
Eqs. (28-31) can be expressed in the matrix form such that 
 

 
 
where W(S) = [W1,W2,WN−1,WN]T , W(I) = [W3,W4, . . . ,WN−4,WN−2]T . BB and BD 
are 4×4 and 4 × (N − 4) matrix respectively. Similarly, Eq. (21) can be expressed in the 
matrix form 
 
 

 
 
where DB and DD are N × 4 and N × N matrix respectively. Eq. (32) can be coupled with Eq. 
(33) to give 
 

 
 
 



Ng et al. 
 

 9 

Finally, Eq. (35) can be expressed as an eigenvalue and eigenvector problem 
 

 
 
 
The eigenvalue Ω2

 can be obtained by solving Eq. (36) with a standard eigenvalue solver. 
 
 
2.3. Local adaptive differential quadratural Methods 
 
In this work, we employ the local adaptive differential quadrature method (LaDQM) for beam 
vibration analysis and compare its performance with the aforementioned two DQ 
formulations. The LaDQM uses the Lagrange polynomial 
 

 
 
where {xj} is a set of discrete points, S2 − S1 + 1 is the degree of the Lagrange polynomial. 
The value for S1 and S2 will be subsequently defined in Eq. (45). 

The LaDQM can be implemented as a discrete convolution scheme such as the mth 
order derivative of a function f(x) on a grid point xi is approximated as 
 

 
 
Here, as for many other DSC kernels[25, 26, 51], the derivative kernel L(m) k (x) is obtained 
Analytically 
 
 

 
 
 
In the DSC algorithm, the domain of the definition of the system is extended with fictitious 
grid points so as to ensure “boundary condition” is well defined. It is well known that in the 
continuous case, a derivative at the boundary points exists if and only if both the left 
derivative and right derivative exist and are equal. Therefore, with a finite computational 
domain, a boundary condition involving differentiation, such as the Neumann type of 
boundary conditions needs special care. We handle this problem by extending the domain of 
definition of the system so that the “boundary condition” is appropriately accounted. At each 
boundary, 1 or 2 ghost points are extended from one side of the boundary. The number of 
ghost points extends from the boundary is equal to the number of Neumann boundary 
conditions at the boundaries. Let β1 and βN be the number of Neumann type of boundary 
conditions at the boundary x1 and xN respectively. Thus β1 and βN are given as 
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Take note that the beam is discretized using grid points {x1, x2, . . . , xN−1, xN}. The ghost 
points (which are not part of the beam) are {x1−β1 , . . . , x0, xN+1, . . . , xN+βN }. Furthermore, 
we set x1 = 0 and xN = 1 as our governing equation for beam vibration Eq. (2) is a 
dimensionless equation. 

Just as in the DQM, for simplicity, Eq. (38) is expressed as 
 

 
 
Similar to the DQ(BB) and DQ(UB), we have two ways to select the value of S1 and S2 in 
Eq. (37). These two methods are referred as LaDQM box banded (LaDQM(BB)) and LaDQM 
uniformly banded (LaDQM(UB)). Thus, the value S1 and S2 for approximation of the 
derivative at xi (see Eq. (38)) is given by 
 
 

 
 
where 1 −β1  ≤ i ≤ N + βN  and 2M + 1 ≤ N + β1  + βN. The LaDQM approximation can be 
finally applied to Eq. (2) at each discrete point on the grid and the discretized governing 
equation at (xi) is given by 
 

 
 
The boundary conditions can be similarly discretized as 
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The boundary conditions are implemented by the CBCGE[14, 15, 16, 17, 18]. However, 
unlike the DQM, the ghost points (instead of the interior points) are used to couple the 
boundary conditions with the governing equations. Taking the FF beam (β1 = βN = 2) as an 
example, the boundary equations can be discretized as 
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Eqs. (54-57) can be expressed in the matrix form such that 
 

 
 
where W(G) are the ghost points (W(G) = [W−1,W0,WN+1,WN+2]T ), W(I) are the interior points 
(W(I) = [W1,W2, . . . ,WN−1,WN]T ). BB and BD are 4×4 and 4×N matrix, respectively. 
Similarly, Eq. (47) can be expressed in the matrix form 
 

 
 
where DB and DD are N ×4 and N ×N matrix respectively. Eq. (58) can be coupled with Eq. 
(59) to give 
 

 
 
Finally, Eq. (61) can be expressed as a problem of eigenvalue and eigenvector 
 

 
 
The vector, W(I), for other supported beams are 
 

  
 
The eigenvalue Ω2 can be obtained by solving Eq. (62) with a standard eigenvalue solver. 
 
 
3. Results and discussions 
 
Four different schemes, the DQ(BB), DQ(UB), LaDQM(BB) and LaDQM(UB) are 
implemented on both uniform grids and redistributed Chebyshev-Gauss-Lobatto grids[14, 15, 
16, 17, 18] 
 
 

 
 
For convenience of discussion, redistributed Chebyshev-Gauss-Lobatto grids are simply 
referred as Chebyshev grids. For the LaDQM(BB) and LaDQM(UB), there are two methods 
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to extend the ghost grid points. In the first methods, ghost points are symmetrically extended 
(SymExt) from the boundary 
 

 
 
In the second method, Chebyshev grids is constructed with x1−β1 to xN+β2 . Subsequently, a 
linear transformation is carried out to fulfil the requirement of x1 = 0 and xN = 1. This method 
of ghost points extension is referred to as linearly transformed extensions (LTExt). Thus 
 

 
 
where 
 

 
 
In the following subsections, we compare the stability and accuracy of DQ(BB), DQ(UB), 
LaDQM(BB) and LaDQM(UB) methods. The number of real eigenvalues is used to gauge the 
stability of the FDDQM and LaDQM methods. For the convenience of discussion and 
comparison, the following terminology is defined for the frequency parameter Ω2= 
ωL2(ρA/EI)1/2 
 

 
 
 
3.1. Comparison study on different types of grids 
 
With reference to Fig 1, the number of real eigenvalues (which is used as a gauge for 
stability) for the DQ(BB) (implemented on both uniform grids and Chebyshev) grids reduces 
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as M increases. It is also observed that the DQ(BB) implemented on Chebyshev grids is more 
stable than on uniform grids. Fig 1 shows that the number of real eigenvalues of the DQ(UB) 
for simply supported beam implemented on uniform grids also reduces as M increases. 
However, when the DQ(UB) is implemented on Chebyshev grids, the number of real 
eigenvalues remains constant as M increases. The above comparisons suggest that Chebyshev 
grids is more stable than uniform grids. In order to verify that Chebyshev grids are indeed 
more stable than uniform grids, the total number of real eigenvalues produced by 121 beams 
of different combinations of N and M (M = 5 to 15, N = 2M + 1 to 31) is tabulated in Table 1. 
From Table 1, it is observed that Chebyshev grids have more real eigenvalues than uniform 
grids for both the DQ(BB) and DQ(UB). Thus, we can conclude that Chebyshev grids are 
more stable than uniform grids. Fig 2 shows the log10 plot of absolute relative errors of the 
DQ(BB) and DQ(UB) for simply supported beam’s fundamental (lowest) eigenfrequency. 
Figs 2a and 2b illustrate. Chebyshev grids are more accurate than uniform grids. Figs 2c and 
2d further illustrate that Chebyshev grids are more accurate than uniform grids over a wide 
range of M (M = 5 to 15). Thus, we can conclude that Chebyshev grids are more accurate than 
uniform grids. This conclusion is expected as Shu had shown that Chebyshev grids help to 
enhance the stability and accuracy of the GDQ with a full matrix. 

It is also observed in Figs 2c and 2d that the DQM implemented on uniform grids will 
diverge when M is too big. The DQ (BB) and DQ (UB), implemented on uniform grids, will 
diverge at M = 7 and M = 11 respectively. The divergence may due to the lower stability of 
the uniform grid. As stability decreases with M, it is expected that numerical results will 
diverge for a large M. 

 
 
 

 
 
 
 

Fig. 1. Comparison of the stability of Chebyshev and uniform grids for an SS beam (N=31). 
(a) DQ(BB) method; (b) DQ(UB) method. 
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Fig. 2. Comparison of accuracy for 1 by Chebyshev and uniform grids for an SS beam. 
(a) M = 5, DQ(BB) method; (b) M = 5, DQ(UB) method; (c) N = 31, DQ(BB) method 

(d) N = 31, DQ (UB) method. 
 
 

3.2. Comparison study on DQ(BB) and DQ(UB) 
 
The number of real eigenvalues produces by the DQ(BB) and DQ(UB) is shown in Table 1. It 
is observed that the DQ(UB) has more real eigenvalues than the DQ(BB). One possible 
explanation is that the DQ(UB) uses lower order approximations near the boundaries which 
will in turn help to enhance stability. Although the DQ(UB) is more stable, Fig 3a shows that 
the DQ(UB) is more accurate than DQ(BB) for only certain eigenmodes. For a more in-depth 
study on the accuracy of the DQ(BB) and DQ(UB), an extensive comparison for M = 5 to 15, 
N = 2M + 1 to 31 and all the eigenvalues with absolute relative error being less than 10% is 
conducted and tabulated in Table 2. We do not consider all the eigenvalues because if the 
absolute relative error is larger than 10%, it suggests that the method has diverged. Thus, it is 
not very meaningful to compare accuracy of diverged results. Table 2 shows that the DQ(BB) 
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(implemented on Chebyshev grids) produces a total of 2018 real eigenvalues (for non zero 
eigenmodes) for a simply-supported beam. These 2018 eigenvalues are compared with the 
corresponding DQ(UB)’s results. Out of these 2018 eigenvalues, 1712 eigenvalues have at 
least DQ(BB)’s or DQ(UB)’s (or both) results being less than 10% error. It is found that the 
DQ(BB) is more accurate than the DQ(UB) for 1090 out of the 1712 eigenvalues. From Table 
2, its observed that the DQ(BB) is generally more accurate than the DQ(UB) except for 
clamped beams. One possible explanation for the higher accuracy of the DQ(BB) is that the 
DQ(BB) uses a higher-order approximation (near the boundary) than the DQ(UB). The higher 
order approximation in turn helps the DQ(BB) to produce more accurate results. 

 
Table 1. Comparison study on the stability of the FDDQM. For M = 5 to 15 and N = 2M + 1 

to 31. 

 
 
Table 2. Comparison study on the accuracy of the DQ(BB) and DQ(UB). For M = 5 to 15 and 

N = 2M + 1 to 31 on Chebyshev grids. 

 
 
 
 

 
 

 
Fig. 3. Comparison of accuracy for an SS beam (N = 31, M = 31, Chebyshev grids). (a) 

DQ(BB) vs DQ(UB); (b) LaDQM(BB) vs LaDQM(UB). 
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3.3. Comparison study on different types of grids for LaDQM 
 
For the LaDQM, Chebyshev grids produce all real eigenvalues for non-zeros eigenmodes 
while uniform grids produce some complex eigenvalues. Hence Chebyshev grids are clearly 
more stable than uniform grids. Figs 4a and 4b show the log10 plot of absolute relative errors 
for the LaDQM (BB) and LaDQM (UB) for simply-supported beam’s fundamental (lowest) 
eigenfrequency. Both Figs 4a and 4b illustrate that Chebyshev (SymExt) grids are generally 
more accurate than uniform grids. Furthermore, as N increases, error of Chebyshev (SymExt) 
grids reduces more rapidly than that of uniform grids. Figs 4c and 4d further illustrate that 
Chebyshev(SymExt) grids are generally more accurate over a wide range of M (M = 5 to 15). 
Thus, we can conclude that Chebyshev (SymExt) grids are more accurate than uniform grids. 
This is the same conclusion as found in the DQ (BB) and DQ(UB). Similar to the FDDQM, it 
is observed from Figs 4c and 4d that the numerical results for uniform grids diverge when M 
is large. Furthermore, both the DQ (BB) and LaDQM(BB) diverge at M = 7. On the other 
hand, both the DQ (UB) and LaDQM (UB) diverge at M = 11. Thus, M should keep less than 
7 when an uniform grid is used. 
 

 

 
 

 
Fig. 4. Comparison of accuracy for 1 by Chebyshev and uniform grids for an SS beam. (a) 
M = 5, LaDQM(BB) method; (b) M = 5, LaDQM(UB) method; (c) N = 31, LaDQM(BB) 

method; (d) N = 31, LaDQM(UB) method. 
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3.4. Comparison study on LaDQM(BB) and LaDQM(UB) 
 
Fig 3b shows log10 plot of absolute relative errors for all the eigenfrequencies of simply-
supported beam. It is observed that, for Chebyshev(SymExt) grids, the LaDQM(UB) and 
LaDQM(BB) have comparable accuracy. An extensive comparison tabulated in TABLE 3 
further confirms the finding. For example, for clamped beam, the LaDQM(UB) is more 
accurate than the LaDQM(BB) for only 1015 (54%) out of 1791 eigenvalues. However, for a 
free-free supported beam, the LaDQM(UB) is more accurate than the LaDQM(BB) for 847 
(47%) out of 1800 eigenvalues. Since 54% and 47% are statistic average over 121 different 
combinations of N, M and for all the eigenmodes, the LaDQM(BB) and LaDQM(UB) have 
comparable accuracy. This result is different from the FDDQM. The DQ(BB) has been found 
being more accurate than the DQ(UB), while the LaDQM(UB) and LaDQM(BB) have 
comparable accuracy.  
 
3.5. Comparison study on Chebyshev(SymExt) and Chebyshev(LTExt) Grids 
 
With reference to TABLEs 4-5, LaDQM(BB) and LaDQM(UB) implemented on 
Chebyshev(LTExt) grids are more accurate than on Chebyshev(SymExt) grids. For example, 
for the LaDQM(BB), Chebyshev(LTExt) grids are more accurate than Chebyshev(SymExt) 
grids for 1876 (92%) out of 2048 eigenvalues. One possible explanation is that 
Chebyshev(LTExt) grids are more close to the nature of the orinial Chebyshev grids than 
Chebyshev(SymExt) grids. Further comparison between the LaDQM(BB) and LaDQM(UB) 
on Chebyshev(LTExt) grids shows that both methods have comparable accuracy (see TABLE 
6). The LaDQM(UB) is more accurate for SC and CC beams while the LaDQM(BB) is more 
accurate for SS, SF, CF and FF beams. It is interesting to note that the LaDQM(UB) is more 
accurate for beams with strong boundary conditions (clamped edges) while LaDQM(BB) is 
more accurate for beams with weak boundary conditions (simply-supported and free edges). 
 
3.6. Stability study on the LaDQM and FDDQM 
 
The LaDQM (Chebyshev grids with SymExt and Chebyshev grids with LTExt) produces all 
real eigenvalues for non-zeros eigenmodes while FDDQM (Chebyshev grids) produces some 
complex eigenvalues. Hence the LaDQM is clearly more stable than the FDDQM. 
 
3.7. Accuracy study on the LaDQM and DQM 
 
TABLEs 7-8 show that the LaDQM is generally more accurate than the FDDQM (DQ(BB) 
and DQ(UB)) for 72% to 94% of the eigenvalues. For example, the LaDQM(BB) is more 
accurate than the DQ(BB) for 94% of the eigenvalues of a free-free supported beam. A more 
in-depth comparison study on accuracy is conducted for the LaDQM(BB) and DQ(UB). The 
ErrorRatio(BB) (see Eq. (77) for the definition) for the LaDQM(BB) and DQ(BB) 
implemented on Chebyshev(LTExt) grids is computed and its distribution is plotted in FIG 5, 
where the Error Ratio(BB) is divided into 38 bins which take the values of −inf to 10−4, 10−4 
to 10−3.5, . . . , 103.5 to 104, 104 to inf. It is observed from FIG 5 that most eigenvalues fall into 
the bin which  corresponds to ErrorRatio = 100.25 to 100.5. Thus we can conclude that the 
LaDQM(BB) is 1.8 to 3.2 times more accurate than the DQ(BB). 
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Table 3. Comparison study on the accuarcy of the LaDQM(BB) and LaDQM(UB) 
implemented on Chebyshev(SymExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 

 
 

Table 4. Comparison study on the accuracy of the LaDQM(UB) implemented on Cheby- 
shev(SymExt) and Chebyshev(TLExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 

 

 
 

Table 5. Comparison study on th accuracy of the LaDQM(BB) implemented on Cheby- 
shev(SymExt) and Chebyshev(TLExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 

 
 

Table 6. Comparison study on the accuracy of the LaDQM(BB) and LaDQM(UB) 
implemented on Chebyshev(TLExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 

 
 
 

Table 7. Comparison study on the accuracy of the LaDQM and DQ(BB) implemented on 
Chebyshev(TLExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 
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Table 8. Comparsion study on the accuarcy of the LaDQM and DQ(UB) implemented on 
Chebyshev(TLExt) grids. For M = 5 to 15 and N = 2M + 1 to 31. 

 
 
 
Table 9. Comparison study on the first non-zero eigenfrequency parameter √Ω for the FF 
beam (N = 23). The exact solutions are 9.869604401089358 (SS), 15.418205716980061 
(SC), 15.418205716980061 (SF), 22.373285448061324 (CC), 3.5160152685001513 (CF) and 
22.373285448061324 (FF). 
 
BC M DQ(BB) 

with Chebyshev 
Grid 

DQ(UB) 
with Chebyshev 
Grid 

LaDQM(BB) 
with uniform 
Grid 

LaDQM(BB) 
with Chebyshev 
(TLExt) Grid 

LaDQM(UB) 
with Chebyshev 

(TLExt) Grid 
SS 8 

9 
10 
11 

9.869604401086 
9.869604401085 
9.869604401084 
9.869604401087 

9.869604385355 
9.869604400380 
9.869604401286 
9.869604401119 

9.869604400364 
9.869604393452 
9.869604420845 
9.869604434995 

9.869604401119 
9.869604401060 
9.869604401091 
9.869604401095 

9.869604401076 
9.869604401000 
9.869604401098 
9.869604401092 

SC 8 
9 

10 
11 

15.418205716982 
15.418205716993 
15.418205716992 
15.418205716979 

15.418205668485 
15.418205713870 
15.418205717886 
15.418205717098 

15.418205717532 
15.418205709111 
15.418205718079 
15.418205524910 

15.418205716821 
15.418205716982 
15.418205717000 
15.418205717056 

15.418205716926 
15.418205716989 
15.418205716969 
15.418205716983 

SF 8 
9 

10 
11 

15.418205716809 
15.418205716047 
15.418205716973 
15.418205716935 

15.418211693395 
15.418205800665 
15.418205662754 
15.418205725202 

15.418205716082 
15.418205717509 
15.418205732451 
15.418205811727 

15.418205716922 
15.418205716919 
15.418205716844 
15.418205717048 

15.418205717832 
15.418205716888 
15.418205716960 
15.418205716939 

CC 8 
9 

10 
11 

22.373285448071 
22.373285448065 
22.373285448059 
22.373285448064 

22.373285445696 
22.373285448561 
22.373285448251 
22.373285448062 

22.373285447981 
22.373285447880 
22.373285446795 
22.373285449527 

22.373285448057 
22.373285448059 
22.373285448061 
22.373285448061 

22.373285447941 
22.373285448015 
22.373285448066 
22.373285448069 

CF 8 
9 

10 
11 

3.516015267751 
3.516015264369 
3.516015267364 
3.516015275348 

3.516015293763 
3.516015269586 
3.516015268360 
3.516015270149 

3.516015268342 
3.516015269775 
3.516015261484 
3.516015274731 

3.516015268743 
3.516015268349 
3.516015267751 
3.516015268260 

3.516015268738 
3.516015268529 
3.516015268387 
3.516015268715 

FF 8 
9 

10 
11 

22.373285448377 
22.373285447751 
22.373285448453 
22.373285448348 

22.373328504491 
22.373286514890 
22.373284797001 
22.373285514269 

22.373285447900 
22.373285447681 
22.373285437449 
22.373285422534 

22.373285447972 
22.373285448107 
22.373285448161 
22.373285448010 

22.373285455111 
22.373285447226 
22.373285447611 
22.373285448083 
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Fig. 5. Comparison of accuracy for the LaDQM(BB) and DQ(BB) (Chebyshev(LTExt) grids). 

(a) SS beam; (b) SC beam; (c) SF beam; (d) CC beam; (e) CF beam; (f) FF beam. 
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4. Conclusion 

Differential quadrature methods (DQMs) become increasingly popular, but are apt to the sta-
bility problem, i.e., admitting spurious complex eigenvalues. This paper addresses this issue by 
presenting a comprehensive comparison among a variety of different local DQM formulations 
generated by varying the treatment of boundary conditions, the length of stencils and the dis-
tribution of grid meshes. The DQM that utilizes fictitious grids and banded matrices, termed 
local adaptive differential quadrature method (LaDQM) is carefully compared with the DQM 
that employs banded matrices without using fictitious grids, called finite difference differential 
quadrature methods (FDDQMs). These local DQMs include the classic global DQMs as special 
cases given by extending their banded matrices to full matrices. 

To qualitatively analyze the performance of the LaDQM and FDDQM, both relative errors 
and number of real eigenvalues are compared. Uniformly banded (UB) and box banded (BB) 
matrices are formed for both methods. Two types of grids, uniform and Chebyshev-Gauss-
Lobatto grids, are implemented. For the LaDQM, two types of fictitious grids, symmetrically 
extended (SymExt) and linearly transformed extension (LTExt) are performed. Numerical 
experiments show that both the FDDQM and LaDQM implemented on Chebyshev grids are 
more stable and accurate than on uniform grids. Furthermore, with Chebyshev(LTExt) grids, 
the LaDQM(BB) is generally from 1.8 to 3.2 times more accurate than the DQ(BB). Despite 
of the similarity between the LaDQM and FDDQM, the LaDQM implemented on Chebyshev 
(TLExt) grids is found to be more stable and accurate than LaDQM(BB) implemented on 
uniform grids (equivalence to FDDQM). We believe that the present findings shed light on 
numerical accuracy and stability of all DQMs. 
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