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Abstract  
 
Due to the nonlinear and time variant characteristics of Proton Exchange Membrane Fuel Cell (PEMFC), its 
control is complicated. Thus, a suitable model is needed for PEMFC to gain higher performance stabilization 
and control. In this paper, the prediction of complicated behaviour of PEMFC is investigated using Artificial 
Neural Networks (ANN). The averaged cell voltage is regarded as the output; the current density and the cell 
temperature are considered as the inputs of neural networks. The experimental data are utilized for training and 
testing the networks. Multilayer perceptron (MLP) with one and two hidden layers and Radial Basis Function 
(RBF) networks are built, optimized, and tested in MATLAB environment. In order to study the efficiency of the 
neural network model, a comparison of the results is made through the Support Vector Machine (SVM) model. 
It is shown that neural model has better and more accurate prediction results than the SVM model of fuel cell, 
especially in low current region of fuel cell operation. In addition, the performance prediction of PEM fuel cell 
neural models with noisy data is carried out in order to check the effect of noise on the optimal structure of 
networks as well as the robustness of neural models. 
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1. Introduction 

High demand for energy as well as environmental problems due to the development of human 
society makes the tendency to consume energy resources with little pollution and higher 
production efficiency. During recent decades, considerable attention has been paid to fuel 
cells among the renewable energies. PEM fuel cell is considered as a suitable resource to 
produce electrical energy among various kinds of fuel cells for its high efficiency, quick start 
up, high current density, very low intrusion to the environment, light weight, as well as low 
operational temperature.  
Nonlinear and time variant characteristics of PEMFC degrade the control performance of 
conventional controllers. A suitable mathematical model of the system is needed for precise 
controlling of the process. Several mathematical models have been proposed for a better 
understanding of the characteristics and evaluation of the performance of PEM fuel cell by 
numerous authors [1]-[10]. Most of the models are based on the knowledge of 
electrochemistry, thermodynamics, and fluid mechanics and need a number of PEM 
parameters and approximate. Hence, they are not appropriate for the desired control of a fuel 
cell system.  

Artificial neural networks have proved themselves as powerful tools for modelling of 
unknown systems. A trained neural network with sufficient neurons in hidden layers can 
learn the relationships between its input and output signals with high accuracy during a 
process known as learning algorithm. 
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In recent years, the efficient techniques based on artificial neural network (ANN) have 
attracted much attention for fuel cell systems. So far, many investigations based on neural 
networks for modeling and control of PEM fuel cell has been developed in the previous 
literature. Saengrung et al. in [11] have investigated performance prediction of a commercial 
proton exchange membrane fuel cell system by using two artificial neural networks including 
the back-propagation (BP) and radial basis function (RBF) networks which the air flow and 
stack temperature are as the inputs and stack voltage and stack current are as the outputs. 
Rouss and Charon in [12] have proposed a method based on a MIMO multi-layer perceptron 
(MLP) neural network combined with a time regression input vector approach for the 
mechanical nonlinear behaviour of a proton exchange membrane (PEM) fuel cell system. 
Paulo et al [13] to control the output voltage of a proton exchange membrane fuel cell by 
parametric cerebellar model articulation controller (P-CMAC) have proposed a new approach 
to design neural optimal control systems. Lobato et al in [14] have designed three types of 
neural networks, that have as common characteristic the supervised learning control 
(Multilayer Perceptron, Generalized Feedforward Network and Jordan and Elman Network), 
to model the performance of a polybenzimidazole-polymer electrolyte membrane fuel cells 
operating upon a temperature range of 100–175 ◦C. Shaoduan et al. [15] have incorporated 
the effect of Pt loading in the ANN model of Proton exchange membrane fuel cells that can 
be very helpful when the effect of Pt loading is needed for further analysis of a fuel cell 
system. Jemei et al. [16] have developed a proton exchange membrane fuel cell (PEMFC) 
system neural network model which has four input nodes including stack current, stack 
temperature, hydrogen flow, and oxygen flow and a linear output neuron to estimate the 
voltage. For the power tracking of fuel cell a model-predictive control is used in Golbert’s 
work [17]. Hatti et al. [18] have modelled the static behaviour of the proton exchange 
membrane fuel cell is using artificial neural networks. A practical method of estimation for 
the internal-resistance of polymer electrolyte membrane fuel cell (PEMFC) stack have 
adopted based on radial basis function (RBF) neural networks by Wei et al. [19]. Hatti et al. 
[20] have proposed Quasi-Newton neural network model which considering the cell 
operational temperature as inputs, the cell voltage and current density as the outputs. Hatti 
and Tioursi [21] have obtained a dynamic neural network control model by introducing a 
delay line in the input of the neural network to control of a PEM fuel cell system process. The 
application of non-linear predictive control with neural networks to regulate the cell voltage, 
acting on the hydrogen pressure, trying to reduce the variation of the input control variable 
have investigated by Cirrincione et al in [22].  

Fuel cell is an electrochemical device, which is considered as a multi-input and multi-
output (MIMO) system that is hard to model by conventional methods. Herein, PEMFC is 
regarded as a two input and one output system in which the current density and cell 
temperature are chosen as the inputs and the averaged cell voltage is selected as the output of 
the neural network. In this paper, the RBF network and the MLP network with one and two 
hidden layers are considered to identify the PEMFC. These networks are made, optimized, 
and tested with experimental data obtained from a Ballard MK5-E [23]. In order to study the 
efficiency of the neural network model, the acquired results are compared with the SVM 
model of PEMFC. In continue, the performance prediction of PEM fuel cell neural models 
with noisy data is carried out in order to check the effect of noise on the optimal structure of 
networks as well as the robustness of neural models. 

This paper is arranged as follows: In Section 2, the PEMFC is studied concisely.  Section 
3 is briefly concerned with MLP and RBF neural network theory. The modelling of PEMFC 
by means of neural network and preparing the network for training are shown in detail in 
Section 4. In section 5, simulation results of neural models are indicated. The effect of noise 
is investigated in section 6. Finally, conclusion is stated in Section 7.  
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2. Proton Exchange Membrane Fuel Cell 
 

Fuel cell is a new device for distributed power generations, which can produce electrical 
energy continuously as long as hydrogen and oxygen are fed to it.  

In recent years, the PEM fuel cell is being widely developed for using in vehicles and 
portable applications and is seen as the main fuel cell candidate technology for light-duty 
transportation applications [24]. The schematic of a PEMFC is shown in Fig. 1. 

  

 
 

Fig. 1.  Schematic of a Proton Exchange Membrane Fuel Cell 
 
In normal operation of a PEMFC, the hydrogen gas is fed to the anode side and oxygen, 

usually from the air, is fed to the cathode side. In the anode and at the presence of platinum, 
which is usually used as catalyst, the hydrogen gas releases electrons and H+ ions (or 
protons). The polymer electrolyte only allows the protons to pass through it, and not 
electrons. Via the external circuit, the electrons move from anode to the cathode and 
accordingly an electrical current flows through the circuit. At the cathode, oxygen reacts with 
the electrons taken from the external circuit and the protons from the polymer electrolyte and 
produces water. Total reaction, which is occurred in the fuel cell, is shown by: 

  
power thermal+power electrical

2
1

222 +→+ OHOH pt  (1) 

    
The produced voltage by a single fuel cell is very small about 0.7 v . This means that in 

order to use in practical applications, many fuel cells have to be connected in series. Such 
connection of fuel cells in series is known as a stack. 

  Among empirical PEM fuel cell models described in the literature, Amphlett et al. [25] 
and Kim et al. [26] introduce an influential model, which is widely used in analytical 
problems. Based on these models, the cell voltage is defined by the following expression: 

 
conohmicactnernstcell VVVEV −−−=  (2) 

 
where nernstE  is the open cell voltage and shows reversible voltage of the cell. actV , ohmicV  and 

conV  are activation, ohmic, and concentration voltage drops, respectively. More details are 
entirely discussed in literature. Eq. (2) provides a good representation of PEMFC behaviour, 
but the coefficients of this model are extremely related to operating conditions such as cell 
temperature, inlet pressures, and flow rates and so on. Therefore, PEMFC parameters are 
time varying and it is very difficult to keep them unchanged during its operation. Hence, the 
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model will give incorrect results with constant parameters. A novel modelling approach, such 
as neural network in this paper, is required to indicate a better control performance.  
 

3. Neural network theory  

  A neural network is a parallel-distributed processor with important virtue of the ability to 
learn from input data by using of a learning algorithm. The ANN is made up 
of an interconnection simple processing unit, known as neurons. Neurons can be either linear 
or nonlinear. Usually, situated neurons in the hidden layer are selected nonlinear while the 
neurons in the output layer are chosen linear. In recent researches, neural networks have been 
considered as potent tools for modelling of complicated and unknown systems. Neural 
networks can adapt themselves with variations in the environment conditions and learn the 
characteristics of their input signals. 

Multilayer perceptron and radial basis function networks are two different kinds of neural 
networks, which are commonly used in system predictions. MLP network is a feed forward 
neural network that is successfully utilized for identification of systems in many branches of 
science. MLP is made up of one or more hidden layers. It employs Back Propagation 
algorithm (BP) for training the network. In Back-propagation algorithm, the layer weights 
and biases are updated until the stopping criterion is satisfied [27]. RBF network is one of the 
most powerful neural networks, which is used in function estimation problems. In 
comparison with the MLP network that can have multiple hidden layers, the RBF network is 
composed of three layers. The input layer for supplying the input signals to the network, the 
middle layer, which contains RBF functions, and the output layer, which is a linear 
composition of middle layer outputs for producing the final output.  

4. Modeling of PEMFC by neural networks 

The performance of PEMFC is affected by operating variables such as current density I , 
cell temperatureT , oxygen pressure 2OP , oxygen flow rate 2Oq , hydrogen pressure 2HP , 
hydrogen flow rate 2Hq , membrane humidity λ , and many other factors which influence the 
terminal voltage of a fuel cell. Therefore, the output voltage is defined by: 

 
( ),....,,,,,, 2222 λHHOO qPqPTIfU =  (3) 

 
 A model regarding all of cell parameters has not been introduced, yet. Our neural models 

are no exception. In this experiment, the current density, that can change with varying loads, 
and the cell temperature —a parameter that changes during the operation— are taken as 
variables while the other parameters are held constant. Accordingly, the Eq. (3) is simplified 
and expressed by:  

 
( )TIfU ,=  (4) 

 
Thus, a neural network model with two inputs and one output is formed. The current 

density and cell temperature are selected as the inputs and averaged cell voltage is chosen as 
the output signal of network. Herein, the studied PEMFC is a BALLARD 5KW MK5-E with 
36 cells and 232 2cm  active area for each cell. Air and hydrogen pressures are both regulated 
to 3 atm  . The studied PEMFC has been introduced in Ref [23].  The fuel cell system is 
operated in different conditions and experimental data is acquired to be utilized in neural 
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network. The obtained data at 24°c, 31°c, 39°c, 56°c
, and 72°c in various current densities are 

used for training and testing the NN model. In our investigation among the collected data, the 
data at 56°c is selected for testing the network and other collected data are used for training 
the NN. For training the network, the range of input data must be specified. The range of 
current density is from zero to 700 2/ cmmA  and cell temperature is in the range of 20°c to 
80°c. Normalized data increase the training speed. Thus, by using the Eq. (5), all the raw data 
including averaged cell voltage, current density and temperature can be normalized to have a 
range between 0 and 1. 

 

minmax

min

XX
XXX raw

normalized −
−

=  (5) 

 
Fig. 2 shows the experimental data with which the averaged cell voltage is defined 

according to current density and temperature. 
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Fig. 2. Averaged cell voltage according to current density and cell temperature of 5KW 

Ballard fuel cell 

5. Simulation Results 

5.1. Performance prediction of MLP model 
A typical MLP network with two hidden layers is shown in Fig. 3.  
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Fig. 3. MLP network with two hidden layers for performance prediction 

 
At first, performance prediction is performed by MLP model with one hidden layer. For 

the best performance of MLP network, the number of epochs and neurons in the hidden layer 
must be optimized. By trial and error method, the number of neurons is changed from 1 to 10 
and in each case the optimal number of epochs is found. To find the optimum number of 
epochs, the Mean Square Error (MSE) curve for training and testing data set is plotted. For an 
increasing number of epochs, the MSE of training data set decreases monotonously. In 
contrast, the testing data set curve decreases monotonously to a minimum and then, it starts to 
increase as the training continues. This heuristic approach suggests that the minimum point 
on the testing curve be used as a suitable criterion for training stop [27]. Trial and error 
results are shown in Table 1. As the results show, 3 neurons with 25 epochs have the best 
performance so that the MSE values for both the training and testing data sets are less than 
other cases and acceptable. Therefore, are selected as optimal values.  

In MLP network, the hidden neuron activation functions are hyperbolic tangent sigmoid 
and the output neuron is linear.  

 
 
 
 

Table 1. Trial And Error Results For Finding The Optimal Structure Of Mlp  
Network With One Hidden Layer 

    #Neurons Optimum epochs MSE- training MSE- test 
1 26 0.0052079 0.0024434 
2 31 0.0013635 0.0024647 
3 25 0.00060961 0.0014725 
4 12 0.00070443 0.0025523 
5 15 0.000462 0.012915 
6 39 0.00013958 0.0164 
7 7 0.00112 0.057462 
8 6 0.00089131 0.085045 
9 7 0.000709 0.12658 
10 3 0.012614 0.2175 

 
The prediction of averaged cell voltage for testing data set is represented in Fig. 4. 
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Fig. 4. Performance prediction of MLP with one hidden layer for testing data 
  
 
As Fig.4 shows, the optimized MLP model performs very well and the predicted values 

are very close to the actual values. 
Secondly, the MLP neural network with two hidden layers is considered to identify the 

PEMFC model. Consequently, the number of neurons in the first hidden layer is fixed at 3 
and the number of neurons in the second hidden layer is determined by trial and error 
method. As Table 2 indicates, 2 neurons in the second hidden layer with 25 epochs have the 
best performance and are selected as optimal values. The prediction of averaged cell voltage 
for testing data set is shown in Fig. 5. 

 
 

Table 2. Trial And Error Results For Finding The Optimal Structure 
Of Mlp Network With Two Hidden Layers 

#Neurons Opt- 
epochs 

MSE- 
raining MSE- test 

1 18 0.0057941 0.0086884 
2 25 0.0012605 0.003232 
3 25 0.0025194 0.0079329 
4 18 0.0018195 0.010877 
5 25 2.31e-03 0.007752 
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Fig. 5. Performance prediction of MLP with two hidden layers for testing data 
 
The results indicate the satisfactory predictions for both of the MLP networks at the whole 

operating range. The MLP with one hidden layer is suggested rather than MLP with two 
hidden layers due to its simple structure and better performance in terms of MSE. It is found 
that using of more than one hidden layer do not improve the performance prediction of the 
neural network. 

 

5.2. Performance prediction of RBF model 
Fig. 6 shows the configuration of the RBF neural network which is solely composed of 

one hidden layer. In this network, the hidden neuron activation functions are Gaussian and 
the output neuron is linear. 
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Fig. 6. RBF network for performance prediction 
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By trial and error method, the optimal number neurons at the hidden layer are found at 10. 

Fig. 7 indicates the predicted data at 56 C° , which were selected as testing data set. 
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Fig.7. Performance prediction of RBF network for testing data 
 

The obtained results represent that in this case the RBF model do not act better than the 
MLP networks in performance prediction of averaged cell voltage. The MSE for training and 
testing data in RBF model is obtained at 0.0011 and 0.00482, respectively. In this case, 
among the built and optimized neural network models, the MLP model with one hidden layer 
acts better than others in terms of mean square error. Moreover, it uses fewer numbers of 
neurons in the hidden layer; therefore, it is suggested.  

In order to study the efficiency of the neural network model, the support vector machine 
model for PEMFC—investigated in Ref [28]—is also simulated and the obtained result from 
the SVM model is compared with the best predictions of the investigated neural networks, i.e. 
MLP with one hidden layer. Fig. 8 shows the obtained results.   
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Fig. 8. The comparison between the MLP with one hidden layer and SVM models 
 
 
The neural network model performs a better identification of the fuel cell averaged voltage 

rather than the SVM model especially in beginning of curve. As Ref [28] represents, although 
the SVM model has satisfactory results, but a considerable error exists between actual values 
and predicted values in the beginning of curve. For obviation of this problem, the SVM 
model needs more data points for training at the beginning of curve. If several data points are 
found and the SVM is trained again, the predicted values in the beginning of curve can be 
improved [28]. Neural network models have better performance at the beginning of curve as 
compared to SVM model, and this feature shows the ability of neural networks in 
performance predictions.   

 

6. Noise effect 

In the following section, the performance prediction of PEM fuel cell neural models with 
noisy data is carried out in order to check the effect of noise on the optimal structure of 
networks as well as the robustness of neural models. The noisy data is derived by adding the 
normal noise to the averaged cell voltage. Therefore, the noisy averaged cell voltage can be 
obtained by: 

 
)1( randlevelVV freenoisenoisy ×+= −  (6) 

 
where freenoiseV −  is the original noise free averaged cell voltage, noisyV  is the averaged cell 
voltage with noise, rand  is a random number between -1 and 1, and level is the relative 
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percentage of error to be added. Here, the MLP with one hidden layer and RBF networks are 
studied with the noise level at 1%.  

The MLP network with one hidden layer is trained again with noisy data and optimal 
structure is found. Four neurones in hidden layer with 29 epochs are obtained for optimal 
structure. The optimal structure of neural model changes when noise is applied to the system. 
Fig. 9 represents the performance prediction of MLP model with noisy data.  

The RBF network with one hidden layer is also trained again with noisy data and optimal 
structure is found. Optimal structure for hidden neurones in RBF network is acquired at 11 
which involve one neuron more than free noise RBF network. Fig. 10 shows the performance 
prediction of RBF model with noisy data.  

As it can be seen, if there is an additive noise, the predicted values by MLP and RBF 
models are close to the noisy values. In the presence of noise (level 1%) the performance 
prediction precision is acceptable in engineering.  
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Fig. 9. Performance prediction of MLP  with one hidden layer for testing noisy data 
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Fig.10. Performance prediction of RBF network for testing noisy data 
 

 

7. Conclusion 
In this paper, the performance prediction of a Ballard MK5- E PEMFC is investigated 

using the MLP and RBF networks. Herein, PEMFC is regarded as a two input and one output 
system in which the current density and cell temperature are chosen as the inputs and the 
averaged cell voltage is selected as the output of the neural networks and is simulated in 
Matlab environment. The obtained results show that optimized neural network models can 
successfully predict the averaged cell voltage and they are more accurate than other 
modelling solutions such as SVM model especially in low current region of fuel cell 
operation. In addition, the performance prediction of PEM fuel cell neural models with noisy 
data is carried out in order to check the effect of noise on the optimal structure of networks as 
well as the robustness of neural models. The results show that with noisy data the optimal 
structure change and neural models have satisfactory precision when are faced with noise.   
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Nomenclature 
 

2H               Hydrogen gas 
2O                Oxygen gas 

pt                 Platinum 
OH 2             Water 

cellV               Cell voltage (V) 
nernstE           Reversible voltage (V) 
actV               Activation voltage drop (V) 
ohmicV            Ohmic voltage drop (V) 
conV               Concentration voltage drop (V) 

U                  Average voltage of cell (V) 
I                   Current density (mA/ 2cm ) 
T                   Cell temperature ( C° ) 

2OP                Oxygen pressure (atm) 
2Oq                Oxygen flow rate (slpm) 
2HP                Hydrogen pressure (atm) 
2Hq                Hydrogen flow rate (slpm) 

λ                   Membrane humidity 
normalizedX      Normalized data 
rawX              Raw data 
minX              Minimum of data 
maxX              Maximum of data 

ϕ                   Gaussian function 
noisyV             Averaged cell voltage with noise 

freenoiseV −       Original noise free averaged cell voltage 
level               Random number between -1 and 1 
rand               Relative percentage of error 
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