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Abstract 
 
The development of Rodrigues parameters in the first half of 19th century has attracted much attention in the 
field of theoretical kinematics. The importance of the Rodrigues formulae depends on the use of the tangent of 
the half rotation angle being integrated with the components of the rotation axis. 
          In this paper Rodrigues parameters of the dual spherical motion are obtained, which are called the dual 
Rodrigues parameters. The dual Rodrigues parameters contain the rotation angle and the distance parameter  of 
the straight lines (the shortest distance between the straight lines) of the corresponding spatial motion. 
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1. Introduction 

 
Line geometry investigates the set of lines in 3R . There exists a vast literature on this branch 
of classical geometry, for example [4-7]. Line geometry possesses a close relation to spatial 
kinematics [2,8-11] and has therefore found application in mechanism and robotic kinematics. 
 
     Any motion on the D.U.S. (Dual Unit Sphere) can be represented by the rotation of a 
moving D.U.S. K  on a fixed D.U.S. K ′  with the same center, which correspond to the line 
spaces H  and H ′  in 3R  respectively. The relation between the points of K  and K ′  is given 
by a dual orthogonal matrix Â  (hat over an alphabet denotes the dual form of a quantity), 
such that XxA ˆˆˆ = . In this paper we derive the Cayley’s Formula and obtain the Rodrigues 
parameters for the dual case.  
 
     It is well known by the Study mapping that the points on the D.U.S. correspond to the 

straight lines in space. If a
r
ˆ  and b

r
ˆ  are the vectors of the D.U.S. corresponding to the straight 

lines al  and bl  in the real space 3R  and if *ˆ εφφφ +=  is the angle between a
r
ˆ  and b

r
ˆ , then φ   

defines the  angle between al  and bl  and *φ   defines the distance between al  and bl .     A 

dual number is a formal sum *ˆ aaa ε+= , where a  and *a  are real numbers and ε  is the dual 
unit with 02 =ε . Addition and multiplication are given by 
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     If we denote the set of dual numbers by D , for some non zero Dba ∈ˆ,ˆ (e.g., D∈εε 5,3 ) 

we have  0ˆ.ˆ =ba ( i.e., 0155.3 2 == εεε ). Hence D  is not a field, D  is a commutative ring 
with identity. 
 
     For a given analytic function F  we can extend its definition to the set D  by 
 

                        ∑
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                                          ∑∑
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                                          =  )()( * xfxxf ′+ ε  
 
For instance, 
 

CosxxSinxxxSinxSin **)(ˆ εε +=+=  

SinxxCosxxxCosxCos **)(ˆ εε −=+=  
xxx exee *ˆ ε+=  

 
     A dual vector v

r
ˆ  in three dimensional dual space 3D  is defined by *ˆ vvv rrr

ε+= , where 
3*, Rvv ∈

rr . 3D  satisfies all axioms of the vector space, since its domain D  is only a ring not 

a field, 3D  is a D -module. However the elements of  3D  are also called (dual) vectors. 
 
     3D  is a linear space over the real numbers with dimension 6. This bilinear form defines a 
kind of degenerate scalar product (see also [14]). Hence the norm of v

r
ˆ , denoted by 

DDv →3:ˆ
r

 is;  

2
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⋅
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     The dual vector with the norm )0,1(1 =  is called a dual unit vector. If *ˆ vvv rrr

ε+=  is a dual 

unit vector, then by above expansion  1=vr  and 0* =⋅ vv rr . (For detail algebraic properties 
of dual numbers, reader may be referred to [15])      
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2. Cayley’s Formula for the dual spherical motion 
    
The dual spherical motion maintain the constant lengths of the dual vectors, that is                           

xX
rr
ˆˆ =  , 

which yields  
 

0)ˆˆ()ˆˆ( =+− xXxX T rrrr
. 

Since xAX
rr
ˆˆˆ = , 

 

xIAxX
rrr
ˆ)ˆ(ˆˆ +=+       or       )ˆˆ()ˆ(ˆ 1 xXIAx

rrr
++= −     and    xIAxX

rrr
ˆ)ˆ()ˆˆ( −=− , 

 
thus we get 

. 

 

     Let us denote  1)ˆ)(ˆ( −+− IAIA   by   B̂ . Since xX
rr
ˆˆ −  is  orthogonal to  xX

rr
ˆˆ +  ,  

)ˆˆ(ˆ xXB
rr

+  is orthogonal to  xX
rr
ˆˆ + . That is any vector z

r
ˆ ,which can be written as the sum of 

two dual vectors on the D.U.S., is orthogonal to zBˆˆ . Then we have, 
 

0ˆˆ)ˆˆ(ˆˆˆ =+= ∑ jijiij
T zzbbzBz

rr
. 

 
This relation holds for every z

r
ˆ  hence  0ˆ =iib  and  jiij bb ˆˆ −=  , which implies that  B̂  is skew-

symmetric, that is TBB ˆˆ −= . 
      
     On the other hand , skew-symmetry of B̂  provides  that )ˆ( BI −  is not singular. A simple 
computation yields, 
 

1)ˆ)(ˆ( −+−= IAIAB  
)ˆ()ˆ(ˆ IAIAB −=+  

ABAIB ˆˆˆˆ −=+  
ABIBI ˆ)ˆ)(ˆ( 1 =−+ −  

 
Thus we obtain the Cayley Formula for the dual case; 

 
1)ˆ)(ˆ(ˆ −−+= BIBIA . 

 
Using that B̂  is skew symmetric, we compute TÂ as follows: 
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From which we get  
IAAAA TT == ˆˆˆˆ . 

 
Hence every skew-symmetric dual matrix B̂  determines an orthogonal dual matrix Â   . 
     If  we define the skew-symmetric dual matrix  B̂  by  

 

















−
−

−
=

0ˆˆ
ˆ0ˆ

ˆˆ0
ˆ

12

13

23

bb
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then instead of  yB
r
ˆˆ  ( y

r
ˆ  is a dual vector centered at the D.U.S.) one can use  yb

rr
ˆˆ ×  where  

)ˆ,ˆ,ˆ(),,(),(ˆ
321

*
33

*
22

*
11

* bbbbbbbbbbbb =+++== εεε
rrr

. Hence 
 

ybyB
rrr
ˆˆˆˆ ×= . 

 
 

3.  Rodrigues Equations 
 
In the above calculations for a given orthogonal dual matrix Â  we obtain a skew-symmetric 
dual matrix B̂  by the Cayley’s formula. It is clear that the relation,  

 

)ˆˆ(ˆˆˆ xXBxX
rrrr

+=− , 
 

between the fixed and the moving frame coordinates can be written in the form, 
 

)ˆˆ(ˆˆˆ xXbxX
rrrrr

+×=− . 
 

This is analogous to the Rodrigues equations in the real case [8]. Let us call  b
r
ˆ   the dual 

Rodrigues vector. Now we define a dual plane perpendicular to b
r
ˆ , and denote the projections 

of  X
r
ˆ  and x

r
ˆ  on this dual plane by  X

r
′ˆ  and  x

r
′ˆ . Let φ̂  be the angle between  X

r
′ˆ  and  x

r
′ˆ  ( φ̂  

is the vertex angle of the rhombus formed by X
r

′ˆ  and  x
r
′ˆ , so φ̂  is the rotation angle). 
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Figure 1. The rhombus formed by the diagonals  

  xX
rr
′+′ ˆˆ  and  xX

rr
′−′ ˆˆ . 

    

     It is easy to see  that    )ˆˆ(ˆˆˆ xXbxX
rrrrr

+×=−      implies      )ˆˆ(ˆˆˆ xXbxX
rrrrr
′+′×=′−′  and        

xXbxX
rrrrr
′+′=′−′ ˆˆˆˆˆ  ,    from which we get      

 

xX

xX
b rr

rr
r

′+′

′−′
=

ˆˆ

ˆˆ
ˆ . 

 
    From the fig. 1 we have 
 

     
2

ˆ

2

ˆˆ
2

ˆˆ

ˆˆ

ˆˆ
φTan

xX

xX

xX

xX
=

′+′

′−′

=
′+′

′−′

rr

rr

rr

rr

 ;  

 
therefore  

                                                                
xX

xX
b rr

rr
r

′+′

′−′
=

ˆˆ

ˆˆ
ˆ                                                           (1) 

 
Using the algebraic properties of dual numbers and (1) we obtain 

 

φ̂  

xX
rr
ˆˆ −  

X
r

′ˆ  x
r
′ˆ  

X
r
ˆ  x

r
ˆ  

xX
rr
ˆˆ +  

b
r
ˆ  

dual rotation axis 
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b
bbbb r
rrrr *.ˆ ε+=                                                      (2) 

and 

)
2

1(
222

ˆ
2

* φφ
ε

φφ TanTanTan ++=                                     (3) 

 
The equations   (2) and  (3) imply, 

 

=+
b
bbb r
rrr *.

ε )
2

1(
22

2
* φφ

ε
φ TanTan ++ .                                 (4) 

 

Hence we have from (4)          
2
φTanb =

r
       (the norm of the real Rodrigues vector) and 

                                                           )
2

1(
2

. 2
** φφ Tan

b
bb

+=r
rr

                                                 (5) 

 

     Let us denote the unit vector which is in the same direction of  b
r

 by  sr ,  that is  
b
bs r
r

r
=     

and  ),,( 321 ssss =
r   is called the unit Rodrigues vector. So (5)  yields, 

)
2

1(
2

*. 2
* φφ Tanbs +=

rr                                                    (6) 

 

On the other hand, let us define the dual Rodrigues vector by s
r
ˆ , 

b

bs r

r
r

ˆ

ˆ
ˆ = .  Using the algebraic 

properties of the dual numbers we have, 
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where  ),( 321 ssss =

r   and   ),,( *
3

*
2

*
1

* ssss =
r . 

From (7), 
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                                         3

*
33

*
22

*
113

2*
3*

3
)(

b

bbbbbbbbb
s r

r
++−

=   .                                      (10) 

 
We can easily obtain   *

3
*
2

*
1 ,, bbb    from the equations  (8),(9),(10) as follows 

 

2
1

2

*
331

*
221

3*
1*

1
bb

bbbbbbbs
b

−

++
= r

r

,                                        (11) 

2
2

2

*
332

*
112

3*
2*

2
bb

bbbbbbbs
b

−

++
= r

r

,                                        (12) 

2
3

2

*
223

*
113

3*
3*

3
bb

bbbbbbbs
b

−

++
= r

r

.                                        (13) 

 
Since the real Rodrigues parameters are; 

 

2

2

2

33

22

11

φ

φ

φ

Tansb

Tansb

Tansb

=

=

=

      and    
2
φTanb =

r
, 

 
we can rewrite the equations  (11),(12) and (13) as, 
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2
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2
21
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−
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Simplifying the above equation we get, 

 
   

2
1

*
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*
221

*
1*

1
1

2
s

bssbssTans
b

−

++
=

φ

 ,  πφ 20 <<                                 (14) 

 
 
 
Similarly, 
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2
2

*
332

*
121

*
2*

2
1

2
s

bssbssTans
b

−

++
=

φ

                                                (15) 

2
3

*
223

*
113

*
3*

3
1

2
s

bssbssTans
b

−

++
=

φ

                                               (16) 

 
Since s

r
ˆ   is a unit dual vector,  1ˆ =s

r
, we get 

 

.0

,1
*
33

*
22

*
11

2
3

2
2

2
1

=++

=++

ssssss

sss
                                                       (17) 

 
     For the general case let us assume that 0≠is  for all 3,2,1=i . If one or two of them are 
equal to zero then one can obtain the solutions of sbi '*  from (14), (15), (16). Now we take 

0,0,0 321 ≠≠≠ sss . So the denominators, 21 is− , are also different from zero by (17). 
      
      If  we expand (6) we get, 

)
2

1(
2

2
*

*
33

*
22

*
11

φφ Tanbsbsbs +=++ . 

 
Since 01 ≠s , 

1

*
33

*
22

2
*

*
1

)
2

1(
2

s

bsbsTan
b

−−+
=

φφ

 .                                       (18) 

 
The equations (14) and (18) yields, 

2
)

2
1(

2
)1( *

11
2

*
2

1
*
33

*
22

φφφ TanssTansbsbs −+−=+  .                     (19) 

 
If we substitute (18) into (15) we get, 

)
2

1(
22

2
*

2
*
2

*
2

φφφ TansTansb ++=  .                                (20) 

 
 
If we substitute (20) into (19)  we get, 

 )
2

1(
22

2
*

3
*
3

*
3

φφφ TansTansb ++= .                                 (21) 

 
If we substitute (20) and (21) into (15) we get, 
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1
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4. Conclusion  
 
For the fist time we obtain the dual Rodrigues parameters *

3
*
2

*
1 ,, bbb  as follows; 

                                          )
2

1(
22

2
*

1
*
1

*
1

φφφ TansTansb ++=                                                (22) 

                                          )
2

1(
22

2
*

2
*
2

*
2

φφφ TansTansb ++=                                               (20) 

                                          )
2

1(
22

2
*

3
*
3

*
3

φφφ TansTansb ++=                                               (21)  

 
which are similar to well known Rodrigues parameters 321 ,, bbb  in the real case(see [8]) . As 

seen from (22), (20), (21) these parameters depend on the angle φ   and the  distance *φ  of the 
corresponding rigid body motion in space. φ    denotes the angle between  straight lines al  and 

bl  in the space and *φ   is the shortest distance between al  and bl . al  and bl  defines the 
instant positions of the rigid body  see fig. 2. 
 
 

 

 

 

 

 

 

 

Figure 2. The angle φ  and the shortest distance *φ . 

avr  and bvr  denote the unit directions of  al  and bl respectively. 
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