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Abstract

The development of Rodrigues parameters in the first half of 19" century has attracted much attention in the
field of theoretical kinematics. The importance of the Rodrigues formulae depends on the use of the tangent of
the half rotation angle being integrated with the components of the rotation axis.

In this paper Rodrigues parameters of the dual spherical motion are obtained, which are called the dual
Rodrigues parameters. The dual Rodrigues parameters contain the rotation angle and the distance parameter of
the straight lines (the shortest distance between the straight lines) of the corresponding spatial motion.
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1. Introduction

Line geometry investigates the set of linesin R3. There exists avast literature on this branch
of classical geometry, for example [4-7]. Line geometry possesses a close relation to spatial
kinematics [2,8-11] and has therefore found application in mechanism and robotic kinematics.

Any motion on the D.U.S. (Dua Unit Sphere) can be represented by the rotation of a
moving D.U.S. K on afixed D.U.S. K¢ with the same center, which correspond to the line

spaces H and H(in R3 respectively. The relation between the points of K and K(isgiven
by a dua orthogonal matrix A (hat over an aphabet denotes the dual form of a quantity),

such that AX= X . In this paper we derive the Cayley’s Formula and obtain the Rodrigues
parameters for the dua case.

It is well known by the Study mapping that the points on the D.U.S. correspond to the
straight lines in space. If a and b are the vectors of the D.U.S, corrapondlng to the straight
lines |, and |, in thereal space R3 andif f =f +ef " isthe angle between a and b then f
defines the angle between |, and |, and f* defines the distance between l,and I,. A

dual number isaformal sum A=a+ea’ , Where a and a  arerea numbersand e isthe dual
unit with 2 = 0. Addition and multiplication are given by

(g +eay )+(b +eby ) =(ag +by) +e(a +by)
(ag+ea ).(by +eby ) = (aqby) +e(aqby +ay by)
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If we denote the set of dual numbers by D, for some non zero &4 bl D(eg. 3,51 D)

we have é.B:O( i.e, 3e.5e =15¢2 =0). Hence D isnot afield, D isacommutative ring
with identity.

For agiven analytic function F we can extend its definition to theset D by

¥
f(x+ex )= § ac(x+ex - xo)
k=0
g ‘.. 3 k-1
= a ak(x- xp)" te a kag(x- xg)" “X
k=0 k=0

= f(x)+ex f¢x)
For instance,

A * *
Snx=39n(x+ex ) = Snx+ex Cosx
~ * *
Cosx =Cos(x+ex ) =Cosx- ex Snx
v *
X =e* +ex e

1 I *
A dual vector v in three dimensional dual space D3 is defined by V=viey , Where

r s« C . . . . . . .
v,v' 1 R3. D3 satisfies all axioms of the vector space, since itsdomain D isonly aring not

afield, D® isa D -module. However the dementsof D® are also called (dual) vectors.

D? isalinear space over the real numbers with dimension 6. This bilinear form defines a
kind of degenerate scalar product (see aso [14]). Hence the norm of Vv, denoted by

® D is
rrl 1
H H (Vx7) 2 -(vw+2ev>w )2
r 1
= [Vlia+e; ) 712

|| ||
r*
=V + e_”T (M, W)

I *
The dual vector with the norm 1= (1,0) iscalled adual unit vector. If v :\5+e\5 isadual

unit vector, then by above expansion ||\'/|| =1 and v¥' =0. (For detail algebraic properties
of dual numbers, reader may be referred to [15])
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2. Cayley’s Formulafor the dual spherical motion

The dual spherical motion maintain the constant lengths of the dual vectors, that is
r

~

X

1
~

X

which yields

Loro L r
(X-X) (X+x)=0.

N SN r oL LoroL T
X+X=(A+DX o X=(A+1) " (X+X) and (X- X)=(A- X,
thus we get
Lo . Lo
X-%=(A- DA+1) L(X +¥%)

R Lo T
Let us denote (A-I)(A+I) by B.Since X-X is orthogona to X +X ,

B(X + x) is orthogonal to X + x That is any vector z ,which can be written as the sum of
two dual vectorson the D.U.S,, is orthogonal to B . Then we have,

A

TB2=§ (b +bj)%2; =0.

N> =
N>"

A A A

Thisrelation holds for every z hence b, =0 and b, =-b;,

i »whichimpliesthat B is skew-
symmetric, that is B=- B' .

On the other hand , skew-symmetry of B provides that (I - I_3>) isnot singular. A simple
computation yields,

B=(A- I)(A+1)*
B(A+1)=(A- 1)
B+1=A- BA
(1+B)(I-B)*'=A
Thus we obtain the Cayley Formulafor the dual case;
A=(1 +B)(- B)*

Using that B isskew symmetric, we compute A" asfollows:

A" =(1+B) (- B)Y)T
=(1+B")(I- B")"
=(1- B)(I +B)?,
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From which we get

A A

AAT

ATA=1.

Hence every skew-symmetric dual matrix B determines an orthogonal dual matrix A .
If we define the skew-symmetric dual matrix B by

- b,

D.)wD'> o

1
o o
oo\

>
1]
(D:I(D> D> D> D~
N

0
b,

Al I rr
then instead of BY ( y is adual vector centered at the D.U.S)) onecanuse b” § where

L rr. * * * A A A
b=(b,b)=(b+eby by +eb, ,by+ebg ) =(by,by,b3). Hence

~,r
=b" V.

\<>-1

B

3. Rodrigues Equations

In the above calculations for a given orthogonal dual matrix A we obtain a skew-symmetric
dual matrix B by the Cayley’sformula. It is clear that the relation,

LroLr

X-X=B(X+X),

between the fixed and the moving frame coordinates can be written in the form,

Xo=
o=

Lorot
X-%=b" (X +%).

This is analogous to the Rodrigues equations in the real case [8] Letuscal b the dua
Rodrlgueﬁ vector Now we define adual pl ane perpendicular to b and denote the proj ectlons
of X and x on this dua plane by X¢and x¢ Let f be the angle between X¢and x¢(f

isthe vertex angle of the rhombus formed by X ¢and x¢ sof istherotation angle).
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A

o=

dual rotation axis

a /><>-
+
x> =

Figure 1. The rhombus formed by the diagonals
1 r 1 r

X ¢+ X¢and X¢ XC

[ U U
ltiseasytosee that X- X=b" (X +X) implies

ror NI §
X ¢ R(ﬁ: ¢+>“<tﬂ, from which we get

b

From thefig. 1 we have

Xom Xo=
<
>’i>ﬂ

¥
>’<\>-ﬁ
X =k
AN
<> =
i

therefore

r

A

! r
x¢ﬁﬂ
b

X

X G+ X

Using the algebraic properties of dual numbers and (1) we obtain

[ ¢
X¢ X¢=

1
~ ~

b (X

r
¢+ %9 and

(1)
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Hb” Hb” relR )
HbH
and i *
Tan% :Tan%+ef7(1+Tan2f§) (3)
The equations (2) and (3) imply,
Hb” +e HbH = Tan +e (1+Tan ) (4)
Hence we have from (4) ng = Tan% (the norm of the real Rodrigues vector) and
(1+ Tan?! 2 (5)

Let us denote the unit vector which is in the same direction of b by s, thatis s H H
b

and é:(sl,sz,sg) is called the unit Rodrigues vector. So (5) yields,

rr f o f
sb* =—(1+Tan“ — 6
5 5) (6)

' -
On the other hand, let us define the dual Rodrigues vector by s, S = —?L . Using the algebraic

]
properties of the dual numbers we have, r A
I b* b(bb)
— =) (7)
H u s
where §=(s),5,5) and S =(s),55.53).
From (7),
blubu by (b +0b; +bgfs) ©
ol
szbH bz(b1b1+b2b2+b3b3) o

bl
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* r 2 * * *
. b3[lo|” - by(ouby +bab +bgb3)
SS = r 3 (10)
ol
We can easily obtain bIb;bg from the equations (8),(9),(10) as follows
. s [B[ +bibyb3 + bibab
by = o , (12)
ol -
. S3fb|® +bobib; +bybss
Jo|” - o2
55[b| + babib; +bgbyb3
* 2002
o o3
Since the real Rodrigues parameters are;
bl = Tanf_
% 2
_ f N f
b, =s,Tan— and Hb” =Tan—,
2 2
f
b, =s,Tan—
3 =S5 5
we can rewrite the equations (11),(12) and (13) as,
* 3f 2f * 2f *
. SsiTan E+sls,2Tan Eb2 +s53Tan Eb3
by = :
f o of
Tan?" - §°Tan® "
2 E 2
Simplifying the above equation we get,
* f * *
. S11'|'<51r‘5+5152bz + 515303
by = , 0<f <2p (14)

1- 512

Similarly,
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* f * *
52Ta”§ + 555 + S,53b3

b, = 5 (15)
1- s
* f * *
. SaTan, +Sgsiby + 5385
bg = S (16)
1- s3

1 I
Since S isaunit dual vector, Hé” =1, we get

s2+s,2 +5,2 =1

* * * (17)
$181 +$28 + 53853 =0.

For the general case let us assume that s * O for al i =1,2,3. If one or two of them are
equal to zero then one can obtain the solutions of b 's from (14), (15), (16). Now we take

5,105,105, 0.Sothedenominators, 1- s°, are also different from zero by (17).

If we expand (6) we get,

*

slbi +szb; +33b§ —(1+Tan2f2

Sinces ! 0,
. —(1+Tan *) Szbz 53b3
by =-2 . (18)
S
The equations (14) and (18) yields,
’ f
Spbp +s3b3 = (1- §1 L (1+Tan —) slslTani : (19)

If we substitute (18) into (15) we get,

*

* * f f o f
b, =s,Tan—+s,—(1+Tan“—) . 20
D =S > Sy 2( 2) (20)

If we substitute (20) into (19) we get,

*

by = s3Tanf +sg—(1+Tan2f2 . (21)

If we substitute (20) and (21) into (15) we get,

*

N i o f
=g Tan—+s—@1+Tan“-). 22
by =5 5 812( 2) (22)
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4. Conclusion

For the fist time we obtain the dual Rodrigues parameters bI , b;, bg asfollows;

*

* % f f 2f
b = slTanE +517(1+Tan E) (22
b; = s;Tanf— +5s) 1:—(1+Tan2 r (20)
2 2 2
bs :s;Tanf—+s3i(1+Tan2f— (21)
2 2 2

which are similar to well known Rodrigues parameters by, by, bs inthereal case(see[8]) . As

seen from (22), (20), (21) these parameters depend on the angle f  and the distancef " of the
corresponding rigid body motion in space. f  denotes the angle between straight lines |, and

[, in the space and f* is the shortest distance between |, and I,. |, and |, defines the
instant positions of therigid body seefig. 2.

Rigid Body Rigid Body

RS

Figure2. Theangle f and the shortest distance f "
\'/a and \'/kJ denote the unit directions of |, and |, respectively.

References

[1] W. K. Clifford Proc. London Mathematic Society, 4, 1873, p. 381.
[2] F. M. Dimentberg, The Screw Calculus and its Applications in Mechanics, (1zdat,

“Nauka’, Moscow, USSR, 1965) English trandlation: AD680993, Clearinghouse for
Federal and Sciencetific Information, Virginia).

[3] E. Study, Die Geometrie der Dynamen, Leibzig, 1901.

[4] W.L. Edge, The Theory of Ruled Surfaces, Cambridge University Press, Cambridge,
1931.

31



Karakili¢

[5] V. Hlavaty, Differential Line Geometry, P. Nothoft Ltd., Groningen, 1953.

[6] E.A.weis, Einfihrong in die Linengeometri und Kinematic, Leipzig, Berlin, 1935.

[7] K. Zidler Linengeometri mit Anwendungen, 2 volumes, De Gruyter, Berlin, 1902.

[8] J. M. McCarthy, An Introduction to Theoretical Kinematics, The MIT Press, Cambridge.

[9] O. Bottema, B. Roth, Theoretical Kinematics, North Holland, Amsterdam, 1979.

[10] J. M. McCarthy, B. Roth, The Curvature Theory of Line Trgectoriesin Spatial
Kinematics, ASME Journal of Mechanical Design 103, 4, 1981.

[11] Y. Kirson, Curvature Theory in Space Kinematics, PhD dissertation 140, University of
CaliforniaBerkley, 1975.

[12] G. R. Veldkamp, On the Use of Dual Numbers, Vectors and Matrices in Instantaneous
Spatial Kinematics, Mechanism and Machine Theory 11(2), (1976), 141-156.

[13] O. Kose, C. C. Sarioglu, B. Karabey, 1. Karakilig, Kinematic Differential Geometry of a
Rigid Body in Spatial Motion Using Dual Vector Calculus: Part |1, Applied Mathematics
and Computation 182 (2006) 333-358.

[14] H. Potmann, J. Wallner, Computational line geometry, Springer-Verlag, Berlin, 2001.

[15] I. S. Fischer, Dua-Number Methods in Kinematics, Statics and Dynamics, CRC Press

LLC. Horida, 1999.

32



