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Abstract 
 
Two-dimensional elasticity solution is presented for static analysis of functionally graded beams with various 
end conditions and resting on elastic foundation, using the semi-analytical approach, which makes use of the 
state space method and differential quadrature method. The beams are assumed to be transversely isotropic, 
with Young's modulus varying exponentially along the thickness, while Poisson's ratio remaining constant. The 
state space method (SSM) is adopted to obtain analytically the thickness variation of the elastic field and, 
approximate solution in the longitudinal direction can be obtained using the one dimensional differential 
quadrature method (DQM). The convergence and accuracy of the present approach is then validated by 
comparing the numerical results with the exact solutions for the case of simply support functionally graded 
beam. The influence of material gradient index, coefficient of elastic foundation and the ratio of thickness to 
length on the behavior of functionally graded beams are finally investigated. 
 
Keywords: FGM beams, Semi-analytical, State space, Elastic foundation, Differential quadrature 
 
Nomenclatures 
 
L, h           beam dimension in x and z directions 
E0, Eh        Young's modulus at the bottom and upper surfaces respectively 
n                 number of half wave in x direction 
I                 the second moment of the cross-sectional area 
kw , kp        Winkler and Pasternak coefficient of elastic foundation respectively 
N               number of sampling points 
U, W        displacement in x- and z- direction respectively 
γzx            shear strains 
σi ( i=x, z)  normal stress 
εi ( i=x, z)  normal strain 
τxz              shear stresses 
δ                state variables 
 
1. Introduction 
 
Analysis of deformation and stress fields in functionally graded materials (FGM) is of 
fundamental importance in experimental determination of the FGM properties and exact 
solutions are useful in developing a numerical model. Functionally graded materials possess 
smooth spatial variations of thermo-mechanical properties which can be made such that the 
volume fractions of two or more materials are varied continuously along a certain dimension. 
FGMs are anisotropic in nature. Exact analysis of their elastic responses should be based on 
the theory of anisotropic elasticity. Suresh and Mortensen [1] provide an excellent 
introduction to the fundamentals of FGMs. As the use of FGMs increases, for example, in 
aerospace, automotive and biomedical applications, new methodologies have to be developed 
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to characterize FGMs, and also to design and analyze structural components made of these 
materials. Reddy [2], in 2000, presented a theoretical formulation and finite element models 
based on third-order shear deformation theory for the analysis of through-thickness 
functionally graded plates. The Navier solution for simply supported plates based on the 
linear third-order theory and the non-linear static and dynamic finite element results based on 
the first-order theory were presented by Reddy. Sankar [3] established a functionally graded 
Euler–Bernoulli beam model to treat a static problem of a simply supported beam. 
Employing the finite element method, Reddy et al. [4] studied thermo-elastic effect and wave 
propagation in FG beams. Zhu and Sankar [5] solved the two-dimensional elasticity 
equations for a FGM beam subjected to transverse loads by means of combined Fourier 
series-Galerkin method, in which the variation of the Young’s modulus through the thickness 
was given by a polynomial in the thickness-coordinate and Poisson’s ratio was assumed to be 
constant. An exact analysis based on state space formulation is presented by Bian [6] to study 
functionally graded beams integrated with surface piezoelectric actuators and sensors. The 
free vibration and bending analysis of such structures has been extensively covered by many 
investigators. Ding et al. [7] derived an elasticity solution for a fixed–fixed plane isotropic 
beam subjected to uniform load with the aid of Airy stress function. An elasticity solution for 
a fixed–simply supported plane isotropic beam subjected to uniform load was also presented 
in [7].  A variety of numerical methods have been proposed to solve problems encountered in 
engineering and science [10-18]. Among them, the differential quadrature method (DQM), 
has been widely and successfully applied in many areas. The applications of DQM to the 
static and dynamic analyses of beams and plates proved that it is a rather efficient numerical 
technique for analyzing various problems.  Chen et al. [8] presented elasticity solution for 
bending and thermal deformations of FG beams with various end conditions, using the state 
space method coupled with differential quadrature method. Free and forced vibration of a 
thermally prestressed, laminated functionally graded beam of variable thickness were 
investigated by Xiang and Yang [9]. Exact solutions for bending and free vibration of 
functionally graded beams resting on a Winkler-Pasternak elastic foundation were presented 
by Ying et al. [10] based on the tow-dimensional theory of elasticity. As the aforementioned 
works show, the exact solution for FG beams subjected to mechanical load with non-simply 
support boundary conditions has not been yet considered and the present work attempts to do 
this.  In this paper, the conventional state space method is successfully combined with the 
differential quadrature method (DQM) and thus a semi-analytical elasticity method is 
developed and then elasticity solution of FG beam with arbitrary edges under pressure is 
presented. FG beam is rested on Winkler-Pasternak elastic foundation. Material property of 
FGM beam is assumed to be graded in the thickness direction according to a simple 
exponent-law distribution in terms of the volume fractions of the constituents.  
 
2. Basic Equations 
 
      Consider functionally graded beam with length L, and thickness h, as shown in Fig.1.  
 

 
 

Fig.1 .Functionally graded beam on tow parameter elastic foundation 
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The beam is assumed in a state of plane stress and rested on two parameter elastic foundation 
with the foundation module of kw and kp. The end boundary conditions are various and the 
top surface of beam is subjected to uniform pressure, q0.  
The constitutive relations of FG beam in term of displacements can be written as: 
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Where σi and τxz are the normal and shear stress components, respectively, and u and w the 
displacement components.                
And the elastic constants for isotropic materials are defined as:  
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In the absence of body forces, equilibrium equations can be written as: 
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The FGM is assumed transversely isotropic with constant Poisson's ratio, ν and all elastic 
constants and mass density are assumed to vary exponentially through the beam thickness, 
that is:  
 
                                                                 kzeGG 0=                                                               (3) 
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surface of the beam. By using Eqs. (1) - (3), following state space equation are obtained; 
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Induced variables for the beam in term of state variables are as follow 
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Eqs. (4) can be written in matrix form, as follow : 
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The displacements and stresses boundary conditions are; 
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The two ends of the beam (x = 0 and x = L) are subjected to any combinations of the 
following boundary conditions, 

Simply supported         (S): σx = 0; w = 0; 
                                         Clamped                       (C): u = 0; w = 0; 

Free                              (F): σx = 0; τxz = 0. 
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3. Analytical solution 

  
     In order to satisfy the simply supported boundary conditions, displacements and stresses 
components are given as the following 
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Where quantities with a over bar are termed as the state variables and undetermined function 
of z coordinate and 'n' is the half-wave number.    
Substituting relations (3) and (8) into the Eqs. (1) and (2) leads to the following state-space 
equations 
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Where A is constant coefficients (see Appendix). 
Also the induced variables in term of state variables can be obtained as  
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General solution to Eq. (9) is  
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Eq. (11) at z = h yields  
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Imposing surface traction at the low and top surface of the beam (Eq. (7a)) to Eq. (12), 
following equation can be obtained  
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By solving Eq. (14), displacement at the lower surface can be obtained. Once the 
displacement components at the lower surface of beam are obtained, the state vectors at any 
coordinate z can be derived from Eq. (11). Finally, inserting the obtained state variables into 
the induced variable, Eq. (10), axial normal stress can be obtained. 
 
4. Semi-analytical solution 
 
      There isn't any exact solution for beams with non-simply support boundary conditions. 
Differential qudrature method is used to solve partial differential equations for non-simply 
support boundary conditions. A Semi-analytical procedure with the aids of DQ technique 
was developed by Chen et al. [11]. In this method, the rth-order partial derivative of a 
continuous function f(x,z) with respect to x at a given point xi can be approximated as a 
linear sum of weighted function values at all of the discrete points in the domain of x, i.e. 
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Where )(n

ijg  are the xi-dependent weight coefficients [12]. 
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Applying Eq. (15) to Eqs. (4) – (5), following state equations at an arbitrary sampling point xj 
in the FGM beam are then obtained 
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Where quantities with subscript 'i' means the function value at grid point. 
Similarly the induced variable, Eq. (5), is: 
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Assembly of Eq. (15) at all sampling points leads to the following global state equation in 
matrix form: 
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Where δ = [σz , u , w , τxz]

T  and A is defined in Appendix and other sub-vectors in Eq. (18) 
are defined in the same manner. After applying the boundary conditions, Eq. (18) becomes: 
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Where, the subscript, b denotes that the state equation contains the boundary conditions and 
the matrix bA  according to each boundary condition type is given in Appendix. Applying the 

same procedure, used in Eq. (9) to Eq. (19), stresses and displacements due to static loading 
are obtained. 
 
5. Numerical results and discussion 
 
      In this section, convergence of DQ method and Effects of edge boundary conditions, the 
foundation parameters, aspect ratio and gradient index on mechanical behavior FGM beams 
and finally mechanical parameter in two directions are investigated. 
 
5.1 Convergence and accuracy 
      
Numerical results are obtained for FGM beam with simply supported edges condition and 
resting on two parameter (Winkler-Pasternak) elastic foundation and under uniform pressure 
on the top surface and for validating the convergence and accuracy of the present method, 
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compared with analytical solution (Eq.11). The results of comparison are shown in Table.1. 
From this table, it is observed that by increasing the number of discrete grid points, the 
computed results converge rapidly without any discrepancies with that reported by Ying et al. 
[10]. Also from the table 1, it can be seen that the numerical solution of DQM using only a 
few discrete grid points is equivalent to the analytical solution. 
 

Table 1. Convergence for the FGM beam, SS, Kw = 0, Kp = 0 
Analytical(Ref[10])  N = 9  N = 7  N = 5  

-0.356  -0.356  -0.356  -0.357  σz  

-0.0041  -0.0041  -0.0041  -0.0041  W  
-4.45  -4.45  -4.42  -4.38  τxz  

-20.68  -20.68  -20.63  -20.57  σx  

L/h = 10  

-0.356  -0.356  -0.356  -0.357  σz  

-0.0648  -0.0648  -0.0648  -0.0648  W  
-8.91  -8.91  -8.89  -8.84  τxz  

-81.91  -81.91  -81.87  -81.79  σx  

L/h = 20  

 
5.2 Edge boundary conditions      
       
Effect of edges boundary conditions are depicted in Figs.2. As the figures show distribution 
of transverse normal and shear stresses in CC and CF condition lay between the related 
distribution for the SS and CS conditions, but curves of axial normal stress for the SS and CC 
conditions lays between the curves of CF and CS conditions. Also the effect of CS condition 
in rate of variations transverse normal and shear stresses is greater than the other conditions.  

  
                  a. Transverse normal stress                                        b. Transverse shear stress 
 
Influence of edges conditions in axial stress near the outer surface is much more than the 
lower position in thickness direction, but for transverse normal stress near the lower surface, 
it is much more than the outer surface. Distribution of transverse displacement across the 
thickness in contrast with the other quantities is constant. 
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                       c. Axial normal stress                                           d. Transverse displacement 

Fig.2. Effect of edge boundary conditions on the behavior of the FGM beam, L/h = 10, Kw=100, Kp=25 
 
5.3 Elastic foundation parameters 
 
First of all, for the convenience of citing, we designate curves without circle (or curves with 
circle) to the beam with the softer (or harder) surface resting on the elastic foundation. 
Influence of the elastic foundation on the static behavior of FGM beam is depicted in Figs.3. 
According to the figures, changing the action surface on elastic foundation can change the 
values of transverse normal stress at any point of the thickness, but changing the action 
surface only shifts amounts of the transverse shear and axial normal stresses to other point of 
the thickness with not changing in amounts. Also changing the action surface don't affect in 
changing of the transverse displacement. It is observed that the upper and lower surface 
condition of beam in transverse normal and shear stress figures are satisfied. 

  
                a. Transverse normal stress                                 b. Transverse shear stress 

  
                       c. Axial normal stress                                             d. Transverse displacement             

Fig.3. Variation of stresses and displacement across the thickness, CS, L/h =10 
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5.4 Aspect ratio 

The different aspect ratio,
h

L
, for transverse normal stress and transverse displacement of a 

CC beam are plotted in Fig. 4.  

  
                   a. Transverse normal stress                                           b. Transverse displacement 

Fig.4. Effect of aspect ratio on transverse normal stress and displacement for FGM beam, CF 
 
According to the figure and as expected, by increasing the length to thickness ratio transverse 
normal stress decrease slightly to a constant value, and consequently increasing the aspect 
ratio causes the FGM beam behave as the thin beam. 
 
5.5 Gradient index 
 
The effects of gradient index on the stresses and displacement of a thick FGM beam with the 
soft surface subjected to elastic foundation is presented in Figs.5.  

  
                  a. Transverse normal stress                                            b. Transverse shear stress 

  
                         c. Axial normal stress                                            d. Transverse displacement 

Fig.5. Effect of gradient index on mechanical parameters for FGM beam, CS, L/h =10, Kw=100, Kp=25 
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It is observed that as 
0E

Eh  increases the transverse normal stress decreases gradually and 

transverse shear stress decreases up to near to the z = h/2 and then increases together with 
shifting the maximum value near to the hard surface. In contrast with FGM, in Fig.5a it is 
observed that the distribution of axial normal stress in isotropic material is linear. As the 

figure depicts by increasing, 
0E

Eh  axial normal stress decreases near to the z = 0.35h distance 

and then increases especially rapidly near to the hard surface together with shifting the 
neutral axis toward the hard surface. As the Fig.5b shows the transverse shear stress curve for 
isotropic beam is symmetric with respect to the neutral axis and the maximum value moves 
toward to the vicinity of harder surface of the beam. This point is consistent with physics 
that, with increasing, the bending rigidity of the upper half of the beam becomes larger than 
that of the lower half and, hence, the upper half undergoes bigger stress than the lower half. 
 
5.6 Mechanical parameters in two directions 
 
Figs.7 and 8 present the distribution of stresses and displacement for CC end boundary 
condition, with soft surface subjected to elastic foundation along x and z direction. As the 
figure shows edge boundary condition are satisfied. Due to the inhomogeneous specification 
along the thickness direction, axial normal and shear transverse stress with respect to mid-
span of the beam has opposite sign. 

  
                    a. Transverse normal stress                                            b. Transverse shear stress 

  
                      c. Axial normal stress                                            d. Transverse displacement 

Fig.7. Mechanical parameters in two directions for FGM beam, CC, Kw = 0, Kp = 0 
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Also the comparing between the beam rests on tow parameter elastic foundation and the 
beam without foundation is investigated. According to figures, stresses and displacement for 
the beam rests on elastic foundation is less than the beam without any foundation because of 
properties of elastic foundation. 
 

  
                  a. Transverse normal stress                                            b. Transverse shear stress 

  
                    c. Axial normal stress                                            d. Transverse displacement 

Fig.8. Mechanical parameters in two directions for FGM beam, CC, Kw = 100, Kp = 25 

 
6. Conclusion 
 
Tow-dimensional elastic deformation of functionally graded beam rested on elastic 
foundation with various kinds of edges boundary conditions and Young's modulus varying 
according to exponentially through the thickness has been analyzed. The analysis was carried 
out by using DQM and state-space approach. The numerical results have revealed that the 
variations of material properties in the thickness direction affect the response of FG beam. 
From this investigation, the following conclusions can be made: 
       Using only a few discrete grid points in the numerical solution of DQM is equivalent to 
the analytical solution. 
       The neutral axis surface of the FG beam is not at mid-surface but depends on the 
through-thickness variation of Young's modulus. 
       Maximum stresses at any point in thickness direction of FGM beam in comparison with 
the isotropic beam are reduced. 
       Distribution of transverse shear stress in FG beam in contrast with the isotropic beam is 
not symmetric with respect to the neutral axis and shifts toward the vicinity of hard surface. 
       Axial normal stress distribution in FGM beam in contrast with isotropic beam is 
nonlinear and has maximum value at its hard surface. 
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Results given in the paper can serve as benchmarks for future analyses of FGM beams on 
elastic foundations. 
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Where: 
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)1,...,2,,...,1(),,...,1,1,...,2(
)2()2(

111 NjiggNjiggfNjiggf

NjNiggNjNigg

ijssijNjiNssNjiss

ijssjiijssij

======

−====−==
 

 
C-C: 
 



























−−−

−−

+−

−−

=

−

−

−

−

2
)2(

0

2
0

2

2
0

2

0

00
1

)1(2
00

00

Nccijccij

ccijN

Nccij

ccijN

kIgEg

gI
E

I
E

g

gkI

A

ν

νν

ν

 

 
Where: 
       )1,...,2,(),1,...,2,( )2()2( −==−== NjiggNjigg ijccijijccij  
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C-F: 
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