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Abstract

Two-dimensional elasticity solution is presentedshatic analysis of functionally graded beams witrious
end conditions and resting on elastic foundatiosing the semi-analytical approach, which makesafsie
state space method and differential quadrature oeetfThe beams are assumed to be transversely [Botro
with Young's modulus varying exponentially along ttickness, while Poisson's ratio remaining comistihe
state space method (SSM) is adopted to obtain acally the thickness variation of the elastic diehnd,
approximate solution in the longitudinal directiman be obtained using the one dimensional difféaent
quadrature method (DQM). The convergence and aayuif the present approach is then validated by
comparing the numerical results with the exact sohs for the case of simply support functionalraded
beam. The influence of material gradient index,ffacient of elastic foundatiomand the ratio of thickness to
length on the behavior of functionally graded beanesfinally investigated.
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Nomenclatures

L, h beam dimension in x and z directions
Eo, En Young's modulus at the bottom and uppdiasas respectively
n number of half wave in x directio

I the second moment of the cross$iseal area
kw , ko Winkler and Pasternak coefficient of elasbundation respectively

N number of sampling points
U, w displacement in x- and z- directionpasively
Yzx shear strains

oi (i=X, Z) normal stress
& (1=x, z) normal strain
Txz shear stresses
d state variables

1. Introduction

Analysis of deformation and stress fields in fuoctlly graded materials (FGM) is of
fundamental importance in experimental determimaid the FGM properties and exact
solutions are useful in developing a numerical nhagenctionally graded materials possess
smooth spatial variations of thermo-mechanical pridgs which can be made such that the
volume fractions of two or more materials are vdgentinuously along a certain dimension.
FGMs are anisotropic in nature. Exact analysishefrtelastic responses should be based on
the theory of anisotropic elasticity. Suresh andrtelisen [1] provide an excellent
introduction to the fundamentals of FGMs. As the 0§ FGMs increases, for example, in
aerospace, automotive and biomedical applicatioew, methodologies have to be developed
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to characterize FGMs, and also to design and aaatrzictural components made of these
materials. Reddy [2], in 2000, presented a themakformulation and finite element models
based on third-order shear deformation theory foe tnalysis of through-thickness
functionally graded plates. The Navier solution samply supported plates based on the
linear third-order theory and the non-linear statid dynamic finite element results based on
the first-order theory were presented by Reddyk&a[8] established a functionally graded
Euler—Bernoulli beam model to treat a static problef a simply supported beam.
Employing the finite element method, Reddy et 4)].studied thermo-elastic effect and wave
propagation in FG beams. Zhu and Sankar [5] solthesl two-dimensional elasticity
equations for a FGM beam subjected to transveradsldoy means of combined Fourier
series-Galerkin method, in which the variationhs# ¥ oung’s modulus through the thickness
was given by a polynomial in the thickness-coortéirend Poisson’s ratio was assumed to be
constant. An exact analysis based on state spaoelgttion is presented by Bian [6] to study
functionally graded beams integrated with surfaiszqelectric actuators and sensors. The
free vibration and bending analysis of such stmeéstinas been extensively covered by many
investigators. Ding et al. [7] derived an elasyigblution for a fixed—fixed plane isotropic
beam subjected to uniform load with the aid of Astgess function. An elasticity solution for
a fixed—simply supported plane isotropic beam stibgeto uniform load was also presented
in [7]. A variety of numerical methods have beeoposed to solve problems encountered in
engineering and science [10-18]. Among them, tlier@intial quadrature method (DQM),
has been widely and successfully applied in maeasarThe applications of DQM to the
static and dynamic analyses of beams and plateegrhat it is a rather efficient numerical
technique for analyzing various problems. Cherle{8] presented elasticity solution for
bending and thermal deformations of FG beams wattious end conditions, using the state
space method coupled with differential quadratuethod. Free and forced vibration of a
thermally prestressed, laminated functionally gdadeeam of variable thickness were
investigated by Xiang and Yang [9]. Exact solutidns bending and free vibration of
functionally graded beams resting on a Winkler-&xastk elastic foundation were presented
by Ying et al. [10] based on the tow-dimension&dty of elasticity. As the aforementioned
works show, the exact solution for FG beams subfetd mechanical load with non-simply
support boundary conditions has not been yet cersidand the present work attempts to do
this. In this paper, the conventional state spaethod is successfully combined with the
differential quadrature method (DQM) and thus a ismmalytical elasticity method is
developed and then elasticity solution of FG beaith \&rbitrary edges under pressure is
presented. FG beam is rested on Winkler-Pastertagkiczfoundation. Material property of
FGM beam is assumed to be graded in the thicknesstidn according to a simple
exponent-law distribution in terms of the volumactions of the constituents.

2. Basic Equations

Consider functionally graded beam with lengtland thickness h, as shown in Fig.1.

Fig.1 .Functionally graded beam on tow parametestiel foundation
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The beam is assumed in a state of plane stresestad on two parameter elastic foundation
with the foundatiormodule of I, and k. The end boundary conditions are various and the
top surface of beam is subjected to uniform pressyr

The constitutive relations of FG beam in term @fptihcements can be written as:

o o=c i W 5o 0, oW
ow _ du
= Cy| — +— 1

Whereo; andty, are the normal and shear stress components, teghgcand u and w the
displacement components.
And the elastic constants for isotropic materiaésdefined as:

Gy =Cx = E/(l_vz)! Ci3 =VC, Cs=E/2(1+V)
In the absence of body forces, equilibrium equatican be written as:

00, +& -0

0x 0z

&Jr%:o )
()4 0z

The FGM is assumed transversely isotropic with tamtsPoisson's ratio; and all elastic
constants and mass density are assumed to varyexjaly through the beam thickness,
that is:

G =G,e“ (3)

Where k = h‘lln% and the subscript ‘0’ and ‘h’ denote the valueshat bottom and top
0
surface of the beam. By using Egs. (1) - (3), feitgy state space equation are obtained;

0o, or,,
=-ko,-
0z 0X
ou _ oW 2(1+v)
=— + T

0z ox E, ~©

.2
M = 1-v O'Z —Va_U (4)
0z E, 0X
2
07,, _ i do, E, 0 Li Kz,
0z 0X 0X

Induced variables for the beam in term of statéabées are as follow

ouU
+E, o (5)

o, =Vvo,

Egs. (4) can be written in matrix form, as follow :
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-k 0 0 _9
0x
J 0 0 - : 2(1E+ V) Sz
d X
dz|w [ [1-v? 9 " iw (©)
-V— 0 0
Xz EO 0X sz
0 9°
-v— -E,— 0 -k
| ox ° 0x? ]
The displacements and stresses boundary condérens
o, =k,w- W 1,=0 at z=0 (7a)
o,=q, , T,,=0 at z= h (7b)

The two ends of the beam (x = 0 and x = L) are ettbfl to any combinations of the
following boundary conditions,
Simply supported (S9x=0; w=0;

Clamped (C©):u=0;w=0;
Free (Fox = 0;14, = 0.
. . . k, L o2 .
The dimensionless moduli afg, = E K, = = that refer to Winkler and Pasternak
0 0

module, respectively.

3. Analytical solution

In order to satisfy the simply supported baamdconditions, displacements and stresses
components are given as the following

— . NTK ) — . (NTK) _ .ams
Ux:UXS|nT e Jz:JzSInT e r,,=r1,,Co T e

u=U co{%) w= Wsin(%j (8)

Where quantities with a over bar are termed astidwe variables and undetermined function
of z coordinate and 'n' is the half-wave number.

Substituting relations (3) and (8) into the Eq9.dfd (2) leads to the following state-space
equations

C-no (9)

Where A is constant coefficients (see Appendix).
Also the induced variables in term of state vagaldan be obtained as
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o, =vo, - EO%U (10)
General solution to Eq. (9) is
0=expzAJd, at 0<z<h (11)
Eq. (11) at z = h yields
o0 =exphA)J, (12)

Imposing surface traction at thewvw and top surface of the beam (Eq. (7a)) to Eq.,(12)
following equation can be obtained

a, Pa,ta; a,

g
‘ U
U — a22 :Ba21 + a23 a24 W (13)
w 8, Payta, ay -
XzJ 0

XZ) h a42 ﬂa41 + a43 a44

2
Where;f = ky + (%Tj kp and § are the element oéXphA) ' matrix.

The first and fourth equations of matrix Eq. (18lgs

o + U

sz h a42 ﬁ a'41 + a43 W 0
By solving Eqg. (14), displacement at the lower scef can be obtained. Once the
displacement components at the lower surface ahtm@ obtained, the state vectors at any

coordinate z can be derived from Eq. (Hipally, inserting the obtained state variables int
the induced variable, Eg. (10), axial normal stiezss be obtained.

4. Semi-analytical solution

There isn't any exact solution for beams witim-simply support boundary conditions.
Differential qudrature method is used to solve iphdifferential equations for non-simply
support boundary conditions. A Semi-analytical pahare with the aids of DQ technique
was developed by Chen et al. [11]. In this methibe, k,-order partial derivative of a
continuous function f(x,z) with respect to x at igeg point x can be approximated as a
linear sum of weighted function values at all &# thscrete points in the domain of x, i.e.

0"f(x,2)

da =301 (x,2 (1=12...N-1,i=12..N) (15)
=1

X=X

Where g{" are the xdependent weight coefficients [12].

30



Malihi et al.

Applying Eqg. (15) to Egs. (4) — (5), following sta¢quations at an arbitrary sampling point x
in the FGM beam are then obtained

do,,
=-ko, OT o
dz z I
% - _Z gi(rl)vvr + 21+v) I
dz o E,
dw _1- (16)
v’ ®
-V U,
dz E0 Z O
x2| — VZ gl(l)a- — EOZ gI(Z)U - kT
Where quantities with subscript 'i* means the fiomcvalue at grid point.
Similarly the induced variable, Eq. (5), is:
o, =vo, +E, Z gU {17

r=1

Assembly of Eg. (15) at all sampling points leadlghe following global state equation in
matrix form:

d 0=A0 (18)
dz

Whered = [6,, U, W 1] and A is defined in Appendix and other sub-vesiorEq. (18)
are defined in the same manner. After applyingothendary conditions, Eq. (18) becomes:

%5 A, (29)
Where, the subscript, b denotes that the statetiequeontains the boundary conditions and
the matrix A, according to each boundary condition type is giveAppendix. Applying the

same procedure, used in Eq. (9) to Eg. (19), €seand displacements due to static loading
are obtained.

5. Numerical results and discussion

In this section, convergence of DQ method Bffdcts of edge boundary conditions, the
foundation parameters, aspect ratio and gradiel@xiron mechanical behavior FGM beams
and finally mechanical parameter in two directians investigated.
5.1 Convergence and accuracy
Numerical results are obtained for FGM beam with@y supported edges condition and

resting on two parameter (Winkler-Pasternak) etdstindation and under uniform pressure
on the top surface and for validating the convertgeand accuracy of the present method,
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compared with analytical solution (Eq.11). The hssaf comparison are shown in Table.1.
From this table, it is observed that by increading number of discrete grid points, the
computed results converge rapidly without any @gancies with that reported by Ying et al.
[10]. Also from the table 1, it can be seen that mumerical solution of DQM using only a
few discrete grid points is equivalent to the atiedy solution.

Table 1. Convergence for the FGM beam, SgrK0, K, =0

N=5 N=7 N=9 Analytical(Ref[10])

L/h =10 o -0.357 -0.356 -0.356 -0.356

W -0.0041 -0.0041 -0.0041 -0.0041

Txz -4.38 -4.42 -4.45 -4.45

Ox -20.57 -20.63 -20.68 -20.68
L/h =20 o -0.357 -0.356 -0.356 -0.356

W -0.0648 -0.0648 -0.0648 -0.0648

Tyz -8.84 -8.89 -8.91 -8.91

Oy -81.79 -81.87 -81.91 -81.91

5.2 Edge boundary conditions

Effect of edges boundary conditions are depicteBigs.2. As the figures show distribution
of transverse normal and shear stresses in CC &ndo@dition lay between the related
distribution for the SS and CS conditions, but esref axial normal stress for the SS and CC
conditions lays between the curves of CF and C#itons. Also the effect of CS condition
in rate of variations transverse normal and shieasses is greater than the other conditions.

15 T T T T T T T oo ,‘.‘:‘:-
N,

pr— g - . ;
,,,,, === 34 21 N, Hi
- Y ii

=
n

o (L/8.2)iq,
T (L18.2)/q

. . . , . . . , . . . i . ,
0z 03 04 05 0B 07 og 038 1 u] 0.1 0.2 03 0.4 05 06 07 0.8 0.9 1
zh z'h

a. Transverse normal stress b. Transverseasistress

L
0 0.1

Influence of edges conditions in axial stress rtharouter surface is much more than the
lower position in thickness direction, but for ts#erse normal stress near the lower surface,
it is much more than the outer surface. Distributad transverse displacement across the
thickness in contrast with the other quantitiesasstant.
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Fig.2. Effect of edge boundary conditions on thiéaweor of the FGM beam, L/h = 10,,K100, K=25

5.3 Elastic foundation parameters

First of all, for the convenience of citing, we dgste curves without circle (or curves with

circle) to the beam with the softer (or harder)face resting on the elastic foundation.

Influence of the elastic foundation on the stagbdwior of FGM beam is depicted in Figs.3.
According to the figures, changing the action stefan elastic foundation can change the
values of transverse normal stress at any poirthefthickness, but changing the action
surface only shifts amounts of the transverse shiedraxial normal stresses to other point of
the thickness with not changing in amounts. Alsanging the action surface don't affect in
changing of the transverse displacement. It is miesethat the upper and lower surface
condition of beam in transverse normal and sheassfigures are satisfied.
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— Ew=0EKp=0

----- Kw=100,Kp=0
-------- Kw=100,Kp=25

o, ([Li2.2)/q,
5o G

=
n

07 02 03 04 05 08 07 08 08
zh
a. Transverse normal stress

— Ew=0Kp=0
L KEw=100,Kp=0
N Ew=100Ep=25

(=)
=]

S, (L/2,2)/q,

ra
=]

.
=]

&
=]

=}
=]

D.‘1 U.I2 U.‘S Uld U.‘S EIIB EIIF EIIB EI.‘B 1
z'h
c. Axial normal stress

— Kw=0Kp=0
----- Eow=100,Kp=0
e Ew=100Ep=25

02 03 04 05 D06 07 08 09 1
z'h

b. Transverse shear stress

w
T

W(L/2,z)/h

— Kw=0JEKp=0
----- Ew=100Kp=0
e Fop=100,Ep=25

0z 03 04 0.5 08 07 0g 09 1

z/h
d. Transwedisplacement

Fig.3. Variation of stresses and displacement adtesthickness, CS, L/h =10
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5.4 Aspect ratio

. L :
The different aspect ratlﬁ,, for transverse normal stress and transverseadispient of a

CC beam are plotted in Fig. 4.
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a. Transverse normal stress b. Transvedssplacement
Fig.4. Effect of aspect ratio on transverse norstra@ss and displacement for FGM beam, CF

IS

According to the figure and as expected, by inenggthe length to thickness ratio transverse
normal stress decrease slightly to a constant vaoeé consequently increasing the aspect
ratio causes the FGM beam behave as the thin beam.

5.5 Gradient index

The effects of gradient index on the stresses @platement of a thick FGM beam with the
soft surface subjected to elastic foundation isgméed in Figs.5.

18 -——- EW/E0=1 ---- EWE(=1
—— EWEC=10 — EWEO=10
e e EWEC=20
v EWEQ=50
=
N
o
<,
o]
el B
0 01 02 03 04 0Aa 06 o7 o8 09 1 u} 0.1 0.z 03 0.4 05 0B 07 0.8 0g 1
z/h z'h
a. Transverse normal stress b. Transvesbear stress
s : : . v : . oo12
S --=- EW/E0=1
- — EWEC=10
0.01F
---- EWE0=1
— EWED=1D
----- EWEC=20
0.008 +
_ EWED=50
= - =
N N
Q- = 0006
=} =2
S =
0.004
A0
L 0.002 F
a0t Y
[u] 0.1 0.2 0.3 0.4 04 06 07 08 09 1 u} 0.1 0.z 0.3 0.4 05 06 07 [WR=} 09 1
zh z'h

c. Axial normal stress d. Transedisplacement
Fig.5. Effect of gradient index on mechanical pagters for FGM beam, CS, L/h =10,%100, K=25
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. E, .
It is observed that asE—“ increases the transverse normal stress decreessally and
0

transverse shear stress decreases up to near zo=tHg2 and then increases together with
shifting the maximum value near to the hard surfacecontrast with FGM, in Fig.5a it is
observed that the distribution of axial normal s$rén isotropic material is linear. As the

, . : . E .
figure depicts by mcreasng—h axial normal stress decreases near to the z $@i3%ance
0

and then increases especially rapidly near to #el Isurface together with shifting the
neutral axis toward the hard surface. As the Figldows the transverse shear stress curve for
isotropic beam is symmetric with respect to thetrauaxis and the maximum value moves
toward to the vicinity of harder surface of the tmed his point is consistent with physics
that, with increasing, the bending rigidity of thpper half of the beam becomes larger than
that of the lower half and, hence, the upper hatfergoes bigger stress than the lower half.

5.6 Mechanical parametersin two directions

Figs.7 and 8 present the distribution of stresses$ displacement for CC end boundary
condition, with soft surface subjected to elastiarfdation along x and z direction. As the
figure shows edge boundary condition are satisiiate to the inhomogeneous specification
along the thickness direction, axial normal andastlieansverse stress with respect to mid-
span of the beam has opposite sign.

02
z/h v %L

a. Transverse normal stress

c. Axial normal stress d. Transvedsgplacement
Fig.7. Mechanical parameters in two directionsF@M beam, CC, K=0, K, =0
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Also the comparing between the beam rests on taanpeter elastic foundation and the
beam without foundation is investigated. Accordiadigures, stresses and displacement for
the beam rests on elastic foundation is less thaméam without any foundation because of
properties of elastic foundation.

a. Transverse normal stress b. Transvesbear stress

ijqﬂ

‘U?
zlh 0 <L

c. Axial normal stress d. Transversgpthcement
Fig.8. Mechanical parameters in two directionsF@M beam, CC, I¢= 100, K, = 25

6. Conclusion

Tow-dimensional elastic deformation of functionalraded beam rested on elastic
foundation with various kinds of edges boundarydittons and Young's modulus varying
according to exponentially through the thickness @en analyzed. The analysis was carried
out by using DQM and state-space approach. The ncaheesults have revealed that the
variations of material properties in the thickndsection affect the response of FG beam.
From this investigation, the following conclusiazen be made:

Using only a few discrete grid points in tiiamerical solution of DQM is equivalent to
the analytical solution.

The neutral axis surface of the FG beamas at mid-surface but depends on the
through-thickness variation of Young's modulus.

Maximum stresses at any point in thicknessctdon of FGM beam in comparison with
the isotropic beam are reduced.

Distribution of transverse shear stress@ldeam in contrast with the isotropic beam is
not symmetric with respect to the neutral axis siméts toward the vicinity of hard surface.

Axial normal stress distribution in FGM beam contrast with isotropic beam is
nonlinear and has maximum value at its hard surface
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Results given in the paper can serve as benchrarksture analyses of FGM beams on
elastic foundations.
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Appendix:
-k 0 0 p, |
0 0 o 201+v)
EO
A= 1-v?
0 0
E, P
|~ W0, Eo pr? 0 -k N
S-S:
(kI N-2 0 0
O O - gssji
A=
1-v?
3 I'n-2 ~ Wi 0
B - l/gssij EO( fssl + fss.N - gs(:;)]) O
Where:

Ossij = G (I =2,..,.N-1, J ::L...,N),

where p= /L

- gssij
201+v)
EO

I N

0

Kl

0u =0 (i =1.,N, j=2..,N-1)

foa =000y 0 1 =1..N), fou =0y 9y 1 =2..N), 95 =0{(,j=1...N)

C-C:
i kIN 2 O O - gccij ]
20+v
O O - gccij (E ) I N-2
A=l °
-V
E l N-2 - l/gccij O O
0
__ I/gc(:ij - EO gésl)j 0 ki N-2
Where:
Oej = 9y (. ] =2,...,N =), 94 =9,70,]=2...,N-0)
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C-F:

- Kl 0 0 ~ Oeii ]

201+v)
0 0 ~ Ot E, Iy

A= 1-v?

To I'n- ~ W 0 0

|~ Wesi Eo(fon — géfzij)) 0 -kl
Where: .

O =00, ] =1...,N=-1), O =0; 0, ] =2,..,N)

fon = OnOy(=1...N-1,j=2..,N), g% =9?@(=21...N-1,j=2..,N)

C-S:

- kl N-2 0 0 - gcsij 1

2(L+v)
O O - gcsji Eo l N-1
A= 1-v?
?0 Ine Wi 0 0

__ l/gcsji EO( fcsN - gé?]) 0 - kl N-1

Where:

gcsij = gu (I =21"'JN _1 ) J = 2)---1N)| gcsji = gIJ (I =2,---,N y J =2,...,N _1)
foon = OOy (5] = 2..,N), géiﬂ = gifz’ﬂ, ] =2,...,N)



