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Abstract  

In the present study, an artificial neural network (ANN) application is introduced for estimation of damage level 
of reinforced concrete structures. Back-propagation learning algorithm is adopted. A typical neural network 
architecture is proposed and some conclusions are presented. Applicability of artificial neural network (ANN) 
for the assessment of earthquake related damage is investigated. 
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1. Introduction 
 
It is obvious that extensive levels of structural damages consisting of both flexural and shear 
failures occur in reinforced concrete structures during earthquakes. Accordingly, there is a 
need for the determination of damage which needs expertise. However, due to a limited 
number of experts and time limitation, it is still an important problem to determine the 
damage levels of hundreds of thousands of buildings. The main target of this article is to 
answer the question whether artificial neural networks (ANN) can be used in this specific 
area. Consequently, it is desired to define an alternative network structure and network input 
vectors, if the ANN is found to be a suitable instrument for the determination of structural 
damage.   
 
 
2. Artificial Neural Networks (ANN) 
 
The elementary nerve cell, generally called a neuron is the fundamental structures of 
biological neural network. The general elements of a generic neuron are shown in Figure1. A 
typical cell has three major regions: the cell body, which is also called the soma, the axon and 
the dendrites. The axon of a typical neuron makes a thousand synapses with other adjacent 
neurons. Dendrites receive information (signal) from neurons through axons. The axon-
dendrite contact organ is called a synapse. The synapse is where the neuron introduces its 
signal to the following neuron [1-10].  
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Fig. 1.  A typical biological neuron and its elements 

 
 
In the neural network, the unit analogous to the biological neuron is referred to as a 
processing element. A processing element (PE) has many input paths (dendrites) and 
combines, usually by a simple summation, the values of these input paths. The result is an 
internal activity level for processing element. The combined input is then modified by a 
transfer function. This transfer function can be a threshold function which only passes 
information, if the combined activity level reaches a certain level; or it can be a continuous 
function of the combined input. The output value of the transfer function is generally passed 
directly to the output path of the processing element [10-15]. 
 
The output path of a processing element can be connected to input paths of other processing 
elements through connection weights which correspond to the synaptic strength of neural 
connections. Since each connection has a corresponding weight, the signals on the input lines 
to a processing element are modified by these weights prior to being summed. Thus, the 
summation function is a weighted summation. In itself, this simplified model of a neuron is 
not very interesting; the interesting effects result from the ways neurons are interconnected 
[16-21]. In an artificial neural network model, the input to a node is calculated by the 
weighted sum of outputs from the nodes in the previous layer. A node has an activation 
function that evaluates inputs and generates an output as an input to other nodes. McCullough 
and Pitts [22] proposed a simple model of a biological neuron as a binary threshold unit as 
shown below (Fig.2). Specially, the model neuron computes a weighted sum of its inputs from 
other units, and outputs a one or a zero given by[30], 
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where F is an activation function that will be explained in the next section, yj  is the output of 
the jth neuron, xi  is the input for this node, wji  is the weighting coefficient, and θj   is the bias 
term. 

 



 73 

 

  ∑ 

 

  x j 

  f (xj ) 

 
 

0. 0 

1. 0 

θθθθ j  

yj  

x1 

xi 

xn   ⇑ 
Wji 

 
 

Fig. 2.   McCullough - Pitts model of a biological neuron 
 
 
A neural network is defined by its node characteristics, the learning rules, the network 
topology, and the activation function. The learning rules control the improvement of network 
performance through appropriate adaptive changes of the weights of the links [15-20]. 
 
All learning methods can be classified into three categories: supervised learning, unsupervised 
learning and reinforcement learning. Supervised learning is a process that incorporates an 
external teacher and/or global information. A teacher specifies the desired output of the 
network, and the training data consist of input-output pairs. In reinforcement learning, the 
input is not a precise teaching input, but is rather only a good or bad performance rating. In 
other words, reinforcement is like supervised learning, except that in supervised learning, the 
feedback provided to the network is instructive, whereas in reinforcement learning, it is 
evaluative. In unsupervised learning, the network attempts to develop internal models to 
capture patterns of regularity in the input signals [23-25].  
 
Among the various neural network paradigms available, back-propagation networks are by far 
the most widely utilized for their relatively simple mathematical proofs and good generalized 
capabilities. The paradigm can be applied to a wide range of applications involving 
classification, estimation, prediction, and functions synthesis etc[26-28]. 
 
 
3. Back-Propagation Neural Networks 
 
The back-propagation algorithm is one of the most important and well known learning 
algorithms for neural networks especially in engineering applications. It provides important 
results since multi-layer networks can be adapted through supervised teaching with a training 
set of vectors. Among the various neural network paradigms available, back-propagation 
networks are by far the most widely utilized for their relatively simple mathematical proofs 
and efficient generalization capabilities. Back-propagation networks have two major 
characteristics: they are multi-layered in structure and they generally incorporate a nonlinear 
sigmoid transfer function for their processing elements [29-32]. 
 
The back-propagation neural network is a multi-layered network consisting of fully 
interconnected layers comprising many simple and identical units. The architecture of back-
propagation network with one hidden layer is shown in Figure 3. 
 
In Figure 3, xn , ym, and zk  represent the input, hidden and output layers. Weights on 
connections between the input and hidden layers are denoted by Wij  , while weights on 
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connections between the hidden and output layers are denoted by  Wjk . Each unit in one layer 
is connected in the forward direction to every unit in the next layer. Activation flow occurs 
from the input layer through the hidden layer, then on to the output layer. As usual, the 
knowledge of the network is encoded in the weights on connections between units. 
 
The back-propagation training algorithm is an iterative gradient algorithm designed to 
minimize the mean square error between the actual output of a multi-layer feed-forward 
perceptron and the desired output. Although back-propagation is a trained algorithm, it is 
generally used and well known as a type of artificial neural networks. 
 
In contrast to the parallel relaxation method used by Hopfield network, back-propagation 
networks perform a simpler computation. Because, activation flow is in only one direction, 
and there is no need for an iterative relaxation process. The activation levels of the units in the 
output layer determine the output of network. Back-propagation is currently the most 
important and most widely used algorithm for connectionist learning. Its rapid rise in 
popularity has been a major factor in the resurgence of neural networks.  
 
As is the case with most neural networks, the aim is to train the net to achieve a balance 
between the ability to respond correctly to the input patterns that are used for training and the 
ability to give reasonable responses to input that is similar, but not identical, to that used in 
training. The training of a network by back-propagation involves three stages: the feed-
forward of the input training pattern, the calculation and back-propagation of the associated 
error, and the adjustment of the weights.  
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Fig. 3.  A typical multi-layer neural network 
 
 
Back-propagation networks have two main characteristics: they are multi-layered in structure 
and they generally incorporate a nonlinear sigmoid transfer function for their processing 
element. An activation function for a back-propagation network should have several 
important characteristics as it should be continuous, differentiable, and monotonically non-
decreasing. Furthermore, for computational efficiency, it is desirable that its derivative be 
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easy to compute [27]. For the most commonly used activation functions, the value of the 
derivative can be expressed in terms of the value of the function. One of the most typical 
functions is the binary sigmoid function, which has a range of (0,1) and is defined as 
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where xj  is the weighted summation of the total input. Back-propagation networks are 
typically trained using the generalized delta rule, application of which involves the calculation 
of the network output, a comparison of this output with the desired output, the calculation of 
an error, and a backward propagation of this error in order to correct future outputs. In this 
process, each neuron updates the weights of its input connections in such a way that the error 
associated with its own output activation is decreased. Like a perceptron, a back-propagation 
network typically starts out with a random set of weights. 
 
 
The Back-propagation algorithm is summarized below [30-35] ; 
 
Weight Initialization : Set all weights and node thresholds to small random numbers. Note 
that the node threshold is the negative of the weight forming?  the bias unit. 
 
Calculation of Activation :  
 
The activation level of an input unit is determined by the instance presented to the network. 
 
The activation level Oj  of a hidden and output layer is determined by 
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where Wji  is the weight from an input Oi , θj   is the node threshold, F is a sigmoid function 
that was defined above equation (Eq.2).  
 
 
Start at the output units and work backward to the hidden layers recursively. Adjust weights 
by  
 

W∆(t)W)(tW jijiji +=+1  

 
where Wji (t) is the weight from unit i to unit j at time t (or tth iteration) and ∆Wji  is the weight 
adjustment. 
 
The weight change is computed by 
 

OδαW∆ ijji =  
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where α is a trial-independent learning rate (0< α <1) and δj  is the error gradient at unit j. 
Convergence is sometimes faster by adding a momentum term [29]; 
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where β is known as the momentum term. If unit j is an output unit, then its δj  is calculated by 
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If unit j is a hidden unit, then its δj  is given by 
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The error gradient is given by :  
 
a) For the output units ; 
 

)OT)(O(Oδ jjjjj −−= 1  

 

where Tj is desired (target) output activation and Oj is the actual output activation at output 
unit j.   
 

b) For the hidden units ; 
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k
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where δk is the error gradient at unit k to which a connection points from hidden units j. 
Repeat iterations until convergence in terms of the selected error criterion. The well known 
error criterion [9,38] is defined  
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The second error statement is usually known as the whole system average error, and P is the 
total number of instances.   
 
 
4. Architecture of the Network 
 
In general, there are many different types of neural networks architectures and usually there is 
not one connections topology that is suitable for all types of problems. The main types of 
artificial neural network are the Hopfield network [17], the Kohonen network [19,20,21], 
ART (Adaptive Resonance Theory), Boltzmann machine, perceptron, back-propagation 
networks and nowadays statistical neural network [17,19,21]. In the present study, back-
propagation type neural network will be used on the estimation of damage level of structures 
after an earthquake. 
 
The network must be trained so as to produce an acceptable output for a given input pattern. 
The network learning approach used in the present work can be described as belonging to the 
category of supervised learning techniques. In such an approach, the output response is known 
for a range of variation of input parameters. These input-output training pairs are presented to 
the network with some initial estimates of weights and thresholds, and are resolved by 
adjustment of those constants.  
 
The architecture of the neural network used in this study is shown in Figure 4. The network is 
feed-forward, multi-layer neural network which have ten input nodes in the input layer, and 
three output nodes in the hidden layer. One hidden layer, however, has been used in the 
developed network. This layer included five nodes. Six nodes (or neurons) are used in the 
input layer. Such a network is described as having a (6: 5:1) architecture feed-forward multi-
layer network.  
 
In Figure 4, the components of the developed multi-layer network are provided. These are 
mainly index for crack values of structural members, index for geometrical and structural 
defects, index for material and workmanship quality, index for soil parameter and 
liquefaction, earthquake field properties and index for rigidity of structural members. These 
components which are found to be relevant for the developed network are explained below.  
 

1. Index for crack values of structural members which provide information regarding the 
level of crack in beam, column and structural walls of a building, 

2. Index for geometrical and structural defects which consider condition and level of 
structural shortcomings such as short column, inappropriate girder allocation, 

3. Index for material and workmanship quality grading the level of quality of these two 
parameters, 

4. Index for soil parameter and liquefaction considering the soil type, field conditions 
and the level of risk for liquefaction, 

5. Seismic zone for the area where the structure is located,  
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6. Index for rigidity of structural members which consider the distribution of structural 
elements and their allocation. This index refers to items such as the existence of 
shearwall, soft story effects, existence of adequate level of shearwall in both directions 
and the relevance of structural system of the building.  
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Fig. 4.    Architecture of the developed multi-layer network 
 

 
The developed artificial neural network well converged with one hidden layer of 5 nodes. The 
selection of number of nodes in the hidden layer is an important factor in the architecture of 
the network. The number of neurons of the hidden layer is recommended to be at least greater 
than square root of the sum of the number of neurons in the input and output layers [8], or 
usually selected as the mean value of the number of the input and output nodes plus the input 
nodes. More complicated networks use dynamic node growing in the hidden layer. The 
training set contains input and output (target) vectors. The input and output data have been 
normalized so that the maximum value is 1. Normalization of the data can often be as simple 
as either dividing the values by the maximum value or by subtracting the minimum value and 
then dividing the values by the range, which is the maximum value minus the minimum value. 
 
 
5. Concluding Remarks 
 
Compared to conventional digital or numerical computing techniques based on some 
mathematical technique, neural networks are advantageous because they can learn from 
example and generalize solutions to new renderings of a problem, can adapt to fine changes in 
the nature of the problem, are tolerant to errors in the input data, can process information 
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rapidly, and are readily transportable between computing systems. Certain conventional 
methods of computing can provide some of these advantages, but never more than a few. 
Neural networks do, however, suffer from a number of shortcomings, notably, a lack of 
precision, limited theory to assist in their design, lack of guarantee of success in finding an 
acceptable solution, and a limited ability to rationalize the solutions provided.   
 
Hajela and Berke [14] stated that: “Despite their limitations, neural networks offer a powerful 
means of solving poorly defined problems that have eluded solution by conventional digital 
computing techniques. Problems of this type are in common place in civil engineering and 
already, within just a few years of the explosion in interest of this technology, successful 
solutions to seemingly intractable problems have been developed. The scope and pace of this 
accomplishment is likely to increase rapidly within civil engineering over the coming years. A 
trained (learned) neural network gives some distinct advantages over the numerical 
analysis/computing or conventional mathematical programs. It provides a rapid mapping of a 
given input into the desired output quantities, thereby enhancing the efficiency of the 
reanalysis. This major advantage of a trained neural network over the conventional procedure, 
under the provision that the predicted results fall within acceptable tolerances, leads to results 
that can be produced in a few clock cycles representing orders of magnitude of less 
computational effort than the conventional computational process”. 
 
The primary purpose of this study is to illustrate the use of a back-propagation neural network 
to predict the damage level of structures after an earthquake. The designed neural network is a 
three layer feed-forward neural network consisting of 6 nodes in input, 5 nodes in hidden and 
1 node in output layers and was trained by generalized delta rule for back-propagation error.  
Neural networks are capable of describing, input-output functional relations, even when a 
mathematically explicit formula is unavailable. To create such mappings, it suffices to present 
a neural network with a set of known input-output pairs. During the training process, the 
interconnection weights of all neurons in the network are computed according to the applied 
learning rule. It should be noted that once the network is trained, the time required results for 
a given set of input is nearly instantaneous for a PC. It has been demonstrated that the 
artificial neural network approach applied in this study is highly successful for the purposes of 
damage level determination of reinforced concrete structures. In addition to these, developed 
network can be used on the architecture area or project office for preliminary design of 
structures under the earthquake effect to give an idea to the designer.   
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