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Abstract

Optimum solution of time cost trade-off (TCT) problem has significant importance for construction sector as it
maximizes the profit of the project. As this is the case, numerous solution techniques are adopted for the
optimum solution of TCT. Meta-heuristics are prevalent techniques for the adaptation of optimum solution of
TCT. Meta-heurigtic algorithms are problem independent algorithms; however their input parameters are
sensitive to the problem type and are not immutable. Erroneous assignment of input parameters may abate the
convergence to the optimum solution or even prevent the convergence to the optimum. In order to improve input
parameters of the hybrid meta-heuristic algorithm; Genetic Algorithm with Smulated Annealing (GASA) an
experimental design is implemented on an 18-Activity project. The correlation between the parameters and the
sensitivity of the input parameters are reveal ed.
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1. Introduction and Literature Review

Time Cost Trade off analysis is the compressiothef project schedule to achieve a more
favorable outcome in terms of project duration,tcaad projected revenues. The objectives
of the TCT analysis are to compress the projeat tedching the optimum duration which
minimizes the total project cost.

TCT is one of the major interests of the constnrcthanagement, since the optimum solution
of TCT problem directly increases profit of the je. As this is the case, several algorithms
and heuristics are developed and implemented wdirols to achieve the optimum solution of
TCT problems. Consequently, many researchers ingslerheuristic algorithms in their
studies for the search of the optimum solution GfTTproblem [1 -5]. Genetic Algorithm
(GA) is also a well known heuristic method whicls many implementations on the solution
of TCT problem [6 — 25].

Although GA is a talented meta-heuristic algorithmbrid meta-heuristics can provide more
successful results [26]. For this reason, manyityieta-heuristics are developed to improve
the capability of GA and Genetic Algorithm with Sitated Annealing (GASA) is one of
them. The adaptation of GASA for the solution of TT@oblems presents successful results
[27]. In this study, the model parameters of GASFPe aimed to be improved by
implementing experimental design. 18-Activity piadjées used for the tests of the design.
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2. Methodology

The study consists of implementation of experimled&sign for a hybrid meta-heuristic
algorithm, Genetic Algorithm Simulated AnnealingAS&A). The meta-heuristic algorithms
Genetic Algorithm (GA) and Simulated Annealing (S#)d experimental design are briefly
introduced.

2.1 Genetic Algorithm

GA is a search technique used for finding exachear optimum solutions to optimization

problems. GA searches the global optimum with gorthm based on the meiosis. An initial

population is randomly generated and new genesemm@duced by crossover. The genetic
differences are formed by mutation and the unfitegeare terminated by natural selection
operations.

First step of the GA is generation of the initi@ipplation. Determining the population size
has significant importance, because small populaticontain the risk of seriously under-
covering the solution space, while large populaiamcur severe computational demand.
Binary representation is preferred for the solutdnTCT where Goldberg indicates that the
optimal size for binary-coded strings grows expdiadly with the length of the string [28].

By experimental design, population size is trieté¢coptimized.

Crossover is the necessary operation for the genetic remtomtu New genes are reproduced
from randomly selected genes. Couples, namely #Hrengs; are determined by randomly
generated numbers and new two genes are reprodiwredoarents by crossover operation.
The location of the crossover is also determinedybyerating a random number which is
shown in Figure 1. After the crossover new two geombinations are generated by the
existing gene combination of the population.

Fig.1. Crossover operator

Eshelman [29], worked on multipoint crossover #wemined the biasing effect of traditional
one-point crossover and considered a range ofnaliges. Central argument was that two
sources of bias exist to be exploited in a geradgorithm; positional bias, and distributional
bias. Eshelman concluded that simple crossovecbasiderable positional bias and the bias
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may be against the production of good solutionsaddition to this, crossover operator is
analyzed in detail [30]. To prevent biased crossofir point crossover is applied in this
study.

Crossover rate has a vital importance that too ¢do@ssover rate can not produce enough
genetic mixture and the convergence ratio decredsesrsely, too high crossover rate too

harshly mixes the genes and prevents the genegntpagood-fit chromosomes to converge

into global optimum. Experimental design analyadudes the investigation of crossover rate
as well. Mutation operator shifts the binary vatiiehe gene on a randomly selected location
from O to 1 or vice versa, which is shown in Fig@re

|
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Fig. 2. Mutation operator

Mutation prevents domination of a certain gene Whias high probability of survival.
Initially domination of relatively good fit genesay cause being stuck into local minimum.
On the other hand, too high mutation rate may &lsstardize good fit genes. Moreover,
crossover can produce good fit genes from exigjgmes, but it can not generate a new gene
for a specific portion which does not exist in gagulation. Therefore, mutation operator has
significant importance as it can produce new geomkinations, which have not been
generated at the initialization of the populatiomegenerate a gene combination terminated at
natural selection. Mutation rate is also importtat too low mutation rate can not help to
improve genetic diversity. However, too high mwatrate will be detrimental on the good fit
genes and prevent convergence to optimum.

Natural selection is the final step of a cycletwd GA. Natural selection keeps the population
size constant by terminating the same number atichaals reproduced at the crossover. In
addition to this, it improves the overall gene qyadf the population by terminating the low
fit genes. On the other hand, low fit genes mayycaery important genes on their certain
location and in order to preserve these portiond prevent initially good fit genes to
dominate, some precautions are taken at the natelattion phase. Roulette wheel selection
algorithm has been implemented for this purposeckvig a probabilistic selection algorithm.
Roulette wheel determines the genes to be terminbye assigning high probability of
termination to low fit genes and low probabilitytefmination to good fit genes.

Natural selection operator completes the one cytlihe GA. Number of cycle generation

depends on the number of input parameters andxjpected reduction in the total project
cost. Flowchart of GA is given in Figure 3.
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Fig. 3. Flowchart of GA

2.2 Genetic Algorithm with Simulated Annealing

If GA is implemented solely for the optimizationuoh iteration would be required to obtain
satisfactory results. Convergence of GA can beemmed significantly by applying
complementary methods, thus important savings wbeldbtained in terms of computation
time. Simulated Annealing (SA) is one of the compdatary methods that are used for this
purpose. SA is a generic probabilistic meta-heiarigkgorithm for the global optimization
problem. SA is inspired by the cooling schedulealtddys subjected to tempering. Initially,
when the temperature is high, the molecules aeetérenove in any direction. At later phases,
movements of molecules are restricted depending®temperature [31].

Mutation operator sometimes leads to better gemek sbmetimes doesn’'t. SA decides
weather to reject or accept the mutation that leadsworse result. The rejection probability
increases as the iteration number increases whichlaes the cooling of the alloy. SA
accepts every mutation that leads to a better gewedecides the rejection of a harmful
mutation.
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Besides the initial temperature, the cooling schetias vital importance as well. In theory,
the temperature should be allowed to decrease 1o lzefore the stopping condition is
satisfied. However, in practice there is no needecrease the temperature this far. Given the
limited precision of any computer implementatiors ta approaches zero from right,
probability of accepting a harmful mutation will ledistinguishable to zero. Even before
zero temperature is reached, it is likely thatdhances of a complete escape from the current
local optimum will become negligible. Thus the eribn for stopping can be expressed either
in terms of a minimum value of the temperature pet@r, or in terms of the ‘freezing’ of the
system at the current solution.

If the initial temperature is not high enough oolea very rapidly, there can be no beneficial
mutations after a certain point. If no progresapparent in searching, a concerted acceptance
of detrimental mutation would be made in order tdem the scope of the search. Kirkpatrick
[32] proposed reheating the temperature if themotsan improvement for a certain number
of iterations. In this thesis study, there is noy aeheating, by enlarging population size;
enrichment of the gene content is aimed to be obthi

The cooling process is controlled by Boltzmann Gamswhich is taken as 1 for GASA.
Division by temperature for cooling is replacedrbyltiplying the exponential equation with
the iteration number. After the mutation, a randawmber is generated for the decision and if
the generated random number is smaller than thisidedunction, the mutation is accepted
[33]. The decision function explained above is espnted as:

(fm_ fo )l
foBC

accepted if R, <e

(fm_ fo )t
foBC

Decision

rejected if R, >e

where;R, is a random number generated between 0 and hdatdcisionf, is the evaluation
value of the mutated genk, is the initial value of the gene before the motatoperator
affects the gend3C is the Boltzmann constant used to determine teedpf coolingt is the
current number of iteration.

Decision function always gives results greater thahthe mutation is beneficial, as a result
beneficial mutations are always accepted. If théated gene is worse than its initial state, the
decision formula gives a result between 0 and ledéing on the difference between the
initial and mutated state. Higher the detrimenthaf mutation, closer the decision function to
0. If the detriment of the mutation is small theideon formula will give results close to 1
and the probability of acceptation will be high. &tevhile, the higher the iteration number,
the harder the acceptance criteria. If mutatiomasmful even a small difference will be
evaluated as close to 0 by the decision formulathegrobability of acceptance will be very
low. The hardening of acceptance criteria is cdignidoy the Boltzmann constant.

Genetic algorithm in which the acceptance of matatis under the control of simulated

annealing is called, Genetic Algorithm Simulatedndaling (GASA). The flowchart of
GASA is given in Figure 4.
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Fig. 4. Flowchart of GASA

2.3 Experimental Design

It is clear that the model parameters are corrélatel affected by each other. As a result of
this, it is difficult to guess the optimum or thatable model parameter which will present the
optimum solution in minimum number of scheduleotder to reveal the correlation between
the parameters an experimental design is perforifieel.aim of this study is to measure the
interaction between the basic parameters suchoasarer, mutation, BC and population size.
18-Activity project is selected for the case stu@lge project is analyzed by considering the
only 200$ constant overhead cost for each day matbelay penalty or early finish bonuses.
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Experimental design is the systematic measurenfeheaesponses of output variable based
on the systematic changes on the input variablesable is a qualitative or quantitative
entity that can vary or take on different valu&gliability is a crucial characteristic of
measurement and refers to the consistency of aumegsdevice.Validity of an instrument
means that it measures what it is designed to meaSantrol involves holding constant or
varying variables systematically so that, theireef§ can be removed from a study or
compared to other condition®2andomization refers to the assignment of subjects to
conditions or levels of an independent variabldegitby the investigator or by a natural
process in the field [34].

The design of an experiment should take; the abgsiof experiment, the number of factors
under investigation, possible presence of idefidizand non-identifiable extraneous factors,
amount of time and money available for the expeni@@igon into account [35]. In this study,
boundaries of input variables are determined bywiabtg the most common numbers from
the literature. After determining the minimum andeximum values of the variable,
experimental design analysis is performed by ssteaet method.

Main effect of a dependent variable on the indepahgariable is defined as the difference in
the average response between the high and lowsl®feh factor. The main effect can be
represented as [36];

E(A)=Y,. -Y, (1)

A

Where, E(A) is the effect of dependent variabdeon the independent variabl¥,, is the

average response of the high Ie\)E\L is the average response of the low leveh.of

Interaction occurs when a particular combinationvad factors affect the dependent variable
unexpectedly from simply observing their main etfednteraction is defined as one-half of
the difference between the effect of independenialble A at the high level of B and the
effect of A at the low level of B. The interactiai dependent variable A and B can be
formulated as [36];

E(AB) = 2 (VA+ _VA* )B+ a (VA* _VA’ )B—] (@)
where, (Y. -Y_ )B+ is the effect of A when B is high ard,. =Y _ )B_ is the effect of A when
B is low.

In order to determine the significance of the irelegent parameters and their interactions
between each other, t-test is performed. Determoimadf significance requires calculation of

standard deviation as a measure of inherent vamiair experimental error in the process.
Variance is the square of the deviation of eachenMation of a sample from the sample
average which can be written as [36];

X -X)
3?2 = Z(nl_l ) (3)
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Average variance is the average of the varianaaoh variance obtained by k runs, where k
is equal to 2if there are n investigated independent variabligs only high and low levels.
Average variance is computed as following;

SEEDN (4)

Effects of the dependent variables are differebhetween averages and require definition of a
modified variation which is called variation of tefects as [36];

4

S =Sl ®
where N is the total number of trials. As long lae tactors will have only high and low levels
equation 4.5 will be valid.

In order to perform t-test, degrees of freedomhw tlata set should be determined. The
computation of degrees of freedom is shown beloxy; [3

d.f.=(#of observations per run—1)x (#of runs) (6)

Next step is selecting a significance level for tkiest. In this analysis 95% significance
interval is preferred. By using the significancéeimal and degrees of freedom, t-value is
obtained and decision limits are calculated byftneula [37];

DL =% (ta,df )(aa,df ) (7)

If effect of a variable or interaction is outsideetregion defined by DL, then the variable or

interaction is determined as significant. The mqgueslameters are adjusted according to the
significances of them. However, the relationshipghe parameters are not always linear

which makes interpolation not applicable.

3. Experimental Design of 18-Activity Project

18-activity project is analyzed for experimentasidea of GASA. Population size, crossover,
mutation and BC are analyzed. The project coshatend of 50000 schedule is taken into
account in order to make a fair comparison of tffece of the parameters. The crashing
options of the activities and logical relationshijtween the activities are shown in Table 1
[38].

Since there are four parameters number of intenast@nd parameters becomés 46. Each
run is repeated 10 times in order to obtain redondbservations. As a result of this, there
are (10 — 1)* 16 = 144 redundant observations.

In Figure 5 pareto chart of effects of GASA for th&-activity project is shown. The bars
show the effect of the parameter on the total ajsthe project. The most significant
parameter is the population size where if popufasize is increase total project cost at the
end of the 50000 schedule also increase. Similarly, when crossoato and Boltzmann
Constant is increased total project cost also as@s. There is significant interaction between
the parameters population size and crossover, atpalsize and Boltzmann Constant and
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Crossover and Boltzmann Constant. As this is thee dhe interaction between the three
parameters are also significant. The positive atgon means that when the population size
and crossover rate is increased simultaneouslyinttrease in total project cost will be more

than the prediction by only considering increasetotal project cost when these two
parameters are increased solely.

Table 1. 18-Activity Project

Act. Predecess

No. or Alternativel  Alternative2  Alternative3  Alternative4 Alternative 5

Dur. Dur. Dur. Dur. Dur.
(days) Cost ($)(days) Cost ($)(days) Cost ($)(days) Cost ($)(days) Cost ($)

1 - 14 2,400 15 2,150 16 1,900 21 1,500 24 1,200

2 - 15 3,000 18 2,400 20 1,800 23 1,500 25 1,000

3 - 15 4,500 22 4,000 33 3,200 - - - -
4 - 12 45,000 16 35,000 20 30,000 - - - -

5 1 22 20,000 24 17,500 28 15,000 30 10,000 - -

6 1 14 40,000 18 32,000 24 18,000 - - - -

7 5 9 30,000 15 24,000 18 22,000 - - - -

8 6 14 220 15 215 16 200 21 208 24 120
9 6 15 300 18 240 20 180 23 150 25 100
10 2,6 15 450 22 400 33 320 - - - -
11 7,8 12 450 16 350 20 300 - - - -
12 5, 9,10 22 2,000 24 1,750 28 1,500 30 1,000 - -
13 3 14 4,000 18 3,200 24 1,800 - - - -
14 4,10 9 3,000 15 2,400 18 2,200 - - - -
15 12 12 4,500 16 3,500 - - - - - -
16 13,14 20 3,000 22 2,000 24 1,750 28 1,500 30 0001,
17 11,14,15 14 4,000 18 3,200 24 1,800 - - - -
18 16, 17 9 3,000 15 2,400 18 2,200 - - - -

Variables to be examined and their low and hightsirare given in Table 2.

Table 2. High and Low levels of parameters of GASA

Parameter High Leve Low L evel
Population Size (A) 200 50
Crossover (B) 0,9 0,3
Mutation (C) 0,9 0,3
Boltzmann Constant (D)1,5 0,5

It is seen that increasing mutation rate decretsetotal project cost at the end of the 50000
schedule. Consequently, in order to obtain nearmph results at the end of the 50800
schedule low level values should be assigned tpdipelation size, crossover and Boltzmann
constant and high level value should be assigneautation.
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The examined four parameters have significant effecthe computational demand. Whole
second order correlations except for the correlabetween the mutation and BC are also
significant. The second order correlations havestmme sign with the multiplication of the

correlated parameters which also increases thetefféhe parameters.

Pareto Chart of Effects of GASA
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Fig. 5. Pareto Chart of effects of GASA

4. Conclusion

In this study, model parameters of a meta-heur@lgorithm are adopted for solution of
medium sized TCT problems. It is seen that the fhetaistic algorithm can already find the
optimum the problem; however by improving the mogalameters the optimum solution is
obtained in shorter computational duration.

Computation duration for the execution of 50000aitens is around 2 seconds which does
not seems to be important to bother for improvimg input parameters. However, it is known
that the number of required generations would eseeexponentially with the project size. As
a result of this, improving the input parametenrsGASA would end up with saving of hours
in terms of computational duration for larger pobge
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