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Abstract

Large deflections were calculated for nonlinear Ludwick type cantilever beams made of Ludwick type
rectangular cross-sectional material subjected to a moment at the free end, by employing approximate and
numerical methods for trial functions satisfying boundary conditions. Adequately approximate results were
obtained for calculations employing single and binominal constant, second and fourth degree polynomial type
trial functions. Increasing number of constant term and degree of trial functions resulted in more approximate
values.
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1. Introduction

A large deflection of bearer systems under diffefead conditions is a well-known subject
and various studies had been conducted about thecsuDue to the importance of the issue,
today studies still continue. In many cases enaedtin different engineering practices,
results obtained by linearization are satisfagtodpproximate. However, well-known
curvature expression for elastically curve is noeadr and also real materials do not have
linear stress-strain relationship. When this fextconsidered, deflections could not be
calculated with analytical methods. Instead, appnate and numerical methods should be
employed. Large deflections of uniform and non-ommf, concentrated or distributed loaded
linear elastic cantilever beams were investigatethany studies [1-8]. Prathap and Varadan
investigated large deflections of cantilever beanasle of Ramberg-Osgood type nonlinear
material, subjected to concentrated load at theedrel. Same problem was solved by Varadan
and Joseph for cantilever beams, for moment afréeeend. Large deflections of cantilever
beams made of Ludwick type nonlinear material stibeto concentrated load at the free end
were investigated by Lewis and Monasa [11]. Santlkecas [12], solved the same problem for
the moment at the free end. Lo and Gupta [13] inyated large deflections of rectangular
cross-sectional beams, for deflection problemsirTihethod was to consider material stress-
strain relationship as logarithmical beyond elabtrgt. Lee [14] calculated large deflections
of cantilever beams made of Ludwick type nonlineeaterial, for both uniform distributed
load and concentrated load at the free end. Lag&lyen, Baykara and Bayer [15] calculated
large deflections of free end of cantilever beanaglenof nonlinear Ludwick type bimodulus
material (stress-strain relationship different fension and compression) on which moment
affecting on the free end. They defined these tesul closed form and tabulated the
numerical results depending on material constants.
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2. Cantilever Beams Subjected to Moment at the Free End

In this study, vertical and horizontal deflectionisuniform cantilever beams for L length,

Shown in Figure 1, was calculated by selecting friaction satisfying boundary conditions

and thus employing various numerical methods ankrEBernoulli curvature expression.

Beam was assumed to be thin and non-elongatindy. lBaterial and geometrical nonlinearity
were also assumed. The objective of this studg determine the effect of geometrical and
material nonlinearity on the large deflections asstiow the difference between large
deflections calculated with different methods faffedent moment values. Deflections

obtained by assumed trial functions was compareRleference values in order to determine
the efficiency of trial functions employed in theidy.

2.1. Methods and For mulation

7 S
B ] _— _—— i == mm = o= - _A_> X
U]
o
C\ A 4
M“: >
A
< L >
v
y

Fig. 1. Uniform cantilever beam moment affectedlmnfree end.

In figure 1A is the horizontal deflection, is thelargest vertical deflection, M is the moment,
Y is the slope angle and s is the arc length.

For trial functions y(x), two different assumptiosatisfying y(0)=0 and y’(0)= 0 boundary
conditions, were employed;

y(x) =ax’ 1)
y(x) = cx® +ex' (2)

Stress-strain relationship for Ludwick type mateisaas shown in below,

1

o =Ben (3)

Euler-Bernoulli curvature-moment expression for wigk type material,
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dy _ y'( _ M (4)
S wryoopye O

In this expression, for rectangular cross-sectigns assumed to be;

B B r‘h 2n+1bnnn
"o2™@+2n)”
For total arc length, equation which is shown belswemployed

[ ar o0 =L ©)

when trial function (1) is written in the Equati@), then arc length was

[ Jar@axp)=L (7)

If this equation is integrated,

()

2a/1+ 44 (L-A § (L-A }+ ArcSinh[2a(l=A L,

4a (8)

is obtained. When trial function (2) is writtenthre Equation (6), then arc length is;

[ i 2axf )= L ©

Simpson method was employed for integration of Equad.

If right side of the Equation 4 was employed ay(at) =ax’ trial function in Equation 1 and

y(x) =cx?+ex* trial function in Equation 2 were considered, efumction was obtained as
shown below;
£, = 2a M (10)

(1+ (2axy )g Ka

(11)

B 2c+12ex M
€, = X

(1+ (2cx+ 4ex § 531

Number of equations that should be obtained by mted residual methods; depend on
number of constant terms in the trial function, éatculation of large deflections. Constant
terms in horizontal deflection and trial functioase unknown, thus, 2 equations for single
constant term trial function and 3 equations foulle constant term trial functions, are
required. One of the equations is to be evaluatenh farc length equation and other will be
derived from other methods that were employed endtudy. Equations obtained for single
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constant term trial function was shown below ordy Moments Method and Least-Squares
Method.

3. Moment M ethod

If y(x)=ax® trial function from Equation 1 is employed anda@aroment of error function in
Equation 10 is integrated over the region accortngmoment method, then;

(L-1) n
[ —2 D=0 (12)

=0 L+ (axfyp "
If y(x)=cx*+ex'trial function from Equation 2 is employed and zarw first moment of

error function in Equation 11 is integrated oves tegion according to moment method, then
equations shown below are obtained:

(L=

j ( 2c+12exX 3—}2\”)dx=o (13)
0 (1+(2cx+4eX §} "
(L=

j ( 2c+12exX S—Lw)xdxzo (14)
0 (1+(2cx+4eX §} "

4. L east-Squares Method

If trial y(x)=ax’ function from Equation 1 is employed and multiption of partial

derivation of constant term with error functionkuation 10, is integrated over the region
according to least-squares method, then equatnarsbelow is obtained:

(L-B) n
[l _|IL/I)(_ 248X 2 g as)

=0 (1+ (2ax)2)g " (+ 44 ig (* 434 %)

If trial y(x) =cx®+ex' function from Equation 2 is employed and multigtion of partial

derivations of constant terms with error function Equation 11, are integrated over the
region according to least-squares method, thentieqsashown below are obtained:

(LIA)( 2c+12exX - M)(_ 6x(2¢+ 12ek )(2cx 54éx+) 2 dx=0
=0 (1+ (2cx+ 4eX § ¥ Ky (F (2cx 4ek?)? @ (2cx 4éxXY)
(16)
(LJ—_A)( 2c+12eX - IL\/F)(_ 12X (28 12ek )(20)(5 4éx+) 12x dx=0
0 (1+(2cx+4eX §y " (F (2cx 4€k?)? @ (2cx 48X Y)
(17)
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5. Galerkin Method

Base functions iny(x) = cx?+ex* trial function is assumed to be weight functiord ahen
multiplying error functions in Equation 11 with wgit function gives the equations below;

(L-0)
J- ( 2c+12eX _ I\/F)dexz 0 (18)
2K
X0 (1+(2cx+4eX §y "
(L-0)
( 2c+12eX _ M)x4dx —0 (19)
K
X0 (1+(2cx+4eX §y "

6. Subregion Collocation Method

When error function in Equation 11 is examinedwio isub regions and equaled to zero, the
equations shown below can be written;

(-8
2
J- ( 2c+12ex - :(w)dx: 0 (20)
X0 (1+(2cx+4eX§y "
(L)
( 2c+12eX :(w)dx 0 (21)

3
=8 (1+ (2cx+ 4eX § ¥

7. Point Collocation M ethod

In this method, error function in Equation 11 isialgd to zero in two points selected over the
region.

Forx:M’

20+: e(L-AY

5 4 57 0 (22)
1+(Ec(L-A)+——e(L-APyR
L+ Gelb-8)+——e(L-A)))

IS obtained.

For x = 2(L-4) ,
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16
2c+—e(L-AY ]
3 5 I\él =0 (23)
(1+ (g C(L—A)+2§e(L_A)3)2)2 n

is obtained.

Vast majority of the integrations conducted in wad methods, were executed according to
Simpson method. By employing these equations aadeaigth equation, constant terms of
trial function and horizontal deflection valua, are calculated by Newton methodL —A)

value forx =L —A condition in trial function gives largest deflentivalue at the free end.

8. Numerical Results
c = 66,%%°%, [12] (24)

In Table 1, large deflections of a NP8 aluminunopwlkcantilever beam which have the
dimensions of 50,8 cm , 2,54 cm , 0,635 cm by meeah length, width and height
respectively and behaving according to Equationa#te given.

o, stress unit is ksi. During the construction oblBal, instead of value of 66.1 ksi for B, unit
conversion was carried out and 0.453 Mdcn? (0.455 GPa) was employed. Calculations in
this study were conducted by Mathematica 5.2 soéwa

In Table 1, large deflection values calculated witirious methods for different moment
values can be seen. It is also possible to obsiedeviations of the calculated values
according to these methods compared to Referedoesvand effect of number of selected
constant terms over the approximation to Refereeselt.
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Table 1. Comparison of horizontal and vertical @etibns calculated various methods for
cantilever beams subjected to a moment at theefrde

M
METHODS (Ncm) 2259,70| 2485,67| 2711,64| 2937,60| 3163,57| 3389,54| 3615,51| 3841,48| 3954,47
A(cm) | 0,0843| 0,2096 0,4811 11,0315 2,0833 3,9848 7,23904838| 16,0579
REFERENCE RESULTS
dv(cm) | 2,5321| 3,9901] 6,034% 8,8024 12,4168,9395| 22,2809| 28,0495( 30,8381
MOMENT y(x)zaxz A(cm) | 0,0846| 0,2118 0,4924 1,0823 2,2846 4,6682 9,01903405| 18,7747
METHOD (MM1) v (cm) | 2,56396| 4,0167| 6,1227 9,0711 13,160B,7508| 25,8685| 33,2645| 36,4608
Deviation for v MM 1 and Reference (%) 0,30 0,66 1,44 2,96 5,65 9,66 13,87 15,68 15/42
MOMENT L A (cm) | 0,0843| 0,2097| 0,481% 1,0328 2,08D1 4,0226 7,48574718| 17,2452
METHOD (MM2) | YX)=OX+ex
dv(cm) | 2,5333| 3,9921] 6,0372 8,801 12,422165,9551| 22,3534 28,2715| 31,0832
Deviation for v MM2 and Reference (%) 0,05 0,05 0,04 0,04 0,05 0,09 0,32 0,79 0,79
LEAST-SQUARE A (m) 0,0846 | 0,2116] 0,4904 11,0619 2,1183 3,7225 5,6267/517,| 8,4817
METHOD y(x)=ax?
(LSM1) dv(m) | 2,5396| 4,0167| 6,1227 9,071 13,1606B,7508| 25,8685 33,2645| 36,4608
Deviation for 8v L SM 1 and Reference (%) 0,30 0,66 1,44 2,96 5,65 9,66 13,847 15,68 1542
LEAST-SQUARE A(cm) | 0,0843| 0,2097] 0,481% 1,0325 2,0862 3,9754 6,75431852,| 10,6734
METHOD y(x)=cx>+ex*
LsM2) dv(cm) | 2,5333| 3,9920, 6,036 8,8043 12,411165,8702| 21,5044 25,0277| 26,3784
Deviation for 8v L SM2 and Reference (%) 0,05 0,05 0,04 0,02 -0,04 -0,41 -3,611 -12,07 -16/91
GALERKIN L, A (cm) | 0,0843| 0,2097] 0,4808 1,029 12,0285 3,5789 5,14083826,| 6,0468
METHOD (GM) | Y®)=ox+ex
dv(cm) | 2,5332| 3,9915 6,032 8,7738 12,22415,9068| 18,1679| 17,3727| 15,9357
Deviation for 8v GM and Reference (%) 0,04 0,04 -0,03 -0,33 -1,57 -6,49 22,64 -6146 ,593
SUBREGION A(cm) | 0,0843| 0,2097| 0,4816 1,0331 2,0918 4,0377 7,53815203| 17,2541
METHOD y(x)=cx>+ex*
(SV) dv(cm) | 2,5333| 3,9921] 6,037% 8,8040 12,433¥,0130| 22,4948| 28,4633| 31,1569
Deviation for 8v SM and Reference (%) 0,05 0,05 0,05 0,06 0,13 0,43 0,95 1,45 1,02
POINT A (cm) | 0,0843| 0,2097| 0,481 1,0309 2,0785 3,9105 6,81747048| 12,8348
COLLOCATION ()=0rext
METHOD yeo=
(PCM) dv(cm) | 2,5332| 3,9919 6,0364 8,8003 12,96(%,7918| 21,6928 26,3255| 28,2676
Deviation for v PCM and Reference (%) 0,04 0,05 0,03 -0,02 4,20 -0,88 -2,70 -6,%5 -9,09
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9. Conclusions

In this paper, large deflections of cantilever beanade of Ludwick type nonlinear material
subjected to a moment at the free end, were igastd by employing polynomial, single and
binominal termed approximate trial functions thatisfy boundary conditions.

Single termed trial function assumed to be y(x)Zaxs a very simplified expression. It is
logic to think that this simple trial function wallnot give good results for calculated
deflections for such a complex problem involvingtthgeometrical and material non-
linearity. However, vertical deflection deviatioase below %6 compared to Reference value,
even decreasing to %0.3, for Moment and Least gudethods. Assuming trial function as
y(x)=ax ?, deflections were calculated by employing Momemi &4east Squares Methods.
When y(x)=ax? trial function employed for Galerkin, Subregioml@cation and Point
Collocation Methods, beyond determined moment \w&lugppropriate roots giving the
constant terms and horizontal deflections, couldb®oobtained. Thus, calculations were not
made for these three methods.

For double termed trial function y(x)=cx+ex*, best results were achieved by employing
Moment and Subregion Collocation Methods for obitmnvertical deflection values that
agree with Reference values. Minimum deviation Moment method was %0.05 and
maximum deviation was 0.79 and for Subregion Callionn Method minimum deviation was
%0.05 and maximum deviation was %1.45. Other metlabsb were given deviations below
%1, for vast majority of the moment values. However some massive moment values,
deviations were too high for some methods and smfdl other methods, but increasing with
the value of the moment.

y(x)=cx 2 +ex* trial function is actually a simple polynomial. Apximation of calculated
deflection values to %0 levels is really interegtand notable. Double constant termed trial
function gives better results than single constammed trial functions in aspect of calculated
deflections. Increasing number of constant termalavagive better results. However,
increasing number of components of trial functiooud result in more complex equations,
which would also complicate the calculations.

Another important highlight is the close resultsRiint Collocation Method compared to
Reference values. What makes this result inteigssithe simplicity of method. The method
gives the simplest results without employing anpptex integration. For vast majority of the
moment values, deviations are below %1 and decd@sa to %0.02
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