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Abstract

We study prismatic sets which are very closely related to simplicial sets. The realization of a prismatic set leads usto
the prismatic subdivision of a simplicial set which is a special case of prismatic sets. We show the topological
relation between the prismatic subdivision of a ssimplicial set Sand Sitself and we give the nerve of this construction.

1.INTRODUCTION

Prismatic sets were introduced and used by Duppmtgmann [5] and prismatic
decomposition appeared in many different places ésg. Phillips-Stone [12]). In Akyar [1], an
important special case of prismatic sets, nameadyptismatic subdivision of a simplicial set S in
connection with "Lattice Gauge Theory" in the sen§éhillips-Stone [12] was given. It was
discovered independently by Lisica-Mardei] and Grayson [6]. The prismatic subdivision had
also been used by McClure-Smith [10] to give atsotuof Deligne's conjecture. One of the main
constructions in the present paper is to give aw@al homeomorphism between the prismatic
subdivision of S and S itself (Lemma 3.1). This stanmction leads us to have topological
properties of the prismatic subdivision. Moreover also give the Alexander-Whitney diagonal
map in terms of the prismatic subdivision (Propogit2.9). We explain how one can get the
corresponding nerve of the prismatic subdivisiantii@ covering of the simplicial set.

The organization of the paper is given as follows:

In section 2, for a simplicial set S, we give thediition of a prismatic set and the prismatic
subdivision E,5. by an induction orp and also we introduce another prismatic SeE.
First, we define a map between the geometric ratidias |S|— |E, and shortly give the
geometric interpretation of |P,. We end this section by giving a homeomorphisnwbenh

I[P, and | with its cellular inverse.

In the third section, we replace any topologicahcgp by the geometric realization of the
simplicial set S and have a canonical homeomorphislPS |l — |IIS. Finally we give the
relations among || |PS ||| and |.. This is also one of the main results in the pg@erollary
3.3 and Corollary 3.4).

Section 4, we recall a new multi-simplicial set whose realization leads us to the nerve of

|P for the covering of | by the stars of vertices from Akyar's thesis e emphasize the
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role of the prismatic subdivision in gauge theddamely this construction will help us to
construct a classifying map in the prismatic s€sse Akyar-Dupont [2]).

2.PRISMATIC SUBDIVISION

In this section, we introduce two prismatic sesmrly ! and . for a given simplicial set S and
define the required homeomorphism using the Alegadhitney diagonal map. We only give the
definition of a simplicial set but a brief expositi of simplicial constructions can be found in évac
Lane [8], May [9] and Milnor [11].

Definition 2.1. A simplicial sets = {SE} is a sequence of sets with face operatss, —+ 5,_, and

degeneracy operatoss: 5, — 5_.,,i=0,... g, satisfying the simplicial identities

d}'—ldi | {_j'

did; = {d}'dHl =

{S}'Sf'l'l : 1 E_j'-

SES'-J. = .S'}'.S'E'+1 : i }_j'-
and
S}'_ldi‘ o {.j'-
d,s; = id:i=ji=j+1

7
S}'df—l r 1 }j +1

Definition 2.2. Let 5 = {Sn}, g=0,1,... be a simplicial set and suppose that &adk a topological space
such that all face and degeneracy operators atagons. Let

A= {{(tl,... ,t,)ERI|1=t, = = t, = 0} be the standarg-simplex given with interior
coordinates, the face mags A7— A% and the degeneracy magis A9— A?71 i=0,... g defined
by £ (g, s tamy) = (tor s ticg, Oty vy tg_g ) @NAN (Eg, ety ) = (b, s timg b FEipg, s ),
respectively. TheSis called a simplicial space and associated ®ighihe so-called fat realizatidis ||
given by
Isll=1 a? xs,/~
with the identification
(eit,x)~(t,dx),t €AY x €5, andi=10, v, g = 1,2 vu

Furthermore we can give the geometric (thin) ragilin | of S with the common extra dentification
(nit,x)~(t,s,x),t EAT* ,x €S andi=0,..,q g=0,1,...
Definition 2.3. Givenp = 0, a(p + 1)-multi-simplicial seSis a sequenc%;sﬂmuﬂﬂ Ewhich is a
simplicial set in eacly;.i = 0, ..., and such that the face and degeneracy operators

d:: P’H.E-... - - P’H.E-..

.0 P L IS I

i
S]': P-n.ﬂ-.....ﬂ_ - P-n.ﬂ_.....ﬂ.-+1 ..... s
commute withd}", s fori = k,i,j =0, ..., p.
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Definition 2.4. A prismatic seP is a sequenc{én'f’ﬂ]l of (p + 1)-multi-simplicial sets fop = 0 together
with face operators

dk: 'P'z:.an...

commuting withd} ands! (interpretingd = ¥ = id on the right) such thdte,} is aA-set, that is, there
exist only face operators on the space. If simjltrere are given degeneracy operators

- 'P'z:.an ]

o - - O Trawrm [

5kt Pogya, ™ Pottag.anai.-ay
we get an ordinary simplicial s(—:{h”ﬂ ]- d,.s.). A prism is a product of simplices, that is, aafethe form
AFo-9p= A% x . x A%,

Definition 2.5. For eactp, the thin realization
Bl= | | 2% xp,, ./ (2.6)

TalF ma

is given with equivalence relation™'generated by the face and degeneracy maps

E:j: Ao @ivGp_y Adp-dit Ledy

nf{; AdeivGp _y AGo-@i~1-ap
respectively.ﬂPﬂ |} is aA-space hence it gives a fat realization

el =1 1a® x|p,|/~ (2.7)

only using face operatold., |: 7, X d.: A% X P, — A%Ti~%p X P .

L o I B I

which act omA%=9r as the projection inducing a structure of a siilispace of |, [}. In other
words, the projectiowr;: A%9r— Ae9i-9p deletes thé-th factor. The further equivalence relation on
IllP[]l given in (2.7) is generated by

{sft,s, cr}-v(t,i'ri,dio‘}, t EAFTY 5 € AT CEP, g,

Now, we give a special case which is called phismatic subdivision of a simplicial setSwhich is
denoted by FE,5, _and defined by the explicit construction

FoSa.ai= Sa 4. tator
Let g = g, + -+ g, . The face operators
di:PS,  gio. = Sots = PoSoaicta. = Sero-1
are defined by
di:=d,
i =0,....q;. Similarly, the degeneracy operators
SPS, o T S0in PSS pita = Soinr
are defined by
.5':::=.5'Em it
i =10,..,q;. The face maps
di:PpS_ | Py 154..80an

are the operators corresponding to the inclusions
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AGotHEitetaptp-1_, patp

deleting theg; + 1 basis vectors with indicegy + -~ +gq;_y + i, ....q, + -+ g; + i. For the
sequences of spacfl# 5 |}, we obtain the fat realization

lesil=1 |a®x|e,s]|/~
where
|'P-z:|5.| = | | ﬂ_l?n---l?n X Sr_?—i--ufz\"'

Remark 1. In order to see thgeometric inter pretation of the prismatic subdivision

FH'SH_ ..... "o =5H_-|-----|-H_-|-M'

Letg = g, + -+ g, in general we can use an inductionpoiNow let us start with a bisimplicial set
P,5. q.asin Akyar [1]. As a motivation, suppoSes a simplicial set with face operatats 5,, =+ 5,_4
and degeneracy operatass,, —+ 5,,14,1 = 0, ...,1. We can associate this to a bisimplicial B&t
where PiS, - =5, 1041

oo !

— g0 — - .
andd; = d;,s; =5/,i=0,...q,,d]'=d_ .;+1, 5 =5,4;:1. J=0,..,q,. Now, we give the

o . [1] [1] L
geometric interpretation (|'P?,S | as follows, her(|eP?,5 | denotes the 1-skeleton of the realization of
F,5. Whenp = 1 we get

[1]
|P15|'-T|:ul?'_| = U Ao xsl‘i‘n"'l?'_"'l'fw
gptgs=1

=A% A x S, JAY x AY % Sy~

Let us takeS = A then the element®,0,1},{0,0,2},{1.1.2},{0,1,2},{0,1,1},{0,2,2} and{1,2,2} are
the non-degenerate elements in the prismatic settt# picture c|me557 .

(2)

(0) (1)
Forp>1

Example 2.8. Let S be a simplicial set aril,5 = 5 X ... X 5§ the p + 1)-multi-simplicial set. The face
operatorsd, : E,5 —+ E,__,5 project on tha-th factor and the degeneracy operatasE, S5 = E_ .5
repeat thé-th factor. The thin (geometric) realization&f5 is defined by

|E,S|=15 % ..x 5|
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=|5|x..x|5]

L A%T XS X XS, [~

with the necessary equivalence relations whictofolfrom Definition 2.8. Although thd,;'s are cellular,
i.e.,d; fEnS':"}] c Eﬂ_is':”}, thes,'s are not cellular, since when we defiheA%i— A% X A% we see
that s, does not convert a low cell i}£,5 | into a cell in|E,,,S|. That is why we consider the fat
realization of |E,S | instead of the geometric one. So we hd\ES ||l as the fat realization of the
simplicial space whosgth term|5 | X ... % |5 |, (p+1)-times, is a contractible space.

Proposition 2.9. Let Sbea simplicial set. One can define the Alexander-Whitney diagonal map

AW(A):|5| x ..x |5
by AW (A) (1, (£)(s),v) = v(s,y)wherel, _ (£):A%% — A9*? andv:|P,S| - |E,S|.
Proof. The map v is defined by using projectionsoneach 5,.,i = 0, ...,p and
v(s® ..., 5P, y) = (s°, ..., 5P, d9FFaptPy heTigartrapte-ly TR
whered™ o =d.,, 0..0od,o =d,,, ,0,0ES,.Letg =q,+ +¢q, and
o o (t): A%0"9p — AT%P jsdefined by
E’n_ ..... " [t] [SI}J "'JS?’] = [S‘?[l - t1j + Ly, "'JSE_[]' - t1] + £y, tq,
5%&1 - tz] + t,, ---r-'-:"i, [‘-L1 - t:] + i, 85,
s (2.10)
sSPMt,_ =t At sP T (b, — )+t
sPt ., sP )
where A% = {(sf,...,sL JeR|1 = 5! = =5 = 0Lt =(t,,...t,) € AF. Itinduces a natural
map of realizations I, (t): |PS | = |5 |, that is,

i
"

1(t):A% % xPS = —ATPXS .,

..... ”

whereq =g, + - +q,. Thusl,_ (t)=1, . (t) X id. We have a commutative diagram

B,s| ——»|E,S]

B
\ T AW(A)
E'F
5]

By the simplicial construction B,5, . =5_._ weknowthat |B,S | % |5 | Sothe AW (A) diagonal
map is defined by

AW (1,0 (D(s).y) =v(s.3).

One can see Mac Lane [8] for further informationatbAlexander-Whitney map .
Proposition 2.11. 1) For t € , where , = {(t,, ...t )|l =1t, == t, =0}, the map

L, (0):|Bs] = 5]

is ahomeomorphismand I (t) "t iscellular.
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2) Let C.,( be abicomplexof iasafamily {(C,, (P),d,,d, of moduleswithhorizontal
and vertical  boundary mapssuchthat @y = d, = 0,8,, @d, = 0,8y @ d,,+d,, = d; = For
t €, [,(t] inducesthe map of cellular chain complexes C,(5) — C..( whichisgiven by

aw(x) = ) Samtetanito—1° +° Sas(D(an..a)
wherex € S,
3) For the i-th face map =:AP"1 = | we have [, o(efxid) =1, , 0 (id X |d, where
ld;| ==, X.
Proof. 1) Let us see thatl,(t) is surjective. Consider the casg =1 and show that
vu® € A%o*:*1 3(50 1) £ A% x A%:,t €, such that

Ly (t) (Sﬁrslj =u’ = (W) os Ut 51)

By using (2.10) we get

o _ 1 ipgtl o0 _ Tdg ggtl 1 _ gptid 1 _ gptg,tl
5] S Sy, T S T e S, S
here sP= (s, ..,52 ) € A% and st=(s},..,s1 ) €A%, since

u® = (uy, .., U, o, 2q) € ATT9:7L gatisfies the following

12U 22U, ZUg s = E Uy gp.49 =0

Similarly one gets 1zs!=-+=5" =0 and since u_, ., Zu_,.,, we have
1= sl =5 =0.Thus3s? € A%, s* € A%, vu® € A%* 2271 One can show that it is also true
for p = 1. Now, consider the usual CW structure (see BredorHapter 4]) of|E,5 | and|S |. The map

1 (t)"t is cellular, since it converts the low dimensiogall in |S | into the one in|B,S |, that is,
L©7sIM) < |Bs|",

2) It follows from 1) that it induces a chain map bétassociated cellular chain complexes. If we let

C.( denote the total complex generated by?, 5. of the double-complex C, ,,( with horizontal
and vertical boundary maps, where C,.(P) =@, ;. +, = Co.___[(. We have a chain map

aw(x) = ) S teto. tn—1 "5 2 41 P Se-(xj

For example for the cagpe= 2 we consider three differentials in the mutirplex
P,S. o . =S .. .. :2.G5G,q, =denotedby d',d",d We need to check

deaw(x) = (d' + (—1)%d" + (—1)9*92G") (5, 40.41 ° 50. (%))
N PyS, .. where d'=3%2(-1)7d,, d" =32 (-1)"dg srs0,8" = T2 (—1)7d g 10,40

It can be easily shown that it is true for general
3) We have a commutative diagram

st id
AP x |B, S| » AP x |B,5|
id > |d;l le
lp-1
AP |P,_4 5| > |5 |
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which gives us the following equality

l,o [:gi X, |

3. TOPOLOGICAL INTERPRETATION OF THE PRISMATIC SUBDIVISION AND
REALIZATIONS

The motivation of this section is as follows: L¥tbe a topological space which can be considered as
simplicial topological space by saying, = X with the identity as face and degeneracy operatas.
|l || denote the fat realization &f and|X | the thin realization o¥. We recall the simplicial topological
spaceE X whereE, X = X = ...x X ¥p then the diagonal map

ptl-times

A:X, = E,X Vp
defines a map of simplicial spaces, in particularap of fat realizations

X1 = ||E,x ||
Let us consider the sequence of spe

£p5| and see that there is a canonical homeomorphism
L: [[IBS [l = WS = [[A= ] x |5,

where [|A%]|| = U,-0807 /~ givenby ft~t,¥t € AP 1i=0,.,p,p=1,...

Note. One can notice that X is replaced|®§| but not by|5 | on the left-hand-side of the map L.

Lemma 3.1. Let S bea simplicial set. There exists a homeomorphism L: [[|B5 ||| = [||5]]l given via Iﬂ(t}.

[l
Proof: We havel|[PS ||| —— [[|ES|Il, wherel|[PS |[| = Ly2oAP % |P?,5,|H-v and using the inverse of
I, (t) we get

idxig=it)

tp~h

Upzo 82 X IS/~ ———— Lo 47 X |B,S| / ~

since I, (t) is a homeomorphism. In particular, we have a camative diagram for each
p and eachn

"L.l

id % 17%(t) I
AP S|/~ ————#IPSIl  ————HIES]Il

Bzl T

. d x 17t
AP % |S |0 : v (1)

vl

»[[1P5. | l1ES|™]

Here |5 1™ denotes then — th skeleton of the realization of the simplicial.§&tr n = 0
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the lower row becomes
id id xdiag
ﬁ?’xfl}—} ﬁ?’xfg—>ﬁ.?’ XSE.X...XSE

and we get
i) idxiplt) i
L:8% x |B,s|™ 55 A x |5 | @
which follows the existence df. We note that the maps ,: |B,S| — 15| do not commute with the
face operatorid, | but only up to homotopy. This can be seen by theviing diagram

[
|B:S | s,

.
EX Fﬂ-i

15
here 1, 1°|d;|~, .

The mapd.,: A% x |B, 5|/~ — AP x |5| /~ given byL,(t,x) = (t,.t?, (t}(x}) induce a
homeomorphism
L:0l [PS|I—N 1] 1 (3.2)

where the right hand side whose the face and therdeacy operators are givenithgntity. We can filter
both sides of (3.2) by-skeletons, that is,

L@ | |PS|®) =) |S|@)

and show thaL(®) is a homeomorphism by using the fact tthaf x |PS | = f x|5] isa
homeomorphism. This can be shown by using an ifmucin the skeleton. It is a homeomorphism for the

zero skeleton and assume th&i™ is a homeomorphism and
|15 %] = 2007 x |PS| /~

of
= (Up2087 "2 X IPS|1lpz0,, X IBS)/~.

El}ﬂ

of
X |5

Similarly [[15|®[| = Upz08? X151/~ andl,zo2? % |S.| = Upzol# ™ X |5-“—|?=Eﬂﬂl.

We already know thaf x |P5|— r » |5 | is @ homeomorphism and the first pa®~Y is also a
homeomorphism by induction. Thfi{?! is a homeomorphism.

L is well-defined, that i,sL?,[s"t,x)NLp_l[t, |d;|x). in other words(&'t, x }~(t, |d ).

L,(£'t2) = (£, L, (£ ()~ (t, (Lpor o 1d; 1) (£.0) ) = L,y (8, 1d; ),
since Iy e (&' X id) = 1p—y ° (id X |d;]) for thei — th face ma=".
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Corollary 3.3.  4:|||PS ||| = |isthe compositeof and the projection
IPs [l — sl —= IS |,

Furthermore, it is a homotopy equivalence.
Proof. The map is just induced by? x |Ep5,| — |5 | given bylt, x) = 1,(t)(x). A homotopy inverse is

given by inclusior|5 | = A? % |P,5| < |||PS]]|.

m|
Remark 2. We have another homotopy equivalence

ug: IS = S
which is defined by

AP xS, U5 apy 5|
diag ® id Tid Xne
x AP X S,
and it takeg(t, x) to (¢, t,x), since
5.1 s 22 15 )
is a natural map. We can define the homotagy||5 || = [[|5 ||| as follows, that is,
ug:AP X §, = AP X AP X 5,
is defined by
ug(ty o tpx) = ([1 -0 -18,..1 = (1-1,)81- 8] (£, ... £, %) )
for O < & = 1. Here,
uglt,x) =(1, .., 1,t,x)
= (571 (0), %)
~0,8,x) €AY x |5 |
and
uy (t,x) = (¢, 0,t,x)
= (eP*1t,t,x)
~(t,t,x)
= ult, x).

Corallary 3.4. There is a homotopy equivalence v defined as a composite of L-1 and 15
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ug L
IS — 1Sl —= IS 11l

Proof. It is straight forward sinc& is a homeomorphism theirt is continuoustzz is a homotopy
equivalence thep=?1 = 1z is a homeomorphism. O

4. SIMPLICIAL SETSAND STAR COMPLEX

In this section, we will give an analogy betweeameave for a simplicial complex and a nerve for a
simplicial set. LetK be a simplicial complex an&" denote its barycentric subdivision consisting of

simplices of the fornho—?, Qg2 2 g This subdivision is the nerve of the simpliciahguex K

considered as an ordered set and hence a catddpsys the nerve of the covering by stars (SealSeg
[13)]).
Definition 4.1. Thestar complex 5, is defined as$, := 5,41 with face and degeneracy operators inherited

from those of5,; asdy:5,; = 5,_; andsy: 5, = S.+4, Wherek =0, ..., g.

i: 5o < |5 | andr: |5 | — 5, are defined in degregby i(y) = (t, 5,.0¥) andr(t.x) = (dg_ox).
whereyeSy, x5 44 andsy, o = 5g @ -..@ Sg,dp. g = dg° ..o dy.

For a simplicial set the case is given as follokar: a given simplicial sef we construct another
simplicial setS so thatS, = 5,41 and a retractiom: § — 5, such tha{r=*(a)|oeS,} corresponds to the

covering by stars. I¥ is a topological space then we have a diagonal KiapX x ... x X, but if we
replaceX by a simplicial sef, we have seen that we have to replagedy |P?,5,| but not |5 because

of the diagonal map and the simplicial constructidere the covering i&~1(z)|zeS,} and the nerve of
|B, S| coveringr=1(g)(oeS,) corresponds t)B,5 | where
BpS goap = Sqot-taptip+L
Letg = go + -+ g,. The face and degeneracy operatorrﬁ?{.ﬁmmqp are inherited from the ones on
Sq+2p+1 as follows:

The face operato;t%f::s,ﬁz?ﬂr1 — Sg+2p are defined by

d_; = dq‘n+"-+l?[_-_+}'+zi ,j = ﬂ, vy 5 butj' F q; + 111 = ﬂ, ey BN

So E,Sqwqp has onlyg + p face operators, that is, we are skippingghtz 1 face operators
{dqn+11 Qaotqu+ires dqn+...+qp+2?.:l+1}'

Similarly the degeneracy operates%:z Sq+2p+1 = Sgeap+2 are defined by

.S'_;; = ‘S-I?n+---+l?[_ﬂ_+}'+zf-'j = ﬂ_. van g '3 butj = q; + 1_.1 = ﬂ_. vey B

The fat realization of,5 | is given by
125 ]| = Lpzo 47 x A%e%2 X B, Sp, g, /™

with the necessary equivalence relations givehasmes for (2.7).

Remark 3. In the case of a manifolii, the nerve of a covering is the simplicial space
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NXy, = ]_[:'D...EF(UED N ---HU:'F}

Wherel = {U;},4 is the covering oX and the disjoint union is taken over @il + 1) — tuples(ig, ..., in)
with {7, 1 ... ﬂﬂfpj # @. In the case of a bundle over a manif&ldhe classifying map is a map
INXy |l = BG. For a simplicial se§, Nty is replaced byB,5.| which is homotopy equivalent to the set
|5.] We have the AW map

|§w5-| =5 |% ..x|5]
and by the fact theli§ | has the same homotopy typesSef we have
|B,5]=15]% ..x 5| = 55 .. X 55

Proposition 4.2. Themap i: 5, = |5 |isa deformation retract with retraction r: |5| = 5.

Proof. Let's take the homotopy _ _
Hy: S| = |5

defined byH; (¢, x) = ((1 — A)(¢, 0) + A(1, ...,1),5,x) such that; (¢, x) ~ i = r(t,x) and
Hy(t,x) ~ id |5, This can be seen by taking the homotopy as

Hy:11A91 xS, = [[A2 x S,

Then

Hy(t,x) =(1,...1,5,%) = (97 1o ..o £2(0),5,%)

g—times
~(0,dyg, g-154%)
= (0, Sﬁdﬁ...q—lx)
=i(0,dg, q-1%)
=ier(t,x) €S,
On the other hand
Hy(t,x) = {t, {],sqx} = (£9t,5,%)
~(tdg54x)
= (t,x)
= l.ﬂ'if|§|;!|'
ThusH; gives us a deformation retrafif of | S|
Note. We have an inclusiof? x B,5 € A7*1 x § ;5,44 The first part of this inclusion A7 < A3+ is
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defined byi(sy, ...,55) = (51,...,54,0). It induces a surjective but not an injective rofipealizations. So
fi|BsS| = |P,S ) is not in general a homotopy equivalence. We faawiaclusion

P Goeelp v D P gpFl..gptl
ﬂ Xﬁl oedp XP,FS%W F‘.—:’ﬂ Xﬁl o e ><.5',_T+2,p+1

q

which defines maps of realizations

2 x |Bs| ——>47x |Bs]

L, (*)
w5
It follows | ?’|
~ £l
NHes|l ———lIPs|ll
> L |~
L.
11S.11]

whereL. = L ¢ ||f]|. The mapf: A7 9% X 545,59 — ATo7P % 5., is given by
F(5%.,57,%) = (5%..,5%,dg 41 ° Aggeq.e3® o © Agszps1X).
Wherex = 5q+2*p+1

Proposition 4.3. Let i: ||5]| < |||P5 || be aninclusion defined by (¢, x) = {t, 1,3[,“,?,xj and
r: |15 ]|l = |15 || be the retraction defined as

r(t,s,y) = (E do..q0° Qgp+2..qotqat2 = ° dqn+---qp_._+2p...q+2fp}’)-
1) i isa deformation retract with the retraction r.
2) Thereis a diagram of homotopy equivalences

151l ——11s ]Il

£l
4.4
I1PS | (4.4)
L] =~
, o sl
3) Thereis a commutative diagram
— [|AW | s
eS| > ES]I
1l |7l 87
AWl

1S 11 > ES|I




Proof. 1) Let's define the homotopy

Hy: AP x A% 1w8p71 5§ . = AP X A%e98 xS o0y
as
Hy (6,5, 5) (6 (1 = (5%, 0) + A1, e, 1, e, (1 = (P, 0) + AL, 1), Sq42p © e 50,).
where
Sq4p= |§¢=5%—L--uq,~:—1| andS g+ op+1 = |§¢=5q:u---q,-:|' Then
Hy (t,s,y) =ierlty) € Sop+1
Hy(t.5,y) = id]|ps]]|
This homotopy givesd|s,s| ~ 1 °r.

2) The first homotopy equivalencés induced by the inclusion given in 1). We haeéirted
v: ||5|| = [[|PS ||| before ag» = L™ = 4z in Corollary 3.4. In the previous note, we havérdel

AP % |PS| = AP % |P5|

which induces a homotopy equivalence

ISl = NlPS ]I

Furthermore the compositidine || f]| = i is a homotopy equivalence afide || £ = i)(t,x) = (&, t, x).
3) We can see that the following diagram

_ id x AW _ _
AP x |B,S]| PAP X |5 | % .. % |5

A2 X|B,S) AXAW s 1sIx xS

is commutative since

. S Fgut--Fgptlp,, 90F2 g tgatIip—1,,
(id x AW)(t,s% ,..,s7,y) = (t,5°, ..., 5P, d 77907y, g /07 @I Ip T Ty )
= gt tgatD KN TR S

f(ESﬁJ---JS?’quj tapt ?’}ad? g2t et Ip 1}'3---3'

_ o Fgut--+aetlp., apt2 Sgot--gu+2p-1..
= (t,s J"'JsdeqD-fld = }'qu-jldu gHz = }'.'"'}
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On the other hand

flt,s%, .., s2,5) = (ESD:---:Sﬂjdnwﬂ welpiaps1y)

(id X AW)(£,5°, 1,57, dpspt1 - Gnszp+1Y)

et gm 1 Ygo g
=(£,5% .., 52,d9" 7RG, g lpapaayndy” AT TG,y i psapen Y ),
wheren = p + g. One can see thfite (id x AW) = (id x AW)e f.

We conclude this section by giving the role of phismatic subdivision in gauge theory. One can
define a bundle over a simplicial set (see Akydr §8d by pulling back this bundle we get a buraller
l| 25 |||. The homotopy equivalend| 25 ||| % |5 || and the transition functions are used to define a

classifying map oll|| 25 ||| (see Akyar-Dupont [2]).
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