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Abstract 

 
In this study, the purpose of this paper is prediction of nondimensional maximum displacement and bending 
moments of thick plates on Winkler-type elastic foundation using Artificial Neural Network. For this purpose, 
training and testing database were created by using a computer software, coded in Fortran, based on Finite 
Element Model. An eight-noded (PBQ8) quadrilateral finite element based on Mindlin plate theory and Winkler 
foundation model are adopted for the finite element solution. Nondimensional subgrade reaction modulus, 
span/thickness ratio of the plate and aspect ratio of the plate were considered as input parameters and 
nondimensional vertical displacement and bending moments of thick plates were considered as output 
parameters. It is seen that the solutions by ANN agree very well with the solutions by FEM, and ANN 
significantly reduces analysis time. 
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1. Introduction 
 
Plates on elastic foundation are found wide applications in practical engineering structures. A 
lot of numerical methods such as finite difference method, finite element method and 
boundary element method have been widely used for solving these problems. But these 
methods require more computational time. So Artificial Neural Network has attracted a lot of 
attention in the solution of these kinds of problems. 
 
In general, the analysis of this problem is based on the incorporation of the foundation 
reaction into the corresponding differential equation of plates. Although various models have 
been introduces to consider interaction between the plate and its foundation, Winkler model 
often is preferred because of its simplicity and providing good result especially under the 
point loads. On the other hand, Kirchhoff thin plate theory is used in most of studies on plate-
foundation interaction in technical literature. But, the effect of shear deformation thorough the 
plate thickness have been ignored in the classical plate theory. However the effect of the shear 
deformation becomes important as the thickness of the plate increases. Therefore Mindlin 
plate element taking shear deformations into account is used in this study.  

 
Artificial Neural Networks are used in many areas such as financial, industrial, military, 
health and engineering since it can actually realize a lot of functions such as estimation, 
classification, data mapping, data filtering, recognition and matching, identifying and 
interpreting. Many studies demonstrating successful outcomes with ANN approach can be 
also found in the area of civil engineering [1-6]. 
 
In this paper, the authors designed a new ANN architecture for thick plates on Winkler-type 
elastic foundation and obtained dimensionless factors of displacement and moments of the 
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thick plate using dimensionless parameters such as nondimensional subgrade reaction 
modulus, span/thickness ratio of the plate and aspect ratio of the plate. 
 
 
2. Artificial Neural Network (ANN) 
 
ANNs are computer programs inspired from human brain. Human brain has about 1011 nerve 
cells called neuron. Information is processed in neurons in human brain. Hence a neuron is 
defined as main component of ANN models. A biological neuron shown in Fig.1 composed of 
four main parts. Exterior signals come from other neurons or environments are received by 
input path of a neuron. This path called as dendrites (1). Received exterior signals by dendrites 
are summed in the cell body (soma) (2). If summed signals are greater than the threshold level 
of the neuron, the cell body produces an impulse and sends it to the path of a neuron (axon) 
(3). End of axon is splits up to many branches. All branches connect to many dendrites of other 
neurons through a junction called synapses (4) [7]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Main parts of a biological nerve cell 
 
Artificial neurons have input wires, connection weights, activation functions and output wires 
instead of the dendrites, the synapses, the cell body (soma) and the axon in a biological 
neuron respectively. Received input signals (xi) are summed after weighted by synaptic 
weights (wij) between neurons by Eq.1 and an output is produced by activation function in a 
mathematical neuron. Outputs produced by activation function in artificial neurons are either 
used as an input or results for next layer neurons or output layer respectively. Generally 
Threshold, Piecewise linear, Gaussian and Sigmoid function are used as activation function in 
ANN studies. In this study, sigmoid function defined by Eq.2, multi layer feed forward neural 
network shown in Fig.2 and back propagation called generalized delta rule were used as 
activation function, network topology and learning algorithm respectively [7]. 
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Here, uj is summation of n inputs for neuron j, wij is synaptic weight between neurons i and j, 
xi is input for neuron j, f(uj) is output of neuron j, β  is slope parameter and bj is bias value of 
neuron j. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. (a) A feedforward ANN and (b) a neuron of artificial neural network  
 
There are an input layer, one or more hidden layer(s) and an output layer in a multi layer feed 
forward neural network. Each layer has neuron(s). Numbers of input layer neurons are the 
same with numbers of input variables of problem. Similarly, numbers of output layer neurons 
are the same with the numbers of output variables of problem. Number(s) of hidden layer(s) 
and number(s) of neuron(s) in hidden layer(s) must be well determined by researcher. 
Generally, trial and error approach based on type of problem, computational speed and 
computational accuracy was used in determinations of number(s) of hidden layer(s) and 
number(s) of neuron(s) in hidden layer(s).Initial values of synaptic weights and bias of neural 
network allocated randomly at the beginning of network training. These values are 
recalculated according to errors between produced network outputs and desired outputs during 
backward propagation of network error(s). Network training is continued until network errors 
for all training examples become lesser than desired error level. In general, validation of 
trained neural network model is done empirically using test examples different from training 
examples. Mostly, error calculations such as mean absolute error, mean squared error, root 
mean squared error and mean absolute percent error (MAPE) are used in the validation 
studies of developed ANN model. Mean absolute percent error (MAPE) calculation given in 
Eq.3 was preferred for validation of developed ANN model in this study. 
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3. Plates on Elastic Foundation and Training of ANN 
 
The main equation of plates on Winkler elastic foundation is 
 

qkwwD =+∇4                                                                                                                (4) 
 
Here, w, D, k and q are displacement of the plate in vertical direction, flexural rigidity of the 
plate, subgrade reaction modulus of the soil and external load.  
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In this study, a new ANN architecture designed by the authors for thick plates on Winkler-
type elastic foundation is used. Training sets and test sets are obtained by using a computer 
program coded in Fortran. Computer program is based on FEM. 8-noded (PBQ8) 
quadrilateral rectangular finite elements based on Mindlin theory is used to develop the 
element stiffness matrix. More details can be found in reference [8]. 
 

As a numerical example, a plate freely resting on Winkler-type foundation subjected to 
external concentrated load is considered to demonstrate the accuracy and the efficiency of 
ANN formulation. Poisson’s ratio of plate is 0.30. Aspect ratio of the plate is taken as 1.0, 1.5 
and 2.0. The ratio of the span length to the plate thickness is considered as 40, 20, 15, 10, 5 
and 4 for each aspect ratio. The nondimensional modulus of subgrade reaction is taken as 1, 2, 
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 and 15 for each the ratio of span length to plate thickness. 
16x16 mesh sizes are used in the analysis. 
 

Training and Testing Data: 
 

The nondimensional modulus of subgrade reaction and factors for displacement and bending 
moments are used and they are defined as follows, 
 

 25.0)/( DklK x=  

 )/( 2
xm PlwDa =                                                                                                             (5) 

 P/Mc xx =  

P/Mc yy =  
 

where lx is the short span, D is flexural rigidity of the plate and P is concentrated load.  
 

ANN is trained with the dimensionless maximum displacement and bending moments 
obtained from the FEM analysis as outputs and the related parameters such as nondimensional 
subgrade reaction modulus, aspect ratio and span/thickness ratio as inputs. 
 

Table 1. Training examples for ANN 
 

 Inputs Outputs   Inputs Outputs 
No K lx/h lx/ly 1000.am 100.cx 100.cy  No K lx/h lx/ly 1000.am 100.cx 100.cy 

1 1 40 1.0 625.74 37.24 37.24  22 13 20 1.0 1.05 23.25 23.25 
2 2 40 1.0 66.68 36.97 36.97  23 1 15 1.0 927.79 40.40 40.40 
3 4 40 1.0 8.96 34.05 34.05  24 2 15 1.0 69.42 40.13 40.13 
4 5 40 1.0 5.55 31.67 31.67  25 3 15 1.0 19.09 39.12 39.12 
5 6 40 1.0 3.76 29.48 29.48  26 4 15 1.0 9.69 37.13 37.13 
6 7 40 1.0 2.71 27.70 27.70  27 5 15 1.0 6.22 34.69 34.69 
7 8 40 1.0 2.05 26.23 26.23  28 6 15 1.0 4.41 32.44 32.44 
8 9 40 1.0 1.62 24.98 24.98  29 7 15 1.0 3.33 30.58 30.58 
9 10 40 1.0 1.32 23.88 23.88  30 8 15 1.0 2.65 29.02 29.02 
10 11 40 1.0 1.09 22.89 22.89  31 10 15 1.0 1.87 26.47 26.47 
11 1 20 1.0 873.71 39.91 39.91  32 11 15 1.0 1.63 25.35 25.35 
12 2 20 1.0 68.79 39.64 39.64  33 12 15 1.0 1.45 24.32 24.32 
13 3 20 1.0 18.71 38.64 38.64  34 13 15 1.0 1.30 23.34 23.34 
14 4 20 1.0 9.33 36.68 36.68  35 14 15 1.0 1.18 22.42 22.42 
15 5 20 1.0 5.89 34.26 34.26  36 15 15 1.0 1.08 21.54 21.54 
16 7 20 1.0 3.02 30.21 30.21  37 1 10 1.0 971.45 40.77 40.77 
17 8 20 1.0 2.36 28.69 28.69  38 2 10 1.0 70.68 40.50 40.50 
18 9 20 1.0 1.91 27.38 27.38  39 3 10 1.0 20.14 39.45 39.45 
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19 10 20 1.0 1.60 26.22 26.22  40 4 10 1.0 10.69 37.41 37.41 
20 11 20 1.0 1.37 25.16 25.16  41 5 10 1.0 7.17 34.91 34.91 
21 12 20 1.0 1.19 24.17 24.17  42 6 10 1.0 5.31 32.59 32.59 

Table 1continued 
 Inputs Outputs   Inputs Outputs 

No K lx/h lx/ly 1000.am 100.cx 100.cy  No K lx/h lx/ly 1000.am 100.cx 100.cy 

43 7 10 1.0 4.20 30.64 30.64  94 7 20 1.5 2.98 30.17 30.16 
44 8 10 1.0 3.48 29.00 29.00  95 8 20 1.5 2.34 28.68 28.70 
45 9 10 1.0 2.99 27.55 27.55  96 9 20 1.5 1.90 27.38 27.40 
46 10 10 1.0 2.64 26.23 26.23  97 10 20 1.5 1.59 26.22 26.23 
47 11 10 1.0 2.37 25.00 25.00  98 11 20 1.5 1.36 25.16 25.16 
48 13 10 1.0 1.98 22.74 22.74  99 12 20 1.5 1.19 24.17 24.17 
49 14 10 1.0 1.84 21.69 21.69  100 13 20 1.5 1.05 23.25 23.25 
50 15 10 1.0 1.72 20.69 20.69  101 1 15 1.5 627.51 40.11 46.60 
51 1 5 1.0 1004.80 41.00 41.00  102 2 15 1.5 54.11 39.76 44.95 
52 2 5 1.0 76.57 40.69 40.69  103 3 15 1.5 17.90 38.62 40.96 
53 3 5 1.0 25.76 39.48 39.48  104 4 15 1.5 9.45 36.67 37.10 
54 4 5 1.0 16.01 37.16 37.16  105 5 15 1.5 6.05 34.42 34.35 
55 5 5 1.0 12.19 34.36 34.36  106 6 15 1.5 4.31 32.33 32.26 
56 6 5 1.0 10.06 31.73 31.73  107 8 15 1.5 2.64 29.02 29.03 
57 7 5 1.0 8.70 29.46 29.46  108 9 15 1.5 2.19 27.68 27.69 
58 8 5 1.0 7.75 27.45 27.45  109 10 15 1.5 1.87 26.47 26.48 
59 9 5 1.0 7.04 25.63 25.63  110 11 15 1.5 1.63 25.36 25.36 
60 10 5 1.0 6.48 23.94 23.94  111 12 15 1.5 1.45 24.32 24.32 
61 11 5 1.0 6.01 22.35 22.35  112 13 15 1.5 1.30 23.34 23.34 
62 12 5 1.0 5.61 20.85 20.85  113 14 15 1.5 1.18 22.42 22.42 
63 13 5 1.0 5.26 19.43 19.43  114 15 15 1.5 1.08 21.54 21.54 
64 14 5 1.0 4.94 18.09 18.09  115 1 10 1.5 657.04 40.48 46.97 
65 1 4 1.0 1012.5 41.03 41.03  116 2 10 1.5 55.36 40.13 45.30 
66 2 4 1.0 80.9 40.68 40.68  117 3 10 1.5 18.97 38.96 41.27 
67 3 4 1.0 29.94 39.35 39.35  118 4 10 1.5 10.46 36.96 37.37 
68 4 4 1.0 19.95 36.84 36.84  119 5 10 1.5 7.00 34.65 34.56 
69 5 4 1.0 15.87 33.85 33.85  120 6 10 1.5 5.22 32.48 32.40 
70 6 4 1.0 13.50 31.04 31.04  121 7 10 1.5 4.16 30.61 30.59 
71 7 4 1.0 11.92 28.59 28.59  122 8 10 1.5 3.47 28.99 28.99 
72 8 4 1.0 10.77 26.41 26.41  123 9 10 1.5 2.99 27.54 27.55 
73 10 4 1.0 9.12 22.58 22.58  124 11 10 1.5 2.37 25.00 25.00 
74 11 4 1.0 8.48 20.86 20.86  125 12 10 1.5 2.16 23.84 23.84 
75 12 4 1.0 7.92 19.25 19.25  126 13 10 1.5 1.98 22.74 22.74 
76 13 4 1.0 7.41 17.74 17.74  127 14 10 1.5 1.84 21.69 21.69 
77 14 4 1.0 6.95 16.33 16.33  128 15 10 1.5 1.72 20.69 20.69 
78 15 4 1.0 6.51 15.00 15.00  129 1 5 1.5 681.54 40.73 47.19 
79 2 40 1.5 51.96 36.60 41.75  130 2 5 1.5 61.45 40.34 45.42 
80 3 40 1.5 17.08 35.48 37.82  131 3 5 1.5 24.65 39.02 41.19 
81 4 40 1.5 8.72 33.58 34.02  132 4 5 1.5 15.81 36.77 37.08 
82 5 40 1.5 5.36 31.39 31.32  133 5 5 1.5 12.05 34.13 34.00 
83 6 40 1.5 3.66 29.38 29.30  134 6 5 1.5 9.99 31.64 31.52 
84 7 40 1.5 2.67 27.67 27.65  135 7 5 1.5 8.67 29.42 29.37 
85 8 40 1.5 2.04 26.22 26.24  136 8 5 1.5 7.74 27.44 27.42 
86 9 40 1.5 1.61 24.98 25.00  137 9 5 1.5 7.04 25.63 25.62 
87 10 40 1.5 1.31 23.88 23.89  138 10 5 1.5 6.48 23.94 23.93 
88 11 40 1.5 1.09 22.89 22.89  139 11 5 1.5 6.01 22.35 22.35 
89 1 20 1.5 591.30 39.62 46.10  140 12 5 1.5 5.61 20.85 20.85 
90 2 20 1.5 53.54 39.27 44.46  141 14 5 1.5 4.94 18.09 18.09 
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91 3 20 1.5 17.52 38.14 40.48  142 15 5 1.5 4.65 16.82 16.82 
92 5 20 1.5 5.71 33.99 33.92  143 1 4 1.5 688.43 40.77 47.21 
93 6 20 1.5 3.99 31.93 31.86  144 2 4 1.5 65.95 40.35 45.36 

Tabloe1 continued 
 Inputs Outputs   Inputs Outputs 

No K lx/h lx/ly 1000.am 100.cx 100.cy  No K lx/h lx/ly 1000.am 100.cx 100.cy 

145 3 4 1.5 28.89 38.93 40.98  190 13 15 2.0 1.30 23.34 23.34 
146 4 4 1.5 19.77 36.48 36.73  191 14 15 2.0 1.18 22.42 22.42 
147 5 4 1.5 15.75 33.65 33.48  192 15 15 2.0 1.08 21.54 21.54 
148 6 4 1.5 13.44 30.96 30.82  193 1 10 2.0 510.33 40.82 52.76 
149 8 4 1.5 10.77 26.40 26.36  194 2 10 2.0 52.65 40.17 47.46 
150 9 4 1.5 9.87 24.42 24.40  195 3 10 2.0 18.77 38.80 40.86 
151 10 4 1.5 9.12 22.58 22.57  196 4 10 2.0 10.25 36.87 37.10 
152 11 4 1.5 8.48 20.86 20.86  197 5 10 2.0 6.93 34.63 34.53 
153 12 4 1.5 7.92 19.25 19.25  198 6 10 2.0 5.20 32.48 32.41 
154 13 4 1.5 7.41 17.74 17.74  199 7 10 2.0 4.15 30.61 30.59 
155 14 4 1.5 6.95 16.33 16.32  200 8 10 2.0 3.47 28.99 28.99 
156 15 4 1.5 6.51 15.00 15.00  201 9 10 2.0 2.99 27.54 27.55 
157 1 40 2 335.95 37.28 48.94  202 10 10 2.0 2.64 26.23 26.23 
158 3 40 2.0 16.87 35.30 37.40  203 12 10 2.0 2.16 23.84 23.84 
159 4 40 2.0 8.50 33.48 33.74  204 13 10 2.0 1.98 22.74 22.74 
160 5 40 2.0 5.29 31.38 31.30  205 14 10 2.0 1.84 21.69 21.69 
161 6 40 2.0 3.64 29.38 29.33  206 15 10 2.0 1.72 20.69 20.69 
162 7 40 2.0 2.66 27.67 27.66  207 1 5 2.0 530.59 41.05 52.99 
163 8 40 2.0 2.04 26.22 26.24  208 2 5 2.0 58.8 40.37 47.54 
164 9 40 2.0 1.61 24.98 25.00  209 3 5 2.0 24.47 38.89 40.78 
165 10 40 2.0 1.31 23.88 23.89  210 4 5 2.0 15.63 36.69 36.81 
166 11 40 2.0 1.09 22.89 22.89  211 5 5 2.0 12.00 34.12 33.95 
167 1 20 2.0 460.49 39.96 51.85  212 6 5 2.0 9.98 31.64 31.52 
168 2 20 2.0 50.86 39.31 46.62  213 7 5 2.0 8.67 29.42 29.37 
169 3 20 2.0 17.31 37.97 40.07  214 8 5 2.0 7.74 27.44 27.42 
170 4 20 2.0 8.87 36.12 36.37  215 9 5 2.0 7.04 25.63 25.62 
171 6 20 2.0 3.97 31.93 31.88  216 10 5 2.0 6.48 23.94 23.93 
172 7 20 2.0 2.98 30.18 30.17  217 11 5 2.0 6.01 22.35 22.35 
173 8 20 2.0 2.34 28.68 28.70  218 12 5 2.0 5.61 20.85 20.85 
174 9 20 2.0 1.90 27.38 27.40  219 13 5 2.0 5.26 19.43 19.43 
175 10 20 2.0 1.59 26.22 26.23  220 15 5 2.0 4.65 16.82 16.82 
176 11 20 2.0 1.36 25.16 25.16  221 1 4 2.0 537.15 41.07 53.00 
177 12 20 2.0 1.19 24.17 24.17  222 2 4 2.0 63.37 40.38 47.45 
178 13 20 2.0 1.05 23.25 23.25  223 3 4 2.0 28.71 38.80 40.58 
179 1 15 2.0 487.81 40.46 52.37  224 4 4 2.0 19.60 36.42 36.46 
180 2 15 2.0 51.41 39.80 47.11  225 5 4 2.0 15.71 33.64 33.43 
181 3 15 2.0 17.7 38.45 40.54  226 6 4 2.0 13.44 30.96 30.82 
182 4 15 2.0 9.23 36.58 36.83  227 7 4 2.0 11.90 28.56 28.49 
183 5 15 2.0 5.98 34.41 34.32  228 9 4 2.0 9.87 24.42 24.40 
184 6 15 2.0 4.30 32.34 32.28  229 10 4 2.0 9.12 22.58 22.57 
185 7 15 2.0 3.29 30.55 30.54  230 11 4 2.0 8.48 20.86 20.86 
186 9 15 2.0 2.19 27.68 27.69  231 12 4 2.0 7.92 19.25 19.25 
187 10 15 2.0 1.87 26.47 26.48  232 13 4 2.0 7.41 17.74 17.74 
188 11 15 2.0 1.63 25.35 25.36  233 14 4 2.0 6.95 16.33 16.32 
189 12 15 2.0 1.45 24.32 24.32  234 15 4 2.0 6.51 15.00 15.00 
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Table 2. Testing examples for ANN 
 

 Inputs Outputs   Inputs Outputs 
No K lx/h lx/ly 1000.am 100.cx 100.cy  No K lx/h lx/ly 1000.am 100.cx 100.cy 

1 3 40 1.0  18.26 35.99 35.99  10 10 10 1.5 2.64 26.23 26.23 
2 6 20 1.0 4.09 32.04 32.04  11 13 5 1.5 5.26 19.43 19.43 
3 9 15 1.0 2.19 27.68 27.68  12 7 4 1.5 11.90 28.56 28.49 
4 12 10 1.0 2.16 23.84 23.84  13 2 40 2.0 49.45 36.63 43.85 
5 15 5 1.0 4.65 16.82 16.82  14 5 20 2.0 5.64 33.98 33.89 
6 9 4 1.0 9.87 24.42 24.42  15 8 15 2.0 2.63 29.02 29.03 
7 1 40 1.5 425.80 36.94 43.38  16 11 10 2.0 2.37 25.00 25.00 
8 4 20 1.5 9.09 36.21 36.65  17 14 5 2.0 4.94 18.09 18.09 
9 7 15 1.5 3.29 30.54 30.53  18 8 4 2.0 10.77 26.40 26.36 

 

As can be seen form Table 1 and Table 2, variables in training and testing data range from 
bottom and top limit presented in Table 3. 
 

Table 3. Range of variables in training and testing database 
 

Parameter Range 
K 1~15 
lx/h 4~40 
lx/ly 1~2 
1000.am 1.05~1012.53 
100.cx 15~41.07 
100.cy 15~53 

 

Determination of ANN architecture: 
 

In order to obtain better results, different ANN architectures with different training 
parameters were evaluated. After all initial performance evaluations, the ANN architecture 
shown Fig.5 was selected for this study. As seen from Fig.5, selected ANN architecture has 
four layers. There are 3, 6, 6 and 3 neurons in input layer, 1st hidden layer, 2nd hidden layer, 
and output layer respectively.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 5. Selected multi layered ANN architecture 
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Training of the ANN Model: 
 
Training set consists of 234 examples. Connection weights were selected randomly between 0 
and 1 by computer program coded using Visual Basic Program for ANN studies. Training 
cycle was released and computer program stopped when the error tolerance was less than or 
equal 0.02 for each output neuron. These adjusted neural weights of the ANN obtained in this 
study are presented in Table 4, Table 5 and Table 6. Testing of the ANN was performed by 
using these neural weights. 
 

Table 4. Neural weights between input layer and 1st hidden layer 
 

 
1st hidden Layer Neurons 

1st 
Neuron 

2nd 
Neuron 

3rd 
Neuron 

4th 
Neuron 

5th 
Neuron 

6th 
Neuron 

In
pu

t 
La

ye
r 

N
eu

ro
ns

 

1st Neuron -4.595572047 13.62461668 0.002271442 -0.186683768-0.579188860 0.497921499 
2nd Neuron -1.063877289 -2.634195212 -0.339157413 -9.399162491-2.640729082 0.398394236 
3rd Neuron 1.249631080 3.607865589 0.365054228 4.929387044 -2.724773911 0.400441316 

       

 
 

Table 5. Neural weights between 1st hidden layer and 2nd hidden layer 
 

 1st hidden Layer Neurons 
1st 

Neuron 
2nd 

Neuron 
3rd 

Neuron 
4th 

Neuron 
5th 

Neuron 
6th 

Neuron 

        

2nd
  

H
id

d
en

  
L

ay
er

 N
eu

ro
n

s 1st Neuron -13.622287097 -21.73100132 -20.675363672 -36.327177279 43.200190512 -2.678836309 

2nd Neuron 0.160024803 3.085699294 1.5834471895 5.7477940208 0.794813577 -2.988741439 

3rd Neuron 0.313706558 -4.722953948 23.863177116 -5.712931638 17.860070787 -14.858651510 

4th Neuron -11.497594319 -4.690059786 11.793048979 3.562264369 8.539661329 7.842248344 

5th Neuron 0.211745981 8.352726805 1.224423228 5.163831319 1.380598400 -7.847671248 

6th Neuron 0.321021580 -5.965550321 5.296759553 7.701932878 -4.466205448 8.580680428 

        

 
Table 6. Neural weights between 2nd hidden layer and output layer 

 

 
2nd Hidden Layer Neurons 

1st 
Neuron 

2nd 
Neuron 

3rd 
Neuron 

4th 
Neuron 

5th 
Neuron 

6th 
Neuron 

O
u

tp
u

t L
ay

er
 

N
eu

ro
n

s 

       

1st Neuron -22.670805986 6.639261213 14.395055499 -1.348652056 2.378231287 5.603706477 
2nd Neuron 0.122379446 0.365607907 -1.270902076 -2.624017238 0.752479848 1.969575712 
3rd Neuron 0.177936912 6.280252671 -3.414687034 -1.561338369 -2.335396363 0.518774672 

       

 
Testing of the ANN Model: 
 
18 testing examples given in Table 2 were used in order to evaluate the performance of the 
trained ANN Model. The absolute percent errors between testing examples results and the 
ANN model outputs were calculated and given in Table 7.  
 



75 

As seen from this table, maximum percent errors of three am, cx and cy factors were calculated 
as 4.398, 4.141 and 1.940 percent respectively. Also the mean absolute percent error (MAPE) 
given in Eq. 3 were calculated in Table 7. for am, cx and cy outputs. 
 
As can be seen the results, it can be said that trained ANN model was showed quite good 
performance for testing sets. 
 

Table 7. Percent Errors between test examples and ANN Outputs 
 
 1000.am  100.cx  100.cy 

No 
Test 
Data 

ANN 
Outputs 

MAPE 
Values  

Test 
Data 

ANN 
Outputs 

MAPE  
Values   

Test  
Data 

ANN 
Outputs 

MAPE 
Values  

1 18.26 19.100 4.398  35.99 34.604 4.002  35.99 35.641 0.976 
2 4.09 4.022 1.681  32.04 32.512 1.452  32.04 31.756 0.894 
3 2.19 2.224 1.533  27.68 28.371 2.435  27.68 28.370 2.433 
4 2.16 2.146 0.645  23.84 23.495 1.467  23.84 24.045 0.854 
5 4.65 4.660 0.227  16.82 17.546 4.141  16.82 16.753 0.397 
6 9.87 9.908 0.385  24.42 23.827 2.487  24.42 24.491 0.292 
7 425.8 429.721 0.912  36.94 37.675 1.952  43.38 44.215 1.888 
8 9.09 8.912 1.994  36.21 35.658 1.548  36.65 35.952 1.940 
9 3.29 3.312 0.680  30.54 31.279 2.362  30.53 30.641 0.363 
10 2.64 2.633 0.244  26.23 25.815 1.607  26.23 26.573 1.293 
11 5.26 5.248 0.229  19.43 19.410 0.100  19.43 19.294 0.703 
12 11.9 12.191 2.390  28.56 28.885 1.127  28.49 29.172 2.337 
13 49.45 48.184 2.627  36.63 36.419 0.577  43.85 43.917 0.152 
14 5.64 5.616 0.417  33.98 33.825 0.457  33.89 33.285 1.817 
15 2.63 2.669 1.475  29.02 29.364 1.173  29.03 28.814 0.749 
16 2.37 2.363 0.267  25.00 24.228 3.184  25.00 25.026 0.105 
17 4.94 4.993 1.064  18.09 18.296 1.129  18.09 18.045 0.247 
18 10.77 11.025 2.320  26.40 26.211 0.719  26.36 26.569 0.787 
Maximum Error % 4.398    4.141   1.940 
MAPE 1.083    1.670   1.011 

 
4. Conclusions 
 
The aim of this study is the prediction of the nondimensional maximum displacement and 
bending moments of the plate on Winkler-type elastic foundation using artificial neural 
networks. Following conclusions can be drawn from this study. 

 
• The success of an ANN model depends on the training data and the structure of 

network. The ANN model presented in this study are valid only for the range of data given 
Table 3 for ν=0.3 and concentrated load. A future enrichment of the used database would 
increase the authority of the proposed method.  

• The developed ANN model could not only make a good estimation of maximum 
displacement and bending moment of thick plate on Winkler-type elastic foundation but also 
significantly reduce modeling and computational time. 

• It is note that the errors between ANN and FEM results decrease as the training 
database enlarges. 

• This study can be enlarged for various Poisson ratios and load conditions. 
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