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Abstract

In this paper, the static pull-in instability of beam-type micro-electromechanical systems (MEMS) is theoretically
investigated. Two engineering cases including cantilever and double cantilever micro-beam are considered.
Considering the mid-plane stretching as the source of the nonlinearity in the beam behavior, a nonlinear size-
dependent Euler-Bernoulli beam model is used based on a modified couple stress theory, capable of capturing the
size effect. By selecting a range of geometric parameters such as beam lengths, width, thickness, gaps and size
effect, we identify the static pull-in instability voltage. A MAPLE package is employed to solve the nonlinear
differential governing egquations to obtain the static pull-in instability voltage of microbeams. The results reveal
significant influences of size effect and geometric parameters on the static pull-in instability voltage of MEMS.

Keywords: Nonlinear microbeam, modified couple stress thestatic pull-in instability,
size effects.

1. Introduction

Micro-electromechanical systems (MEMS) are widebing used in today’s technology. So
investigating the problems referring to MEMS, ovengreat importance. One of the significant
fields of study is the stability analysis of thergraetrically excited systems. Parametrically
excited micro-electromechanical devices are evaeasingly being used in radio, computer and
laser engineering [1]. Parametric excitation odcua wide range of mechanics, due to time
dependent excitations, especially periodic onesiesexamples are columns made of nonlinear
elastic material, beams with a harmonically vaealength, parametrically excited pendulums
and so forth. Investigating stability analysis argmetrically excited MEM systems is of great
importance. In 1995 Gasparini et al. [2] studied tba transition between the stability and
instability of a cantilevered beam exposed to atigdhr follower load. Applying voltage
difference between an electrode and ground cabgesléctrode to deflect towards the ground.
At a critical voltage, which is known as pull-in ltege, the electrode becomes unstable and
pulls-in onto the substrate. The pull-in behavibMEMS actuators has been studied for over
two decades without considering the casimir fo€5]. Osterberg et al. [3, 4] investigated the
pull-in parameters of the beam-type and circular M&E actuators using the distributed
parameter models. Sadeghian et al. [5] appliedyimeralized differential quadrature method to
investigate the pull-in phenomena of micro-switchAscomprehensive literature review on
investigating MEMS actuators can be found in Ré&}. Further information about modeling
pull-in instability of MEMS has been presented irfR[7, 8]. The classical continuum
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mechanics theories are not capable of predictiaheaplanation of the size-dependent behaviors
which occur in micron- and sub-micron-scale striedu However, some non-classical
continuum theories such as higher-order gradiesurtes and the couple stress theory have been
developed such that they are acceptably able eoprét the size-dependencies.

In 1960s some researchers such as Koiter [9], Mindl0] and Toupin [11] introduced the
couple stress elasticity theory as a nonclassioryheapable to predict the size effects with
appearance of two higher-order material constantiseé corresponding constitutive equations. In
this theory, beside the classical stress comporemtisg on elements of materials, the couple
stress components, as higher-order stresses,sar@ailable which tend to rotate the elements.
Utilizing the couple stress theory, some reseaschevestigated the size effects in some
problems [12].Employing the equilibrium equationmbments of couples beside the classical
equilibrium equations of forces and moments of dsfca modified couple stress theory
introduced by Yang, Chong, Lam, and Tong [13], vatie higher-order material constant in the
constitutive equations. Recently, size-dependentlimear Euler—Bernoulli and Timoshenko
beams modeled on the basis of the modified coupssstheory have been developed by Xia et
al. [14], and Asghari et al. [15], respectiveRong et al. [16] present an analytical method for
pull-in analysis of clamped-clamped multilayer bedrheir method is Rayleigh-Ritz method
and assumes one deflection shape function. Thelwed¢he two governing equations by
enforcing the pull-in conditions that the first aseicond order derivatives of the system energy
functional are zero. In their model, the pull-inltage and displacement are coupled in the two
governing equations.

This paper investigates the pull-in instability mfcro-beams with a curved ground electrode
under action of electric field force within the fnework of von-Karman nonlinearity and the
Euler—Bernoulli beam theory. The static pull-in tagle instability of clamped-clamped and
cantilever micro-beam are obtained by using MAPLdinmercial software. The effects of
geometric parameters such as beam lengths, widtkness, gaps and size effect are discussed
in detail through a numerical study. To the authbest knowledge, no previous studies which
cover all these issues are available.

2. Prdiminaries

In the modified couple stress theory, the straergy densityu for a linear elastic isotropic
material in infinitesimal deformation is written HY/]:

0=2(08,+mx,) () =123 @
Where

0, = A0 + 2e; (2)

e, = (O, + (Ou)}) ©

m; = 2°ux; 4

Xi =5 ((8), +(O8))) ©)

In whicho; , €; ,m, andx; denote the components of the symmetric part ofsttensoo, the
strain tensore, the deviatoric part of the couple stress tens@nd the symmetric part of the
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curvature tensogy, respectively. Alsou anddare the displacement vector and the rotation
vector. The two Lame constants and the materigtlteacale parameter are represented by

and , respectively. The Lame constants are writtererms of the Young’'s modulus and the
Poisson’s ratiov as A=vE/Ql+v)@1-2v) and p=E/2(l1+v).The components of the

infinitesimal rotation vecto®, are related to the components of the displacemestow field u
as [18]:

6, = (curl (), (6)

For an Euler—Bernoulli beam, the displacementlfeein be expressed as:

ow(x,t)

u, =u(xt)—-z
Zu() -z

, U, =0, u, =w(x,t) (7)

Where u is the axial displacement of the centrdisleations, and w denotes the lateral deflection

of the beam. The paramet@¥/ 0X stands for the angle of rotation (about the y-aafshe beam
cross-sections. Assuming the above displacemeld, fadter deformation, the cross sections
remain plane and always perpendicular to the céinerwithout any change in their shapes. It is
noted that parameter z represents the distancepoird on the section with respect the axis
parallel to y-direction passing through the cermtroi

3. Governing Equation of Motion

In this section, the governing equation and cowaedmg classical and non-classical boundary
conditions of a nonlinear microbeam modeled on lbsis of the couple stress theory are
derived. The coordinate system and loading of derEBernoulli beam have been depicted in
Fig. 1. In this figureF(x,t) andG(x,t) refer to the intensity of the transverse distioufiorce and
the axial body force, respectively, both as foreeymit length.

x , u

Fig. 1. An Euler—Bernoulli, loading and coordinatestem.
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By assuming small slopes in the beam after defeomathe axial strain, i.e. the ratio of the
elongation of a material line element initially tine axial direction to its initial length, can be
approximately expressed by the von-Karman strain as

o= ey 2 Qyp L U0 T 0y ®)
X 2 0x 0x 6x 2 0x
It is noted that finite deflection w is permissildad only it is needed that the slopes be very
small. Hereafter, we use Eqg. (8) for the axial istranstead of the infinitesimal definition
presented in Eq. (3). Substitution of Eqgs. (7) @)dnto (3)—(5) yields the non-zero components.
Also, combination of Egs. (6) and (7) gives [19]:
ow

9, ax ,0,=6,=0 9

Substitution of Eq. (9) into (5) yields the follavg expression for the only non-zero components

of the symmetric curvature tensor:

19°w
Xy =Xy = _EW Of1
It is assumed that the components of strains,iooigtand their gradients are sufficiently small.
By neglecting the Poisson’s effect, substitutionkaf. (8) into Eqg. (2) gives the following
expressions for the main components of the symmpait of the stress tensor in terms of the

kinematic parameters:

2
‘3—"" E("—"") ), all others, =0 (11)
WhereE denotes the elastic modulus. In order to wrltertdm&zero components of the deviatoric
part of the couple stress tensor in terms of therkiatic parameters, one can substitute Eq. (10)
into Eq. (4) to get:

o, = Ee,= E(@ -z
oX

m,, = -l ZzTW (12)
Whereu andl are shear modulus and the material length scasereder, respectively.
To obtain the governing equations, the kinetic gneaf the beanT, the beam strain energy due
to bending and the change of the stretch with @sfgethe initial configuratio,,, and the
increase in the stored energy with respect to tiitali configuration due to the existence of
initially axial loadJ,;and finally the total potential energy =U, +U, are considered as

follows:

== p{( - _) +(aV\§ }dAdx (13a)
at otox
1%, 0w ou  1,0w,, ou A2
U _El{El(ax EA(_x —(—) )?+N [2 +(—) 1+ > )}d (13b)

Where N,, | and pare the axial load, area moment of inertia of sectibout y— axis and the

mass density, respectively. The work done by thereal loads acting on the beam is also
expressed as:
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oW =

(05
X (13¢)
+(P"

2.2 "W +@8C )

Where N and V represent the resultant axial and transverse fdrcessection caused by the
classical stress components acting on the seclioa.resultant axial and transverse forces are

work conjugate tau andw, respectively. Also,P"and Q“are the higher-order resultants in a
section, caused by higher-order stresses actirthesection. These two higher-order resultants
are work conjugate te, =au/adx +1/2(dw/0x)>andd’w/dx*, respectively. The parametst is

the resultant moment in a section caused by thesiclel and higher-order stress components.
Now, the Hamilton principle can be applied to detee the governing equation:

t
[@T-8U +3w)dt =0 (14)
4
Where d denotes the variation symbol. By applying Egs. A8 34, the governing equilibrium
micro beam is derived as:

o*w 0w R
sZ T NI oAl = F(xit 15
o N tPAGE TR (15)
Where
EAF ow,,
+— [ (EY2gx 16
oL {(ax) (16)
S=El +pAl2 (17)

If in Eg. (15) ,N=0, then the model of beam is called the linear agnawithout the effect of
geometric nonlinearity. The cross sectional ared langth of beam ar@ andL respectively.
F(x,t) is the electrostatic force per unit length of bleam. The electrostatic force enhanced with
first order fringing correction can be presentethia following equation [20]:

- (xt)= (SLVZ)[l oesw] (18)

Whereg, = 8854x10*C*N "m™is the permittivity of vacuuny is the applied voltage, is the

initial gap between the movable and the groundtelde andB is width of beam. For clamped-
clamped beam, the boundary conditions at the ereds a

w(0) =0, dW)((O) wL) =0, ML) _, (19)
For cantilever beam, the boundary conditions aetids are:
2 3
w(0) = 0 dw(0) -0 d W(ZL) -0, d w(sL) -0 (20)
dx dx dx
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Table 1. Geometrical parameters and material ptiesesf micro-beam.

Material properties Geometrical dimensions
E(GPa) v L (Hm) B (um) h(um) g (um)
77 0.33 | 100-50Q 0.5-50 0.5-4 0-30
. Q _ 0o _d : )
In the static case, we have =0 and— =— . Hence, Eqg. (15) is reduced to:
ot ox dx
2
j( d W &BVT s oesw] (21)

2Ag-w)’

A uniform microbeam has a rectangular Cross setwnim heighth and widthB, subjected to a
given electrostatic force per unit length. Let assider the following dimensionless parameters:
a=A pSBVL 065, 5= MAE oW g X plalt o)
2l 20°El El g L El
In the above equations, the non—dimensronal paemdeis defined the size effect parameter.
Also,B is non-dimensional voltage parameter. The norredlizonlinear governing equation of
motion of the beam can be Written as [21]:

- P B
{r+a j( ~) d"'} = _(1_W)2+(1_W) (23)

4. Results and Discussion
4.1. Static pull-in instability analysis

When the applied voltage between the two electrodeeases beyond a critical value, the
electric field force cannot be balanced by thetelasstoring force of the movable electrode and
the system collapses onto the ground electrode. vbftage and deflection at this state are
known as the pull-in voltage and pull-in deflectigvhich are of utmost importance in the design
of MEMS devices. The pull-in voltage of cantilevand fixed-fixed beams is an important
variable for analysis and design of micro-switched other micro-devices. Typically, the pull-in
voltage is a function of geometry variable sucheagth, width, and thickness of the beam and
the gap between the beam and ground plane. To shedynstability of the nano-actuator,
Eq. (23) is solved numerically and simulated. Tghhght the differences between linear and
nonlinear geometry model results of Euler-Bernonilcrobeam, we first compare the pull-in
voltage for a fixed-fixed and cantilever beams watHength of 100m, a width of 5Qm, a
thickness of im and two gap lengths. For a small gap length ofi®.%shown in Fig. 2), we
observe that linear and nonlinear geometry moda mientical results. However, for a large gap
length of 2 um (shown in Fig. 3), we observe that pull-in voltaige fixed-fixed beam is

significantly different. As shown in Fig. 4, theffdrence in the pull-in voltage is even larger
when a gap length of 4umis considered. In figures 5, 6 and 7, pull-in vg#éaof fixed-free

beams are shown. It is evident that pull-in voltafdéixed-fixed beam is larger than fixed-free
beam. More extensive studies for the cantilevenbeadth lengths varying from 100 to 506

and thicknesses varying from 1 tardare shown in Figs. 8 and 9. The gap lengths used va
from 5 to 3Qum. For gaps smaller than b and lengths larger than 3@®, we observe that the
pull-in voltage obtained with linear and nonling@ometry model are very close. However, for
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large gaps (such as the b case) and for short beams (such as the|ibdfase), we observe
that the difference in the pull-in voltage obtaineith linear and nonlinear geometry model is
not negligible. In Figs. 10-11, we investigate fixed-fixed beam example with lengths varying
from 100 to 500um and thickness varying from 0.5 tqu2. We observe that, for all cases, the
pull-in voltage obtained with linear model are igrsficant error (larger than 5.5%) compared to
the pull-in voltages obtained with nonlinear geametodel. When the gap increase, the error in
pull-in voltage with linear model increase signafintly. Furthermore, contrary to the case of
cantilever beams, the thickness has a significéfiecteon the error in pull-in voltages. The
thinner the beam, the larger the error. Anotheenlzion is that the length of the beam has little
effect on the error in pull-in voltage. This obsaren is also different from the case of cantilever
beams. From the results, it is clear the linear ehdsl generally not valid for the fixed-fixed
beams case, except when the gap is very small,asittie 0.5um case as shown in Fig. 2. Effect
of the size effect on the pull-in voltage of fixéded and fixed-free beam illustrated in Figs. 12
and 13 respectively. These figures represent tieasize effect increases the pull-in voltage of
the nano-actuators.
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Fig.2. Comparison of linear and nonlinear geomatodel results for a fixed-fixed beam with a
gap 0.um
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Fig.3. Comparison of linear and nonlinear geomatogdel results for a fixed-fixed beam with a
gap 2um
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Fig.4. Comparison of linear and nonlinear geomatodel results for a fixed-fixed beam with a
gap 4.9um.
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Fig.6. Comparison of linear and nonlinear geometodel results for a fixed-free beam with a
gap Zum.
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Fig.7. Comparison of linear and nonlinear geomeatndel results for a fixed-free beam with a
gap 4.9um.
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Fig.8. Gap vs. pull-in voltage for cantilever beamth a thickness of (m. For length=100m,
the difference in pull-in voltage between linead amonlinear geometry model is significant
when the gap is larger than ib. For a length larger than 3p@, the pull-in voltages obtained
with linear and nonlinear geometry model are id=dti
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Fig.9. Gap vs. pull-in voltage for cantilever beawith a thickness of gm. For length=100m,

the difference in pull-in voltage between lineadamonlinear geometry model is significant
when the gap is larger than ib. For a length larger than 3p@, the pull-in voltages obtained

with linear and nonlinear geometry model are icdti
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Fig.10. Gap vs. pull-in voltage for fixed-fixed les with a thickness of Oum. Observe the
large difference in pull-in voltage obtained froimelar and nonlinear geometry model of beam.
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Fig.11. Gap vs. pull-in voltage for fixed-fixed les with a thickness ofin .
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Fig.12. Pull-in voltage vs. size effect for fixeddd beam with gap 2}bn, a thickness of dm,
length 30Qum and width 0.5um, for nonlinear geometry model.
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Fig.13. Pull-in voltage vs. size effect for cantde beam with gap 2bn, a thickness of gm,
length 30Qum and width 0.5, for linear and nonlinear geometry model.

5. Conclusions

The primary contributions of the paper are sumnealrias follows.

1. For cantilever beams, length has a significffieceon the error in pull-in voltages, while for
fixed-fixed beams, the length has little effect thie error. On the other hand, for fixed-fixed
beams, thickness has significant effect on ther énrpull-in voltage, while for cantilever beams
it has little effect.

2. The static pull-in instability voltage of clangeclamped and cantilever beam are compared.
For both clamped-clamped and cantilever beamguhen voltage in nonlinear geometry beam
model is bigger than linear model.

3. For both fixed-fixed and cantilever beams by@asing of gap length, the pull-in voltage is
significantly increased.

4. For both fixed-fixed and cantilever beams byréasing of thickness of beams, the pull-in
voltage is significantly increased.
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5. For both fixed-fixed and cantilever beams byaasing of length of beams, the pull-in voltage
is significantly decreased.

6. By using modified couple stress theory, it iarfd that the dimensionless pull-in voltage of
MEMS increases linearly due to the size effect.sTénnphasizes the importance of size effect
consideration in design and analysis of MEMS.

The conclusion above indicates that the geometrpeafm has significant influences on the
electro-static characteristics of micro-beams tbat be designed to tailor for the desired
performance in different MEMS applications.
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