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Abstract 
 
Differential Quadrature Method (DQM) is used to analyse free transverse vibrations of non-homogeneous orthotropic 
rectangular plates of variable thickness. A new model to represent the non-homogeneity of the plate material has been taken 
which incorporates earlier models. Following Lévy approach i.e the two parallel edges are simply supported, the fourth-
order differential equation governing the motion of such plates of variable thickness has been solved for different 
combinations of clamped, simply-supported and free-edge boundary conditions. Effect of non- homogeneity together with 
other plate parameters such as orthotropy, aspect ratio and foundation modulus on the natural frequencies has been studied 
for the first three modes of vibration. Numerical results are presented to illustrate the method and demonstrate its efficiency. 
Normalized displacements are presented for specified plates for all the three boundary conditions. 
  
Keywords: DQM; orthotropy; variable thickness; non-homogeneity; elastic foundation. 
 
1. Introduction 
  
The vibration analysis of plate type structures are considered in two main stages: one in formulation of 
a mathematical model for a given physical problem and the second in the solution of the model. With 
the development of computer technology, various numerical methods have been used to solve different 
types of problem in engineering and science which are described by the differential equations. These  
equations are either linear or non-linear and in most cases, their closed form solutions are not possible. 
As a result, various numerical techniques such as Frobenius method [1], finite-difference method [2], 
simple polynomial approximation method [3], Galerkin’s method [4], Rayleigh-Ritz method [5], 
Harmonic differential quadrature [6], characteristic orthogonal polynomial method [7],  quintic splines 
method [8], finite element method [9], Chebyshev collocation method [10, 11] and Generalised 
differential quadrature method [12] etc. have been employed to study the vibrational behaviour of plates 
of various geometries. The numerical methods, such as finite difference and finite element method 
require fine mesh size to obtain accurate results but are computationally expensive. The method of 
quintic splines, characteristic orthogonal polynomials and Frobenius method require a large number of 
terms for plates of variable thickness.  
_______________________________ 
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Differential quadrature method (DQM), which requires few grid points for desired accuracy was 
introduced by Bellman et al.[13] and generalised and simplified subsequently by Quan and Chang[14, 
15] and Shu and Richards[16]  has emerged as a distinct numerical technique during last two decades.  
This has encouraged researchers working in structural mechanics to study of vibrational behaviour of 
plates of various geometries using differential quadrature method [17- 24], to mention a few.In several 
technological applications, plate type structural components are subjected to high temperature   
environmental conditions which results in non-homogeneity of the material due to physical composition 
i.e due to use of fibers with different modulii along two perpendicular directions and having different 
strength properties or by design [25]. An extensive review of all available models to represent non-
homogeneity has been given in the references [8, 23]. In a recent paper, Seema et al. [24] analysed 
vibration of non-homogeneous orthotropic rectangular plates resting on Winkler foundation by 

assuming XX
y

X
x eandeEEeEE βµµ ρρ 021 , === . In this model, both the Young’s modulii are 

assumed to depend upon the same parameter  for which there is no physical basis. A new model is 

assumed where ( ) XX
y

X
x eandeEEeEE βµµ ρρµµ 02121 , =≠== which incorporates earlier models 

[8, 24]. The primary objective of this work is to obtain free vibration frequencies of non-homogeneous 
orthotropic rectangular plates of linear, parabolic and quadratic thickness variations on the basis of new 
model representing the non-homogeneity of the plate material. The present theoretical investigation will 
be of practical interest to design engineers. 
 
2. Mathematical formulation 
 
Consider a non-homogeneous orthotropic rectangular plate of length a, breadth b, thickness h (x) 
varying along x- direction only and density ρ (x, y) such that the middle surface of the plate is z = 0 and 
the origin is at one of the corners of the plate. The z-axis is taken perpendicular to the plate. The x- and 
y- axes are taken along the principal directions of orthotropy. 
 
The differential equation which governs the transverse free vibration of such plates is given by [24] 
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where ),1(12/3
yxxx hED νν−= ),1(12/3

yxyy hED νν−= ,12/3hGD xyxy = ,12/3*
1 hED =  

,21 xyDDH +=  ),,( tyxw  is the transverse deflection, t the time, ρ the mass density and ,,, xyx EE ν yν
 

and xyG  are material constants and xyyx EE νν =  and  )1(12/)1(12/*
yxxyyxyx EEE νννννν −=−= . 

 
The thickness of the plate is assumed to vary in x-direction only i.e. h = h(x) and the two opposite edges 

0=y and by = are taken to be simply supported (Lévy approach). For a harmonic solution, the 
displacement w  is expressed as  

tiebypxwtyxw ωπ )/sin()(),,(
_

=                                                                                                           (2)  
where, p is a positive integer and ω the circular frequency in radians. 
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Furthermore, for elastically non-homogeneous material, it is assumed that Young’s modulii xE , yE  and 

density ρ are functions of space variable x only. Following [26, 27], the shear modulus is   

)  1(2/ x yyxxy EEG νν+=  . 

Introducing non-dimensional variables, awWahhbyYaxX /,/,/,/
__

==== , equation (1) reduces to 

0)])(1(12
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where 22222 /bap πλ =  and primes denote differentiation with respect to X.  

Taking quadratic variation in thickness i.e. h= 0h )1( 2
21 XX αα ++ [28] and assuming new model for 

non-homogeneity of the plate material.  
X

y
X

x eEEeEE 21
21 , µµ == and Xeβρρ 0= ,                                                                                            (4)

                             
equation (3) reduces to  

 043210 =+′+′′+′′′+ WAWAWAWAWA vi                                                                                    (5) 
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Here 0h , 0ρ  are thickness and density of the plate  at 0=X , 1µ and 2µ  the non-homogeneity 

parameters, α1 and α2 the taper parameters, β the density parameter and 1E , 2E  the Young’s modulii in 
proper directions at  
X = 0.  
 
The equation (5) together with the boundary conditions at the edges X = 0 and X = 1 gives rise to a two-
point boundary value problem with variable coefficients, whose closed form solution is not possible. 
An approximate solution is obtained by employing differential quadrature method. 

 
 

3. Method of Solution: Differential Quadrature Method 
 

A brief description of DQM is as follows:      
Let X1, X2, …. , Xm be the m grid points in the applicability range [0, 1] of the plate. According to the 
DQM, the nth order derivative of W(X) with respect to X can be expressed discretely at the point Xi as  

∑
=

=
m

j
j

n
jin

i
n

XWc
dX

XWd

1

)( )(
)(  ,         n=1, 2, 3, 4 and i =1, 2,…, m                                                                (6)        

where )(n
ijc  are the weighting coefficients associated with the nth order derivative of W(X) w. r. to X at 

discrete point Xi. Following Shu [29, pages 31, 35] are given by 
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Discretizing equation (5) at grid points Xi,   i = 3, 4,…, m-2, it reduces to, 
 

 .0)()()()()( ,4,3,2,10 =+′+′′+′′′+ iiiiiiiii
iv XWAXWAXWAXWAXWA                                        (11)  

 
Substituting for W(X) and its derivatives at the i th grid point in the equation (11) and using relations (6) 
to (10), equation (11) becomes 
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For i = 3,4,..., (m-2), one obtains a set of (m-4) equations in terms of unknowns 

,,,2,1,))(( mjXWW jj L=≡  which can be written in the matrix form as 

 
[B][W*] = [0]                                                                                                                                          (13)                               
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where B and W* are matrices of order (m-4) x m and (m x 1) respectively. 
Here, the (m-2) internal grid points chosen for collocation, are the zeros of shifted Chebyshev 
polynomials of order (m-2) with orthogonality range [0, 1] given by  

)]
22

12
cos(1[

2

1
1

π
−
−+=+ m

k
X k  ,  k =1, 2,…, m-2                                                                (14) 

 
4. Boundary Conditions and Frequency Equations 

 
The three sets of different combinations of boundary conditions namely, C-C, C-S and C-F have been 
considered here, where C, S and F stand for clamped, simply supported and free edge, respectively and 
first symbol denotes the condition at the edge X = 0 and second symbol at the edge X = 1.By satisfying 

the relations         
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for clamped, simply supported and free edge conditions, respectively, a set of four homogeneous 
equations in terms of unknown Wj are obtained. These equations together with field equation (12) give 
a complete set of m homogeneous equations in m unknowns. For C-C plate this set of equations can be 
written as  

[ ] [ ]0* =







W

B

B
CC

                                                                                                                             (15)                      

where BCC is a matrix of order 4×m. 
For a non-trivial solution of equation (15), the frequency determinant must vanish and hence, 

0=
CCB

B
.                                                                                                                     (16) 

Similarly for C-S and C-F plates, the frequency determinants can be written as 

0=
SCB

B
  and 0=

FCB

B
                   (17,18)                            

respectively.  
 

5. Numerical results and Discussions 
 

The frequency equations (16-18) provide the values of the frequency parameter Ω. The lowest three 
roots of frequency equations (16-18) have been obtained using bisection method to investigate the 
effect of  various plate parameters such as non-homogeneity, orthotropy, thickness variation, aspect 
ratio  and foundation modulus on the frequency parameter Ω for p = 1. The values of various 
parameters are taken as follows: Winkler foundation parameter K=0.0( 0.02) 1.0; non-homogeneity 
parameters  µ1= -0.5(0.1) 1.0; µ2 = -0.5(0.1) 1.0; density parameter β = -0.5(0.1) 1.0; taper parameters 
α1= -0.5 (0.1) 1.0; α2 = -0.5 (0.1) 1.0  such that α1+ α2  > -1 and aspect ratio a/b = 0.5 (0.5)2.0 for C-C, 
C-S and C-F boundary conditions. The elastic constants for the plate material ‘ORTHO1’ Biancolini 
[30] are taken as ,101 10

1 MPaE ×=  1.0,2.0,105 9
2 ==×= yxMPaE νν . The thickness 0h  at the 

edge X = 0 has been taken as 0.1. 
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To choose the appropriate number of grid points m, convergence studies have been carried out for 
different sets of plate parameters. The convergence graphs for first three modes of vibration for 
specified plate i.e a/b = 1, K= 0.02, µ1= 0.5, µ2 = -0.5, β= 0.5, α1 = -0.5 and α2 = 0.5 are presented in 
Figs. 2(a-c) for C-C, C-S and C-F plates, respectively. It is observed that frequency parameter 
converges with increasing number of grid points. For convergence of frequency parameter in lower 
modes less number of grid points is needed than for the higher ones.  A consistent improvement in the 
values of frequency parameter Ω is observed with the increasing values of m. In all the computations  
m = 20 has been fixed to achieve four decimal accuracy.  
 
Numerical results are presented in Figs. (3-10). It is found that the value of frequency parameter Ω for a 
C-S plate is greater than that for a C-F plate but less than that for a C-C plate for the same set of values 
of plate parameters in all the three modes of vibration. 

 
Figs. 3(a-c) show the plots of frequency parameter Ω with the increasing values of non-homogeneity 
parameter µ1 for aspect ratio a/b = 1.0, foundation parameter K = 0.02, taper parameters α1 = 0.5, and  
α2 = -0.3, 0.3, density parameter β = -0.5, 0.5 and µ2 = 0.5 for all the three plates vibrating in 
fundamental, second and third mode. The frequency parameter Ω is found to increase with the 
increasing values of non-homogeneity parameter µ1 for all the three plates considered here.  The rate of 
increase of Ω with µ1 is more pronounced in case of C-C plate as compared to C-S and C-F plates. 
Also, the rate of increase of Ω with increasing values of µ1 in all the three plates becomes higher and 
higher with increase in the number of modes. 

 
Figs. 4(a-c) depict the variation of frequency parameter Ω with the increasing values of non-
homogeneity parameter µ2 for aspect ratio a/b = 1.0, foundation parameter K = 0.02, taper parameters 
α1 = 0.5, and α2 = -0.3, 0.3, density parameter β = -0.5, 0.5 and µ1 = 0.5 for all the three plates vibrating 
in fundamental, second and third mode, respectively. It is observed that the behaviour of non-
homogeneity parameter µ2 on frequency parameter Ω is almost the same as that of the behaviour of µ1, 
except that the rate of increase of frequency parameter Ω with the increasing values µ2 is smaller than 
that of µ1. 

 
Figs. 5(a-c) show the plots of frequency parameter Ω with the increasing values of density parameter β 
for aspect ratio a/b=1.0, foundation parameter K= 0.02, taper parameters α1 = 0.5, α2 = -0.3, 0.3, and 
non-homogeneity parameters µ1= 0.5, µ2 = -0.5, 0.5 for all the three plates. It is observed that the 
frequency parameter Ω decreases with the increasing values of density parameter β for all the three 
boundary conditions considered here.  The rate of decrease of Ω with β is more pronounced in the case 
of C-C plate as compared to C-S and C-F plates other plate parameters being fixed. Also, the rate of 
decrease in second mode is higher as compared to first mode but smaller than that in third mode. 

 
Fig. 6(a) depicts the effect of aspect ratio a/b on frequency parameter Ω  for density parameter β = 0.5, 
foundation parameter K= 0.02, non-homogeneity parameters µ1= -0.5, 0.5, µ2 = 0.5and taper parameters 
α1 = 0.5 and α2 = -0.3, 0.3 for all the three plates vibrating in fundamental mode. It is observed that the 
frequency parameter Ω increases with the increasing values of aspect ratio a/b for all the three plates 
considered here.  The rate of increase of Ω with a/b is more prominent for a/b>1 than that for a/b<1. 
The behavior is almost same in case of second and third mode of vibration as that of first mode. The 
rate of increase of Ω with a/b increases with the increase in number of modes, Figs. 6 (b) and (c). 
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The effect of taper parameter α1 on the frequencies for the first mode of vibration has been shown in 
Fig. 7(a) for a/b = 1.0, β = 0.5, α2 = 0.0 (linear thickness variation), K= 0.0, 0.02, µ1 = -0.5, 0.5 and µ2 = 
0.5 for C-C, C-S and C-F plates, respectively. It is seen that, in the absence of elastic foundation 
(K=0.0), the frequency parameter Ω is found to increase continuously with the increasing values of 
taper parameter α1 for all the plates. However, in the presence of an elastic foundation (K=0.02), the 
frequency parameter Ω is found to increase with the increasing values of α1 for C-C and C-S plates. In 
case of C-F plate for µ1 = -0.5, 0.5, the frequency parameter Ω first decreases and then increases with 
local minima in the vicinity of (α1 = -0.1, µ1 = -0.5) and also in case of (α1 = -0.3, µ1= 0.5). Figs. 7 (b, c) 
show that when the plate is vibrating in second and third mode, the frequency parameter Ω increases 
with the increasing values of taper parameter α1 for all the three boundary conditions. The rate of 
increase of frequency parameter Ω with taper parameter α1 increases with the increase in the number of 
modes. 

 
Figs. 8(a-c) show the plots of frequency parameter Ω versus taper parameter α2 for a/b = 1.0, β = 0.5,  
α1 = 0.0 (parabolic thickness variation), K= 0.0, 0.02, µ1= -0.5, 0.5 and µ2 = 0.5 for plates vibrating in 
fundamental, second and third modes, respectively.  It is observed that the behavior of the frequency 
parameter Ω with taper parameter α2 is almost the same as that with taper parameter α1 for all the three 
plates in all the mode considered here except that there exist local minima in the vicinity of α2 = 0.4 for 
µ1= -0.5 which shifts towards α2 = 0.3 for µ1= 0.5 for C-F plate with the incorporation of K=0.02 in the 
fundamental mode. 

 
The graphs of the frequency parameter Ω versus foundation parameter K have been given in Figs. 9 (a-
c) for a/b =1(for square plate), β = -0.5, α1 = 0.5, α2 = 0.5, µ1= -0.3, 0.3 and µ2 = -0.3, 0.3. For plates 
vibrating in the first mode, Fig. 9 (a) shows that the frequency parameter Ω is found to increase with the 
increasing values of the foundation parameter K for all the three boundary conditions. The rate of 
increase of Ω with K increases with the order of the boundary conditions C-C, C-S and C-F whatever be 
the values of other plate parameters. A similar behaviour is observed for the second and third modes of 
vibration as shown in the Figs. 9 (b, c) except that the rate of increase of the frequency parameter Ω 
goes on decreasing with the increase in the order of modes. 

 
Mode shapes have been computed for two values of non-homogeneity parameters µ1 = -0.5 and µ2 = 
0.5, taper parameters α1 = 0.5 and α2 = - 0.3, 0.3, β = -0.5, 0.5 and K = 0.02 for a square plate i.e. a/b = 
1 for all the three boundary conditions. Figures 10 (a-c) show normalised transverse displacements for 
all the three modes of vibrations. The nodal lines are found to shift towards the edge X = 0 with increase 
in α2 while the nodal lines are seen to shift towards the edge X=1 with increase in β. 

 
A comparison of our results for homogeneous (µ1=µ2= 0, β=0), isotropic (E2 / E1=1)   plate of uniform 
thickness (α1=  α2 = 0) with those results obtained by other methods has been presented in tables 1 and 2 
for υ = 0.3. Table 6.2 shows a comparison of our results for p=1 with approximate values obtained by 
quintic spline technique [8], Chebyshev collocation method [10], Frobenius method [32] and exact 
values from Leissa [31].  As a special case, the results have also been computed for p = 2 and compared 
with those obtained by quintic spline technique [8], Chebyshev collocation method [10] and Frobenius 
method [32], for a/b = 0.5, 1.0 and are presented in table 2. Excellent agreement of results shows the 
computational efficiency and accuracy of the present method. 
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Table 1: Comparison of frequency parameter Ω for isotropic (E2/E1=1), homogeneous (µµµµ1 =µµµµ2=ββββ = 0)  
               plates of uniform thickness (α1 = α1 = 0.0) for p= 1 and υ= 0.3. 

 
Boundary 
Conditions 

 K=0.0 K=0.01 

C-C 

a/b 0.5 1.0 0.5 1.0 
Ref.    Mode I II I II I II I II 
Liessa [31] ― ― 28.946 69.320 ― ― ― ― 
Lal et al.[10] 23.816 63.635 28.951 69.327 26.214 64.472 30.954 70.187 
Jain & Soni 
[32] 

23.816 63.535 28.951 69.327 ― 
― ― ― 

Lal and 
Dhanpati [8] 

23.820 63.603 28.950 69.380 26.219 64.539 30.953 70.239 

Present 23.815 63.5345 28.950 69.3270 26.2142 64.472 30.954 70.1872 

C-S 

Liessa [31] ― ― 23.646 58.641 ― ― ― ― 
Lal et al.[10] 17.332 52.098 23.646 58.646 20.503 53.237 26.060 59.661 
Jain & Soni 
[32] 

17.332 52.097 23.646 58.646 ― ― ― ― 

Lal and 
Dhanpati [8] 

17.335 52.150 23.647 58.688 20.506 53.288 26.061 59.702 

Present 17.3318 ― 23.6363 58.6464 20.5034 53.2372 26.0605 59.6607 

C-F 

Liessa [31] ― 63.635 12.680 ― ― ― ― ― 
Lal et al.[10] 5.704 24.944 12.687 33.065 12.351 27.243 16.762 34.839 
Lal and 
Dhanpati [8] 

5.703 24.949 12.684 33.064 12.350 27.248 16.760 34.831 

Present 5.7039 24.9438 12.6874 33.0651 12.3505 27.3432 16.7621 348325 
      

 
Table 2:.Comparison of frequency parameter Ω  for isotropic (E2/E1=1), homogeneous  
               (µµµµ1 =µµµµ2=ββββ = 0) of uniform thickness (α1 = α1 = 0.0) for K = 0.0, p= 2 and υ= 0.3. 
 

Boundary 
Conditions 

a/b 0.5 1.0 
Ref.   Mode I II III I II III 

C-C 

Lal et al.[10] 28.9508 69.3270 129.0951 54.7431 94.5853 154.7754 
Jain & Soni [32] 28.9508 69.3270 129.0956 54.7430 94.5852 154.7757 
Lal and Dhanpati 
[8] 

28.9499 69.3796 129.3675 54.7312 94.5927 154.9509 

Present 28.9509 28.9509 129.0956 54.7431 94.5853 154.7757 

C-S 

Lal et al.[10] 23.6464 58.6464 113.2377 51.6742 86.1350 140.8484 
Jain & Soni [32] 23.6463 58.6463 113.2281 51.6742 86.1344 140.8455 
Lal and Dhanpati 
[8] 

23.6468 58.6880 113.4541 51.6700 86.1493 141.0035 

Present 23.6463 58.6464 113.8281 51.6743 86.1345 140.8456 
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Fig. 1:   Boundary Condotions 
                                   

    
      
             Fig. 2: Percentage error in frequency parameter Ω; (a) C-C plate (b) C-S plate and (c) C-F plate, for a/b= 1.0, K= 0.02, µ1 = 0.05, 

            µ2 = -0.5, β= 0.5, α1 = -0.5, α2 = 0.5, —–—, first mode, -------, second mode, – – – –, third mode. % error = [(Ωm –Ω20)/ Ω20] × 100. 
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Fig. 3: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode, for 
a/b = 1, µ2 = 0.5,     K=0.02, α1= 0.5.  , C-C; ----------, C-S; – – – –, C-F;  , β = -0.5, α2= -0.3;  , β = -0.5,  
α2= 0.3 ; •, β = 0.5, α2= -0.3;ο, β = 0.5, α2= 0.3.  

 
       

  
 
     

  Fig. 4: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode,  
    for   a/b = 1, µ1 = 0.5, K=0.02, α1= 0.5. , C-C; --------, C- S; – – – –, C-F;  , β = -0.5,α2= -0.3;  , β = -0.5, α2= 0.3 ;  
    •, β = 0.5, α2= -0.3; ο, β = 0.5, α2= 0.3.  
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Fig. 5: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode,  
for a/b = 1, µ1 = 0.5,  K=0.02, α1= 0.5. , C-C; ---------, C-S; – – – –, C-F;  , µ2 = -0.5, α2= -0.3;  , µ2 = -0.5, α2= 0.3 ; 
 •, µ2 = 0.5, α2= -0.3; ο, µ2 = 0.5, α2= 0.3.  
         

 
   
  

 
Fig. 6: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode, for  
β = 0.5, µ2 = 0.5, K=0.02, α1= 0.5. , C-C; ---------, C-S; – – – – C-F;  , µ1 = -0.5,α2= -0.3;  , µ1 = -0.5, α2= 0.3 ; •, µ1 = 
0.5, α2= -0.3;ο, µ1 = 0.5, α2= 0.3.  
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Fig. 7: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode,  
for a/b= 1, β = 0.5, µ2 = 0.5,  α2= 0.0. , C-C; ---------, C-S; – – – –, C-F;  , µ1 = -0.5, K=0.00;  , µ1 = 0.5, K=0.0;  
•, µ1 = -0.5, K=0.02; ο, µ1 = 0.5, K=0.02. 

    

  
   

 
Fig. 8: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode,  
for a/b= 1, β = 0.5, µ2 = 0.5, α1= 0.0. , C-C; ----------, C-S; – – – – C-F;  , µ1 = -0.5, K=0.00;  , µ1 = 0.5, K=0.0; 
 •, µ1 = -0.5, K=0.02; ο, µ1 = 0.5, K=0.02. 
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Fig. 9: Frequency parameter for C-C, C-S and C-F plates vibrating in (a) first mode (b) second mode and (c) third mode, for 
a/b= 1,β = -0.5, α1 = 0.5, α2= 0.5. , C-C; ---------, C-S; – – – –, C-F;  , µ1 = -0.3, µ2 = -0.3;  , µ1 = -0.3, µ2 = 0.3;  
•, µ1 = 0.3, µ2 = -0.3; ο, µ1 = 0.3, µ2 = 0.3.         

 

 
 
Fig. 10: Normalized displacements for the first three modes of vibration for (a) C-C plate (b) C-S plate and (c) C-F plate, for 
a/b=1.0,  α1 =0.5, K = 0.02, µ1 = -0.5, µ2 = 0.5.  , first mode; ………, second mode; ----------, third mode. 
 , β = -0.5; ○, β = 0.5;  , ●, α2= -0.3;  ,○, α2= 0.3.  
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6.  Conclusions  
 
DQM method has been employed for obtaining natural frequencies of orthotropic rectangular plates on 
the basis of a new model to approximate the non-homogeneity of the plate material. The effect of 
various parameters such as non-homogeneity, orthotropy, aspect ratio and foundation modulus on the 
frequency parameter has been studied for linear as well as parabolic thickness variation. A comparison 
of results with those available for special cases have also been presented, which are in good agreement. 
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