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Abstract

Differential Quadrature Method (DQM) is used to /s free transverse vibrations of non-homogenemtisotropic
rectangular plates of variable thickness. A new ehdd represent the non-homogeneity of the plateeriz has been taken
which incorporates earlier models. Following Léwypeoach i.e the two parallel edges are simply supgzh the fourth-
order differential equation governing the motion sfich plates of variable thickness has been sofeeddifferent
combinations of clamped, simply-supported and &e#ge boundary conditions. Effect of hon- homogegrtetjether with
other plate parameters such as orthotropy, aspatit rand foundation modulus on the natural frequestas been studied
for the first three modes of vibration. Numericasults are presented to illustrate the method amahstrate its efficiency.
Normalized displacements are presented for speqifiates for all the three boundary conditions.

Keywords: DQM; orthotropy; variable thickness; non-homoggneglastic foundation.
1. Introduction

The vibration analysis of plate type structuresamesidered in two main stages: one in formulatbn

a mathematical model for a given physical problemd the second in the solution of the model. With
the development of computer technology, variousenoal methods have been used to solve different
types of problem in engineering and science whretdascribed by the differential equations. These
equations are either linear or non-linear and irsthcases, their closed form solutions are not ptessi
As a result, various numerical techniques suchrabdhnius method [1], finite-difference method [2],
simple polynomial approximation method [3], Galerki method [4], Rayleigh-Ritz method [5],
Harmonic differential quadrature [6], charactedsirthogonal polynomial method [7], quintic spbne
method [8], finite element method [9], Chebyshevlomation method [10, 11] and Generalised
differential quadrature method [12] etc. have bexmployed to study the vibrational behaviour of gat

of various geometries. The numerical methods, agliinite difference and finite element method
require fine mesh size to obtain accurate resultsabe computationally expensive. The method of
quintic splines, characteristic orthogonal polynalsiand Frobenius method require a large number of
terms for plates of variable thickness.
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Differential quadrature method (DQM), which reqagireew grid points for desired accuracy was
introduced by Bellman et al.[13] and generalised simplified subsequently by Quan and Chang[14,
15] and Shu and Richards[16] has emerged asiaaistimerical technique during last two decades.
This has encouraged researchers working in straictoechanics to study of vibrational behaviour of
plates of various geometries using differentialdyature method [17- 24], to mention a few.In selvera
technological applications, plate type structura@mponents are subjected to high temperature
environmental conditions which results in non-hoetugty of the material due to physical composition
i.e due to use of fibers with different modulii afptwo perpendicular directions and having différen
strength properties or by design [25]. An extensexew of all available models to represent non-
homogeneity has been given in the references [B,I23 recent paper, Seema et al. [24] analysed
vibration of non-homogeneous orthotropic rectangydéates resting on Winkler foundation by

assumings, = Ee**, E, =E,e**and p= p,e”*. In this model, both the Young’s modulii are
assumed to depend upon the same paramef@r which there is no physical basis. A new model
assumed wherd&, = Ee**, E, = E,e** (14, #4,)and p = p,e”* which incorporates earlier models

[8, 24]. The primary objective of this work is tbtain free vibration frequencies of non-homogeneous
orthotropic rectangular plates of linear, parabahd quadratic thickness variations on the basreof
model representing the non-homogeneity of the ptatterial. The present theoretical investigatioh wi
be of practical interest to design engineers.

2. Mathematical formulation

Consider a non-homogeneous orthotropic rectanquite of lengtha, breadthb, thicknessh (x)
varying along x- direction only and densityx, y) such that the middle surface of the plate #s0 and
the origin is at one of the corners of the platee Zaxis is taken perpendicular to the plate. Xhand
y- axes are taken along the principal directiongrdfotropy.

The differential equation which governs the tramsgdree vibration of such plates is given by [24]

4 4 4 3 3 3 3
Xa—\:V+Dya—\iv+2H _OZWZ +26_H_6 W2 +26—|_| 9 W2 +2aDX 0 \;V+26Dy 9 \;V
0X oy ox-ay 0X 0x0y 0y 0yox 0x 0x oy ody
0°D, 92w . 0°D, 9?w . 8°D, 02w , 82D, 9w
+ + + +
x> ox*  ady®> oy® oy® ox> ox> oy®
0°D,, 92 2
—Wa_W+pha_\;V+ka: 0, (1)
0xdy 0yox ot
— 3 — — -
whereD, =Eh* 121-v,v ), D, =Eh* 120-vy,), D,, =G, h® /12 D, =E'h® /12,
H=D,+2D

and G,, are material constants amjy, =Ev, and E' =E,v, /120-vv )=Ev, 121-vV ).

D

w(x,y,t) is the transverse deflectiarthe time,p the mass density anid,, E,,v,, v

xy? yr o x? y

The thickness of the plate is assumed to vawydirection only i.eh = h(x) and the two opposite edges
y=0andy =bare taken to be simply supported (Lévy approacloy. & harmonic solution, the

displacementw is expressed as
w(x, y,t) = w(x)sin(prry/ be'“ 2)
where, p is a positive integer andhe circular frequency in radians.
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Furthermore, for elastically non-homogeneous maltetiis assumed that Young's modulii , E, and
density p are functions of space variabbe only. Following [26, 27], the shear modulus is

G, =EE, 120+ [ vv,) .
Introducing non-dimensional variabléé=x/aY =y/bh=h/a,W =w/a, equation (1) reduces to
h’E W' +[2(h°E. +3h h'E,)]W"

+[(6hh2+3h"h")E, +6h h'E,+h E!-2A2h (E" +2G, )L1-v v, )]W"
~[22%(3h° h'(v,E, + 2(1-v v ,)G, ) +h (V,EL+2(L-v v, )GL )] W’

()
+[A*R°E, - A% {h°E! +6h° h'E, + (6hh2+3h° h")E }

-12(1-vv Npha’w?-ak,)]W =0

where A> = p%a®m” /b® and primes denote differentiation with respeck.to

Taking quadratic variation in thickness ile= h, (L+a,X +a,X?)[28] and assuming new model for
non-homogeneity of the plate material.

E, = Ee"*, E, =E, e andp=pe’, (4)
equation (3) reduces to
AOWiV+A1W"’+A2W"+A3W'+A4W :0 (5)
3a, +2a,X
A =LA =2 + 0 T2 )

@+a,X +a,X?)
A = 6(a, + 2a,X)? . 6a, L Sum(a +2a,X) o
(+a,X +a,X?)? (@Q+a, X +a,X?) @+a,X+a,X?) '
- +m gHa—H)X 12
y a+. /vy,
X’y

3(a, +2a,X)

L=vvy)),

}Ez / El e(ﬂz‘ﬂl)X/z

A, = =247 {v, + @-vw,)}

A+a, X +a,X?) "’ @+ vy,) g

+ /E |E (M=) X 12
+{/11V + (/'Il /'12) 2 1 € (l_VXV )}]
g 20+, wv,) g
2
A, = A (E, 1 E e = Ny {p® + o, +2a2x2) T +2a2x)2 i o N
L+a,X+a,X°) @Q+aX+a,X°)° @Q+a,X+a,X?)
Q ? e(ﬂ‘/‘l)x + 12K e_/ul X

S @ta X +a,X?)? WL+ a,X +a,X?)°
K=ak(1- v, v, ) E,, Q°=12p,(1-v,v,) o E, >
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Here h,, p, are thickness and density of the plate Xat=0, gand w4, the non-homogeneity

parametersq; anda, the taper parameter8the density parameter artg], E, the Young’'s modulii in

proper directions at
X=0.

The equation (5) together with the boundary coadgiat the edges= 0 andX = 1 gives rise to a two-
point boundary value problem with variable coe#iuis, whose closed form solution is not possible.
An approximate solution is obtained by employinfjedential quadrature method.

3. Method of Solution: Differential Quadrature Method

A brief description of DQM is as follows:

Let X3 X, .... , Xy be them grid points in the applicability range [0, 1] dfet plate. According to the

DQM, then™order derivative ofM(X) with respect tX can be expressed discretely at the psirats

d"W(X; m .

% = Z;,C'(?)W(X,-) , n=1, 2, 3, 4 aric-1, 2,...,m (6)
=

where cﬁ“’ are the weighting coefficients associated withrtieorder derivative of W{) w. r. toX at
discrete poin¥;. Following Shu [29, pages 31, 35] are given by

M@ (X.) o .

@ = ' i, =1,2,...m; i# 7

DT =X OMO(X) j m j (7)

M®(X,)= m(xi—x.), (8)
c( D

ci” =n| ¢V —X”j for i,j=12,...m,j#i andn= 234 ()]
i j

c” =-> ¢ for i=12,...m andn= 1234. (10)

e

J#i

Discretizing equation (5) at grid poinXg i =3, 4,...,m-2, it reduces to,
AWY (X;) + AW (X)) + A, W (X)) + A WI(X) + A, W(X;) =0. (11)

Substituting fo(X) and its derivatives at tH& grid point in the equation (11) and using relasi¢6)
to (10), equation (11) becomes

D(AGY + A6 +A, 6P + Ay e WX+ A, W(X)=0. (12)
j=1

J

For i = 34,.., (2), one obtains a set ofm{4) equations in terms of unknowns
W, (=W(X;)), j =12+, m, which can be written in the matrix form as

[BI[W] = [0] (13)
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whereB andW* are matrices of ordent4) xmand (nx 1) respectively.
Here, the i+2) internal grid points chosen for collocationge ahe zeros of shifted Chebyshev
polynomials of orderr-2) with orthogonality range [0, 1] given by

o :£[1+ cosﬁ'ﬂ)] , k=1, 2,...m2 (14)
2 m-2 2

4. Boundary Conditions and Frequency Equations

The three sets of different combinations of boupdamditions namely, C-QC-S andC-F have been
considered here, where C, S dhdtand for clamped, simply supported and free edgpectively and
first symbol denotes the condition at the edge 0 and second symbol at the edge 1.By satisfying

W=d—W=o;W=d2W

ax e -(E'/E)AW =0; and

the relations g AW g

* * — — W
~(E/EY)W =—| E R’ “ WL —ara-vy )G h' S =

dx? ( ) dx( h {dx2 Y }j A=v2,)G, dX

for clamped, simply supported and free edge camuhii respectively, a set of four homogeneous
equations in terms of unknowf are obtained. These equations together with &elgation (12) give

a complete set ah homogeneous equationsimunknowns. For C-C plate this set of equationslhzan
written as

o w10 (15)

01

BCC
whereB™~" is a matrix of orderxm.
For a non-trivial solution of equation (15), theduency determinant must vanish and hence,

BCC

B —

gee|™ 0. (16)
Similarly for C-S and C-F plates, the frequencyedainants can be written as

B

ges| = 0 and gor|= 0 (17,18)

respectively.
5. Numerical results and Discussions

The frequency equations (16-18) provide the vahfethe frequency paramet€. The lowest three
roots of frequency equations (16-18) have beenimddausing bisection method to investigate the
effect of various plate parameters such as nonelgemeity, orthotropy, thickness variation, aspect
ratio and foundation modulus on the frequency patar Q for p = 1. The values of various
parameters are taken as follows: Winkler foundapanameterK=0.0( 0.02) 1.0; non-homogeneity
parametersp;= -0.5(0.1) 1.0p, = -0.5(0.1) 1.0; density parametgr= -0.5(0.1) 1.0; taper parameters
a1=-0.5 (0.1) 1.0p2=-0.5 (0.1) 1.0 such that+a, > -1 and aspect ratiab = 0.5 (0.5)2.0 for C-C,
C-S and C-F boundary conditions. The elastic contstéor the plate material ‘ORTHOZL’ Biancolini
[30] are taken af, =1x10"°MPa E, =5x10°MPa, v, = 02, v, = 01. The thicknessh, at the

edgeX = 0 has been taken as 0.1.
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To choose the appropriate number of grid pomisconvergence studies have been carried out for
different sets of plate parameters. The convergegrephs for first three modes of vibration for
specified plate i.@/b = 1, K= 0.02, ;= 0.5, u2 =-0.5, = 0.5,a; =-0.5 anda, = 0.5 are presented in
Figs. 2(a-c) for C-C, C-S and C-F plates, respebtivit is observed that frequency parameter
converges with increasing number of grid pointst Eanvergence of frequency parameter in lower
modes less number of grid points is needed thath&®higher ones. A consistent improvement in the
values of frequency paramef@ris observed with the increasing valuesmoiin all the computations

m = 20 has been fixed to achieve four decimal aayura

Numerical results are presented in Figs. (3-10%. fibund that the value of frequency paramgedor a
C-S plate is greater than that for a C-F plateldésg than that for a C-C plate for the same sgahfes
of plate parameters in all the three modes of tidma

Figs. 3(a-c) show the plots of frequency param&ewith the increasing values of non-homogeneity
parameteygs for aspect rati@/b = 1.0, foundation parametir= 0.02, taper parametets = 0.5, and

ap = -0.3, 0.3, density parametgr= -0.5, 0.5 andu, = 0.5 for all the three plates vibrating in
fundamental, second and third mode. The frequeramampeterQ is found to increase with the
increasing values of non-homogeneity parameiéor all the three plates considered here. Theahte
increase ofQ with 4 is more pronounced in case of C-C plate as cordpaxeC-S and C-F plates.
Also, the rate of increase €f with increasing values ¢f; in all the three plates becomes higher and
higher with increase in the number of modes.

Figs. 4(a-c) depict the variation of frequency pagger Q with the increasing values of non-
homogeneity parameter, fior aspect rati@/b = 1.0, foundation paramet& = 0.02, taper parameters
a1 = 0.5, andr, = -0.3, 0.3, density parametr -0.5, 0.5 angl; = 0.5 for all the three plates vibrating
in fundamental, second and third mode, respectivielyis observed that the behaviour of non-
homogeneity parametgr on frequency paramet€r is almost the same as that of the behavioyr of
except that the rate of increase of frequency patarQ with the increasing valugs is smaller than
that ofp;.

Figs. 5(a-c) show the plots of frequency param@tavith the increasing values of density paramgter
for aspect ratice/b=1.0, foundation paramet&= 0.02, taper parametets = 0.5,0, = -0.3, 0.3, and
non-homogeneity parameteps= 0.5, 4, = -0.5, 0.5 for all the three plates. It is obsdnthat the
frequency paramete® decreases with the increasing values of densitgnpaters for all the three
boundary conditions considered here. The ratesofehse of2 with f is more pronounced in the case
of C-C plate as compared to C-S and C-F platesr gila¢e parameters being fixed. Also, the rate of
decrease in second mode is higher as comparedtoiode but smaller than that in third mode.

Fig. 6(a) depicts the effect of aspect raiib on frequency paramet€ for density parametegt = 0.5,
foundation parametd¢= 0.02, non-homogeneity parametggs -0.5, 0.5, = 0.5and taper parameters
a1 = 0.5 andz, = -0.3, 0.3 for all the three plates vibrating imdamental mode. It is observed that the
frequency paramete® increases with the increasing values of aspeit &b for all the three plates
considered here. The rate of increas€okith a/b is more prominent foa/b>1 than that foa/b<1.
The behavior is almost same in case of secondlarirhode of vibration as that of first mode. The
rate of increase d® with a/b increases with the increase in number of modes, Bi (b) and (c).

31



The effect of taper parameter on the frequencies for the first mode of vibratltas been shown in
Fig. 7(a) fora/b = 1.0, = 0.5,02= 0.0 (linear thickness variatior§= 0.0, 0.0244 = -0.5, 0.5 angi, =

0.5 for C-C, C-S and C-F plates, respectively.sitseen that, in the absence of elastic foundation
(K=0.0), the frequency paramet@ris found to increase continuously with the inchegsvalues of
taper parameted; for all the plates. However, in the presence okkastic foundationK=0.02), the
frequency paramete® is found to increase with the increasing valuea,dbr C-C and C-S plates. In
case of C-F plate fais = -0.5, 0.5, the frequency parameteffirst decreases and then increases with
local minima in the vicinity ofd; = -0.1,£4 = -0.5) and also in case af;E -0.3,24= 0.5). Figs. 7 (b, c)
show that when the plate is vibrating in second tuirdl mode, the frequency paramefgincreases
with the increasing values of taper parametgeffor all the three boundary conditions. The rate of
increase of frequency paramefewith taper parameter; increases with the increase in the number of
modes.

Figs. 8(a-c) show the plots of frequency param@teersus taper parameterfor a/lb = 1.0, = 0.5,

a1 = 0.0 (parabolic thickness variatiod= 0.0, 0.0244= -0.5, 0.5 anqu, = 0.5 for plates vibrating in
fundamental, second and third modes, respectivilys observed that the behavior of the frequency
parametef) with taper parameter; is almost the same as that with taper parameter all the three
plates in all the mode considered here exceptiieae exist local minima in the vicinity af = 0.4 for
L4=-0.5 which shifts towards, = 0.3 forzqa= 0.5 for C-F plate with the incorporation §£0.02 in the
fundamental mode.

The graphs of the frequency paramédeversus foundation parameterhave been given in Figs. 9 (a-
c) for a/b =1(for square plate)i = -0.5,a1 = 0.5,a> = 0.5, 4= -0.3, 0.3 anqu, = -0.3, 0.3. For plates
vibrating in the first mode, Fig. 9 (a) shows ttieg frequency paramet€ris found to increase with the
increasing values of the foundation paramétefor all the three boundary conditions. The rate of
increase of2 with K increases with the order of the boundary conditos, C-S and C-F whatever be
the values of other plate parameters. A similarabedur is observed for the second and third modes o
vibration as shown in the Figs. 9 (b, c) except tha rate of increase of the frequency param@ter
goes on decreasing with the increase in the orfd@odes.

Mode shapes have been computed for two values mhomogeneity parameters = -0.5 andu, =

0.5, taper parametess = 0.5 andz, = - 0.3, 0.3 = -0.5, 0.5 anK = 0.02 for a square plate i&b =

1 for all the three boundary conditions. Figuregd:@) show normalised transverse displacements for
all the three modes of vibrations. The nodal liaesfound to shift towards the edge= 0 with increase

in ax while the nodal lines are seen to shift towardseithgeX=1 with increase iff.

A comparison of our results for homogeneous={&= 0, f=0), isotropic E, / E;=1) plate of uniform
thickness ¢1= o, = 0) with those results obtained by other methadslbeen presented in tables 1 and 2
for o = 0.3. Table 6.2 shows a comparison of our redaitp=1 with approximate values obtained by
quintic spline technique [8], Chebyshev collocatimethod [10], Frobenius method [32] and exact
values from Leissa [31]. As a special case, tbalte have also been computed for p = 2 and cordpare
with those obtained by quintic spline technique [Bhebyshev collocation method [10] and Frobenius
method [32], fora/b = 0.5, 1.0 and are presented in table 2. Excellgnrtement of results shows the
computational efficiency and accuracy of the presegthod.

32



Table 1: Comparison of frequency parameter Q for isotropic (Eo/E;1=1), homogeneous (14 === 0)
plates of uniform thickness (a; = @; = 0.0) for p=1 and v=0.3.

Boundary _ _
Conditions K=0.0 K=0.01
alb 05 1.0 05 10
Ref.\ Mode | I | I | I | I
Liessa31] | — — 28.94( | 69.32( | — — — —
Lal etal. 10] | 23.81¢ | 63.63t | 28.95. | 69.32, | 26.21 | 64.47. | 30.95: | 70.18
c-c Elgle & Soni) 53816 [63.535 | 28.951| 69.327 — — — —
Lal and
. 23.820 | 63.603 | 28.950 | 69.380 | 26.219 | 64.539 | 30.953| 70.239
Dhanpati [8]
Present 23.815 | 63.5345 | 28.950 | 69.3270 | 26.2142 | 64.472 | 30.954 | 70.1872
Liessa[31 | — — 23.64( | 58.64. | — — — —
Lal etal.[0] | 17.33: | 52.09¢ | 23.64( | 58.64¢ | 20.50 | 53.231 | 26.06( | 59.66:
Jain & Soni
cs |1 17.332 | 52.007 | 23.646| 58.646 — — — —
Lal and
. 17.335 | 52.150| 23.647 58.688 20.506 53.288 26.061.7089
Dhanpati [8]
Present 17.3318 | — 23.6363 | 58.6464 | 20.5034 | 53.2372 | 26.0605 | 59.6607
Liessa [3] — 63.63f | 12.68( | — — — — —
Lal etal[0] | 5.70¢ | 24.94: | 12.68. | 33.06f | 12.35. | 27.24¢ | 16.76. | 34.83¢
CF |tal and| go0s | oa049| 12684 33.064 12.350 27.248 16.160 8334.
Dhanpati [8]
Present 57030 | 24.9438 | 12.6874 | 33.0651 | 12.3505 | 27.3432 | 16.7621 | 348325
Table 2:.Comparison of frequency parameter Q for isotropic (E»/E;=1), homogeneous
(th ==L = 0) of uniform thickness (a; = a;=0.0) for K = 0.0, p= 2 and v=0.3.
Boundary a/b 0.5 1.0
Conditions Ref\ Mode | I I | I I
Lal et al.[10] 28.950( | 69.327( | 129.095. | 54.743. | 94.585. | 154.775.
Jain & Soni 32] | 28.950( [69.327( | 129.005 | 54.743( | 94.585. | 154.775
c-C '['8"’}' and Dhanpal| ,q 9499 | 69.3796 | 120.3675 | 54.7312] 94.5027|  154.9509
Present 28.9509 | 28.9509 | 129.0956 | 54.7431 | 94.5853 | 154.7757
Lal et al.[10] 23.6464 | 58.6464 | 113.2377| 51.6742 86.1350  140.8484
Jain & Soni[32] | 23.646. | 58.646. | 113.228. | 51.674. | 86.134 | 140.845!
C-s | g oY P 236468 | 586880 | 1134541 516700 86.1493 1410035
Present 236463 | 58.6464 | 1138281 |51.6743 |86.1345 | 140.8456
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Fig. 5: Frequency parameter for C-C, C-S and Cafeglvibrating in (a) first mode (b) second mode @) third mode,
fora/b=1,u; =0.5, K=0.02,;sr=0.5.0 0 O, C-C; --------- ,C-S;————,C-m, i, =-0.5,a,=-0.3;0, u, = -0.5,0o= 0.3 ;
U = 0.5,0’2: '0.3;0,/,{2 = 0.5,0’2: 0.3.

Fig. 6: Frequency parameter for C-C, C-S and Calteglvibrating in (a) first mode (b) second moda @ third mode, for
B =0.5u,=05K=0.02,0,=0.5.000, C-C; --------- ,C-S;————C-M, 3 =-0.54,=-0.3;0, s =-0.5,00= 0.3 j*, u; =
0.5, a>= -0.3D,,Lt1 = 0.5,0’2: 0.3.
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Fig. 7: Frequency parameter for C-C, C-S and Calfeglvibrating in (a) first mode (b) second mode @) third mode,
fora/b=1,=05u,=0.5, 2»=0.0.0 00, C-C; --------- ,C-S;————, C-m, 1y, =-0.5,K=0.00;0, i3 = 0.5,K=0.0;
e, 11 =-0.5,K=0.02;0, u; = 0.5,K=0.02.
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Fig. 8: Frequency parameter for C-C, C-S and Calfeglvibrating in (a) first mode (b) second mode @) third mode,
fora/b=1,=0.5u,=05,4=0.0.000, C-C; -------—-- ,C-S; ————C-m, u; =-0.5,K=0.00;0, 44 = 0.5,K=0.0;
*, 11 =-0.5,K=0.02;0, 14 = 0.5,K=0.02.
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6. Conclusions

DQM method has been employed for obtaining natuegjuencies of orthotropic rectangular plates on
the basis of a new model to approximate the nonegameity of the plate material. The effect of

various parameters such as non-homogeneity, oojwgtiaspect ratio and foundation modulus on the
frequency parameter has been studied for linearedisas parabolic thickness variation. A comparison
of results with those available for special cassegelalso been presented, which are in good agréemen
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