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Abstract 

In the present study Navier method with generalized shear deformation theory for exponential model which 
proposed by Aydoğdu [31] is used to determine the natural frequencies and critical buckling loads of elastic 
plates. According to the model the transverse shear strains through the thickness direction of the plate are 
distributed exponential and the theory accounts the rotary inertia. The convergence and comparison studies 
demonstrate the accuracy and correctness of the present study. The results are obtained for comparing the anti-
symmetric and symmetric cross-ply laminated plates with isotropic and orthotropic plates for simply supported 
boundary condition. The material anisotropy, plate geometry (side-side, side-thickness), variation of higher 
frequencies, and variation of vibration and axial buckling mode shapes are compared.  

Key words: Cross-ply laminated plates, orthotropic plates, generalized shear deformation plate theory, free 
vibration, axial buckling. 

1.Introduction 

Composites are generally used because they have desirable properties which could not be 
achieved by either of the constituent materials acting alone. The most common example is the 
fibrous composite consisting of reinforcing fibers embedded in a matrix material. In the 
continuous fiber composite laminate individual continuous fiber/matrix laminae are oriented 
in the required directions and bonded together to form a laminate [1]. Each layer can be 
considered as a homogeneous, orthotropic material having a value of Elasticity modulus 
considerably greater in the longitudinal directio than in transverse direction [2]. Despite the 
difficulties in determining the mechanical properties of laminated composite structures due to 
the complex nature of those in comparison with traditional materials make important studying 
about this subject due to their high specific strength and stiffness. However, investigation of 
natural frequencies and critical buckling loads gives an idea about dynamic properties and 
stability characteristics of the system, respectively. Laminated composite plates are 
commonly used structural elements many engineering applications such as aviation, 
automobiles, marine and submarine vehicles, aerospace etc. Hence these structures attract 
great attention by researchers to investigate the elastic behaviors of laminated plates such as 
bending [3-8], buckling [9-10] and free vibration analysis [11,15].  
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This paper provides a contribution in rich literature as well-known for bending, vibration and 
buckling analysis of laminated plates with a comparison of isotropic, orthotropic and 
laminated plates in each others. In most applications, the laminate thickness of laminated 
composite plates which are bonded together to form a laminate with desired thickness and 
stiffness is small compared to the planar dimensions composites. Therefore, two-dimensional 
theories are used to analyze laminated plates for stresses, usually. The two-dimensional 
theories are obtained from the three-dimensional elasticity theory by making assumptions 
concerning the variation of displacements and/or stresses through the thickness of the 
laminate. In the literature, there are many studies of laminated plates with three-dimensional 
plate theories [16-17] and with displacement based shear deformation plate theories such as 
classical laminated plate theory [18,21] and various higher order shear deformation theories 
[22,25] or generalized higher order shear deformation plate theory [26,30]. In this study, the 
exponential model [31] of generalized shear deformation plate theory which based on 
assumed displacement expansions plate theory is considered.  

The elastic plates are compared in terms of material anisotropy, plate thickness, side-to-side 
ratio and mode shapes. In the buckling problem, the elastic plates are compared in terms of 
different loading conditions. The mode shapes giving information for geometrical character of 
the vibration and buckling behavior are plotted for considered elastic plates.   

2. Equations of Laminated Plates   

A rectangular plate which has a length a, a width b and a constant thickness h is considered. 
The plate geometry and dimensions are defined with respect to a Cartesian coordinate system 
(x,y,z), the origin of the coordinate system is placed at the geometric center of the plate. The 
coordinate parameters are such that –a/2≤x≤a/2, –b/2≤x≤b/2, –h/2≤x≤h/2 and the 
corresponding displacement components U, V and W along the x, y and z directions, 
respectively.  
 
The plate is assumed to be constructed of arbitrary number, N, of linearly elastic orthotropic 
layers. Thus, the state of stress in the k-th layer is given by the generalized Hooke’s law as 
follows 
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Where 
)k(

ijQ  are the reduced and transformed material stiffness of the k-th layer and defined as 

follows  
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Where the angle θ is referred to as lamination angle and Qij are reduced material stiffness and 
defined as follows 
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In the higher order shear deformation theories the transverse normal stress is neglected 
because the virtual strain energy of this stress is zero due to the fact that kinematically 
consistent virtual strain must be zero, (εz=0), [32]. Thus, the infinitesimal strain components 
εij (i,j=x,y,z) are defined as follows 
 

xyxyxzxzyzyzyyxx ,V,U,,W,U,,W,V,,V,,U +=γ+=γ+=γ=ε=ε  (4) 

 
According to the generalized shear deformable shell theory which presented by Soldatos and 
Timarci [29], and Timarci and Soldatos [30], the displacement field of the plate is assumed as 
follows 
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Where the displacement components U, V and W are the corresponding components along the 
x, y and z directions, respectively. And where u, v, w, u1 and v1 are the five unknown 
displacement functions of middle surface of the plate while f represent shape function 
determining the distribution of the transverse shear strains and stresses along the thickness. 
Depends on the selection of the shape function f(z) the shear deformation theory corresponds 
such as the classical plate theory (CPT) in which the displacement field is selected so as to 
satisfy the Kirchhoff hypothesis, first order shear deformation plate theory (FSDPT) of 
Timoshenko, parabolic shear deformation plate theory (PSDPT) of Reddy and general 
exponential shear deformation plate theory (ESDPT) of Aydoğdu [31] which is also used in 
the present study and they are given in Table 1. Hence the strain components are written in 
terms of the displacement components as follows 
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where a prime denotes the derivative with respect to z and ,x=∂/∂x.  
 

Table 1. Definitions of shear functions considered in the study. 
 

Corresponding Plate Theory f(z) 
CPT 0 
FSDPT z 
PSDPT z(1-4z2/3h2) 
ESDPT 

  
 
The force and moment resultants are defined as follows 
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By substituting the stress-strain relations into the definitions of the force and moment 
resultants in accordance with the generalized shear deformable shell theory, the constitutive 
relations equations are obtained as follows 
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In these definitions, the resultants and strains denoted with a superscript ‘c’ are the 
conventional ones of the classical plate theories whereas the remaining ones with a superscript 
‘a’ are additional quantities incorporating the transverse shear deformation effects. 
 
The extensional, coupling, bending and transverse shear rigidities in accordance with 
generalized shear deformable shell theory are given as follows 
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Applying Hamilton and minimum potential energy principles [33] the governing equations of 
the considered plate are obtained as follows 
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Where q(x,y,t) is transverse load, Nx

e, Ny
e, Nxy

e are the constant in-plane edge loads and the 
inertia terms ρi and ρi

-lm s are defined as follows 
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and ρ is the mass per unit volume. 
 
The boundary conditions at the edges of the plate are obtained as a result of Hamilton’s 
principle and they are given in Table 2. 
 

Table 2. The boundary conditions at the edges of the plate. 
at x = ± a/2  at y = ± b/2 
either u or Nx

c prescribed either v or Ny
c  prescribed,  

either v or Nxy
c  prescribed either u or Nxy

c prescribed, 
either w or Mx,x

c+2Mc
xy,y   prescribed either w or My,y

c+2Mc
yx,x   prescribed, 

either w,x or Mx
c   prescribed either w,y or My

c   prescribed, 
either u1 or Mx

a  prescribed either u1 or Myx
a  prescribed, 

either v1 or Mxy
a prescribed either v1 or My

a prescribed. 
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The Navier type solution is obtained for simply supported boundary condition of considered 
plates and considered boundary condition is defined as follows 
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2.1.Solution Procedure Of Free Vibration  
  
The proposed displacement model for solution which satisfies considered boundary condition 
and the governing equations is given as follows  
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Where m and n are half-wave numbers along x and y directions, respectively, and ω is radial 
frequency. According to the free vibration problem the transverse load term (q(x;t)) and the 
external force terms (Nx

e, Ny
e, Nxy

e) are set to zero.   
 
For free vibration analysis the displacement field components which given with Eq.(13) are 
substituted into governing equations which given with Eq.(10) and this process is leaded to an 
eigenvalue equation which given as follows 
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2
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where K and M are  stiffness and inertia matrices, respectively, Ωn is the free vibration 
frequency parameter and Xmn is the column vector of unknown coefficients of series (14). For 
a given a pair of m and n with certain geometrical and material properties of the plate, the 
solution of this eigenvalue problem predicts five natural frequencies for vibration problem. 
The non-dimensional frequency parameter is defined as follows 
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2.2.Solution Procedure Of Buckling  
 
The proposed displacement model for solution which satisfies considered boundary condition 
and the governing equations is given as follows  
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According to the axial buckling problem the transverse load term (q(x;t)) and the external 
shear force term (Nxy

e) are set to zero. The in-plane axial forces (Nx
e , Ny

e ) are negative for 
compressive forces and positive for tensile forces. As in the case of axial buckling the in-
plane forces are defined as follows 

e
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where δ is a non-dimensional load parameter which corresponds the loading conditions. The 
value of δ is 0, 1 and -0.5 when the plate is subjected to the uniaxial compression along the x 
axis, the biaxial compression and the tensile loading in the y direction while the plate is under 
compression along the x direction, respectively.  
 
For buckling analysis the displacement field components which given with Eq.(13) are 
substituted into governing equations which given with Eq.(10) and this process is leaded to an 
eigenvalue equation which given as follows 
 
[ ] [ ]{ } [ ]{ } [ ]{ }0XMK mna =− Ν                                                                    (18) 

 
where K and M are  stiffness and geometric matrices, respectively, Na is the critical buckling 
load parameter and Xmn is the column vector of unknown coefficients of series (17). For a 
given a pair of m and n with certain geometrical and material properties of the plate, the 
solution of this eigenvalue problem predicts five critical buckling loads for buckling problem. 
The non-dimensional critical buckling load parameter is defined as follows 
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3. Numerical Results  
 
The cross-ply laminated plates are compared from the point of free vibration and buckling 
behavior under in-plane axial forces with isotropic and orthotropic plates. The analysis is 
performed based on a generalized shear deformable shell theory using Navier type solution. 
Hence, it is considered simply supported boundary condition. The material properties of 
laminated plates which used in the present study are given in Table 3.   
 

Table 3. Comparison of non-dimensional fundamental frequency parameter of simply 

supported isotropic and orthotropic plates, ( ( ) 22
22

11 D/h/b ρπω=Ω ). 

a/b Method Isotropic E1/E2=3 E1/E2=10 
a/h=100 a/h=10 a/h=100 a/h=10 a/h=100 a/h=10 

0.5 Ref.[32] 4.999 4.900 7.669 7.517 13.072 12.814 
Present 
Study 

4.998 4.973 7.669 7.630 13.074 13.008 

1.0 Ref.[32] 2.000 1.984 2.541 2.521 3.672 3.643 
Present 
Study 

1.997 1.982 2.539 2.519 3.671 3.641 

2.0 Ref.[32] 1.250 1.244 1.342 1.336 1.499 1.491 
Present 
Study 

1.248 1.224 1.341 1.315 1.496 1.466 

3.0 Ref.[32] 1.111 1.106 1.145 1.139 1.183 1.178 
Present 
Study 

1.109 1.067 1.140 1.099 1.178 1.135 

 
The frequency parameters, the critical buckling loads and mode shapes of vibration and 
buckling are obtained for different plate geometry and material anisotropy according to 
vibration and axial loading conditions.  
 
In order to establish the validity of the present study comparison results are presented in Table 
4-9. In Table 4, comparison of non-dimensional fundamental frequency parameter of isotropic 
and orthotropic plates is given. In Table 5, comparison of non-dimensonal frequency 
parameters for higher modes of laminated plates according to the classical plate theory is 
given. In table 6, comparison of critical buckling load of isotropic plates under uniaxial 
compression (δ=0) along the x-axis is given. In Table 7-9, comparison of critical buckling 
load of orthotropic and laminated plates are given for uniaxial compression along the x-axis 
and biaxial compression (δ=1). The results are in good agreement.    
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Table 4. Comparison of non-dimensonal frequency parameters of simply supported laminated 
plates according to the classical plate theory (a/b=1, E1/E2=20). 

(m,n) Solution Method (0º) (0º /90º) (0º/90º)2 (0º/90º)s 
(1,1) Ref.[34] 4.847 0.990 1.386 2.638 

Present Study 4.845 0.984 1.385 2.636 
(1,2) Ref.[34] 6.781 2.719 3.913 4.917 

Present Study 6.778 2.716 3.911 4.915 
(1,3) Ref.[34] 11.111 5.789 8.456 9.637 

Present Study 11.105 5.784 8.450 9.632 
(2,1) Ref.[34] 18.193 2.719 3.913 9.354 

Present Study 18.188 2.716 3.911 9.352 
(2,2) Ref.[34] 19.388 3.959 5.547 10.554 

Present Study 19.381 3.956 5.544 10.549 
(2,3) Ref.[34] 22.153 6.702 9.507 13.826 

Present Study 22.141 6.695 9.501 13.818 
 

 
Table 5. Comparison of critical buckling load of simply supported isotropic plates under 

uniaxial compression along the x-axis (δ=0) for different a/b ratios. 
a/b 0.5 1.0 1.5 
Ref.[32] 6.250 4.000 4.340† 
Present Study 6.249 3.999 4.339† 

† Denotes change to the next higher mode. 
 
 

Table 6. Comparison of critical buckling load of simply supported orthotropic plates under 
uniaxial compression along the x-axis (δ=0) for different a/b ratios. 

a/b Solution Method E1/E2=1 E1/E2=3 E1/E2=10 E1/E2=25 
0.5 Ref.[32] 6.250 14.708 42.737 102.750 

Present Study 6.619 14.699 42.729 102.739 
1.0 Ref.[32] 4.000 6.458 13.488 28.495 

Present Study 4.369 6.449 13.479 28.489 
2.0 Ref.[32] 4.000(2,1) 6.458(2,1) 8.987 12.745 

Present Study 4.369(2,1) 6.449(2,1) 8.979 12.739 
3.0 Ref.[32] 4.000(3,1) 6.042(2,1) 9.182(2,1) 14.273 

Present Study 4.369(3,1) 6.039(2,1) 9.179(2,1) 14.269 
 

Table 7. Comparison of critical buckling load of simply supported orthotropic plates under 
biaxial compression (δ=1) for different a/b ratios, ( )22

22
cr D/bN π=Ν . 

a/b Solution Method E1/E2=1 E1/E2=3 E1/E2=10 E1/E2=25 
0.5 Ref.[32] 5.000 11.767 25.427(1,3) 40.784(1,4) 

Present Study 5.299 11.759 25.419(1,3) 40.779(1,4) 
1.0 Ref.[32] 2.000 3.229 6.744 10.196(1,2) 

Present Study 2.179 3.219 6.739 10.189(1,2) 
2.0 Ref.[32] 1.250 1.442 1.798 2.549 

Present Study 1.319 1.439 1.789 2.539 
3.0 Ref.[32] 1.111 1.179 1.260 1.427 

Present Study 1.139 1.169 1.249 1.419 
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Table 8. Comparison of critical buckling load of simply supported laminated plates under 

uniaxial compression along the x-axis and biaxial compression for different a/b ratios, (0º/90º 
/0º/90º). 

a/b Solution Method E1/E2=5 E1/E2=10 E1/E2=20 E1/E2=40 
Uniaxial compression (δ=0) 
0.5 Ref.[34] 4.705 4.157 3.828 3.647 

Present Study 4.699 4.149 3.819 3.639 
1.0 Ref.[34] 2.643 2.189 1.923 1.778 

Present Study 2.639 2.179 1.919 1.769 
1.5(2,1) Ref.[34] 2.955 2.487 2.211 2.061 

Present Study 2.949 2.479 2.209 2.059 
Biaxial compression (δ=1) 
0.5 Ref.[34] 3.764 3.325 3.062 2.917 

Present Study 3.759 3.319 3.059 2.909 
1.0 Ref.[34] 1.322 1.095 0.962 0.889 

Present Study 1.319 1.089 0.959 0.879 
1.5 Ref.[34] 1.009 0.860 0.773 0.725 

Present Study 0.999 0.859 0.769 0.719 
 
Firstly, effects of the material anisotropy, the plate thickness and the side-to-side ratio on the 
number of layer of cross-ply laminated plates are investigated in Fig.1. It is observed that the 
frequency parameters increase with increasing the material anisotropy ratio (E1/E2), the side-
to-side ratio (a/b) and the plate becoming thinner. The variation of frequency with a/h ratio is 
sharply for a/h<20 values and after the value of a/h>20 the variation of frequency is slightly. 
When the effect of the material anisotropy and the thickness of the plate on the freqeuncy 
parameter is investigated, it is seen that the frequency values of the two-layer cross-ply plate 
are smaller than the others with big differences.    
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(a) (b) (c) 
Figure 1: Variation of frequency parameter with number of layers of cross-ply laminated 

plates for (a) different orthotropy degrees ( a/h=20, a/b=1); (b) different a/h ratios ( E1/E2=30, 
a/b=1); (c) different a/b ratios ( E1/E2=30, a/h=20). 

 
Comparisons of anti-symmetric and symmetric cross-ply laminated plates with isotropic and 
orthotropic plates in terms of free vibration behaviour are given in Fig.2-5. As usual, 
frequency values of considered plates increase with increasing the material anisotropy, the 
plate thickness and the length of the plate and also frequency values of symmetric cross-ply 
and orthotropic plates are very closely each others. According to the material anisotropy and 



Bahar Uymaz 
 

 11 

the plate thickness, symmetric cross-ply and orthotropic plates are more rigid but according to 
the plate length anti-symmetric plates are more rigid and frequency values of symmetric 
cross-ply laminated plates are bigger than frequency values of orthotropic plates. In all 
profiles, isotropic plates have minimum frequency values. In the higher modes, it is seen that 
the variations of frquency values increase wavy and frequency values of -symmetric cross-ply 
laminated and orthotropic plates are very closely each others but orthotropic plates have more 
rigidity in terms of symmetric cross-ply laminated plates and anti-symmetric cross ply 
laminated plates. 
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Figure 2: Variation of frequency parameter with orthotropy degree for different elastic plates 

( a/b=1 a/h=20 ). 
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(a) E1/E2=3 (b) E1/E2=30 

Figure 3: Variation of frequency parameter with a/b ratios and with ortotropy degrees for 
different elastic plates ( a/h=20 ). 
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(a) E1/E2=3 (b) E1/E2=30 

Figure 4: Variation of frequency parameter with a/h ratios and with ortotropy degrees for 
different elastic plates ( a/b=1 ). 
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(a) E1/E2=3 (b) E1/E2=30 

Figure 5:Variation of higher frequency parameter with mode sequence numbers and with 
ortotropy degrees for different elastic plates ( a/b=1, a/h=20 ). 

 
Comparisons of anti-symmetric and symmetric cross-ply laminated plates with isotropic and 
orthotropic plates in terms of buckling behaviour under various buckling load types are given 
in Fig.6-9. As expected all of considered plates have maximum value of critical buckling load 
when the plate is subjected to uniaxial compression along the x axis (δ=0) and have minimum 
value critical buckling load when the plate is subjected to bi-axial compression load (δ=1). 
According to the variation of material anisotropy critical buckling loads of considered plates 
are almost linearly increasing and critical buckling loads of symmetric cross-ply laminated 
and orthotropic plates are very closely each others and critical buckling loads of them are 
bigger than anti-symmetric laminated plates. It is observed that critical buckling loads 
increase with the plate becoming thinner. The variation of buckling load with a/h ratio is 
sharply for a/h<20 values and after the value of a/h>20 the variation of buckling load is 
slightly. According to the variation of the side-to-side ratio, it is seen that buckling loads 
increase with increasing of the plate length. However, critical buckling loads of orthotropic 
plates decrease with increasing of the plate length for bi-axial compression loading. In terms 
of the variation of the plate length anti-symmetric plates more stable than the others. In all 
profiles, isotropic plates have minimum critical buckling loads. In the higher buckling modes, 
it is seen that the variations of critical buckling loads of considered plates are slightly until 
sixth mode and next it is observed that critical buckling loads of anti-symmetric laminated 
plates increase sharply for uniaxial compression loading. For bi-axial compression and tensile 
loading in the y direction while the plate is under compression along the x direction, critical 
buckling loads of orthotropic plates higher than symmetric laminated plates, of anti-
symmetric laminated plates plates and of isotropic plates, respectively.   
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(a) (b) (c) 

Figure 6: Variation of critical buckling load with orthotropy degrees for different elastic 
plates which subjected to considered loading conditions ( a/b=1 a/h=20 ). 
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(a) (b) (c) 

Figure 7: Variation of critical buckling load with a/h ratios for different elastic plates which 
subjected to considered loading conditions (E1/E2=30 a/b=1 ). 
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(a) (b) (c) 

Figure 8: Variation of critical buckling load with a/b ratios for different elastic plates which 
subjected to considered loading conditions (E1/E2=30 a/h=20 ). 
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Figure 9: Variation of higher critical buckling load with mode sequence numbers for different 
elastic plates which subjected to considered loading conditions (E1/E2=30 a/b=1 a/h=20). 

 
The vibration mode shapes of the first six frequency parameters of considered elastic plates 
are given in Fig. 10-16 for transverse displacement field component (w). The mode shapes are 
unknown coefficients corresponding to eigenvectors of eigenvalue problem which is given in 
Eq. 14. From this equation, firstly the eigenvalues which corresponding the natural 
frequencies are obtained. Hence, the eigenvectors which corresponding natural frequencies 
and so unknown coefficients are obtained. Thus, substituting the coefficients in the Eq. (13) 
the mode shapes can be drawn. It is observed that isotropic, orthotropic and symmetric 
laminated plates have the same mode arrangements when the value of material anisotropy 
(E1/E2) is 3. When the value of material anisotropy is 30, the mode arrangements of 
symmetric laminated and orthotropic plates are varying for higher modes. The mode 
arrangements of anti-symmetric laminated plates are different from the other plates and there 
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is no variation with the mode arrangements of anti-symmetric laminated plates with the 
variation of the material anisotropy.  
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Figure 10: Mode shapes of free vibration modes of isotropic plates, (a/b=1, a/h=20) 
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Figure 11: Mode shapes of free vibration modes of orthotropic plates, (a/b=1, a/h=20, 
E1/E2=3). 
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Figure 12: Mode shapes of free vibration modes of orthotropic plates, (a/b=1, a/h=20, 
E1/E2=30). 
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Figure 13: Mode shapes of free vibration modes of anti-symmetric cross-ply laminated 
plates, (a/b=1, a/h=20, E1/E2=3, 0/90/0/90). 
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Figure 14: Mode shapes of free vibration modes of anti-symmetric cross-ply laminated 
plates, (a/b=1, a/h=20, E1/E2=30, 0/90/0/90). 
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Figure 15: Mode shapes of free vibration modes of symmetric cross-ply laminated plates, 
(a/b=1, a/h=20, E1/E2=3, 0/90/90/0). 
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Figure 16. Mode shapes of free vibration modes of symmetric cross-ply laminated plates, 
(a/b=1, a/h=20, E1/E2=30, 0/90/90/0). 

 
The buckling mode shapes of the first four critical buckling loads of considered elastic plates 
which obtained with Navier method are given in Fig. 17-19 for transverse displacement field 
component (w). It is observed that the mode arrangements of symmetric laminated and anti-
symmetric laminated plates have the same variation at the same material anisotropy. Critical 
buckling loads increase with increasing material anisotropy, but also wave numbers of plates 
increase even if at lower modes.  
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Figure 17: Mode shapes of axial buckling modes of different elastic plates which subjected to 

uniaxial compression along the x-axis, (a/b=1, a/h=20). 
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symmetric cross-ply laminated plate (0/90/90/0, E1/E2=30) 

 
Figure 18: Mode shapes of axial buckling modes of different elastic plates which subjected to 

tensile loading in the y direction while the plate is under compression along the x direction, 
(a/b=1, a/h=20). 
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symmetric cross-ply laminated plate (0/90/90/0, E1/E2=30) 

 
Figure 19: Mode shapes of axial buckling modes of different elastic plates which subjected to 

biaxial compression, (a/b=1, a/h=20). 
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4.Conclusions  
 

The objective of the study is to do a relative analysis with isotropic, orthotropic and laminated 
plates in terms of free vibration and axial buckling behaviours. In the study an analytical 
solution is carried based on a higher order shear deformation theory for simply supported 
boundary condition.  
According to the variation of material anisotropy and plate thickness, it is observed that 
frequency values and critical buckling loads of orthotropic and symmetric laminated plates 
are very closely each others and higher than the values of anti-symmetric laminated plates 
with increasing material anisotropy and decreasing plate thickness. According to the variation 
of side-to-side ratio, it is observed that when the values of frequency and critical buckling 
loads ranging from the higher value to the less value, they are belong to anti-symmetric 
laminated, symmetric laminated, orthotropic and isotropic plates, respectively. In all 
conditions, isotropic plates have minimum frequency value and critical buckling loads. It is 
seen that the frequency values and the critical buckling loads increasingly increase with 
increasing material anisotropy, decreasingly increase with increasing side-to-side ratio and 
sharply increase until a critical value (a/h=20) and after the critical value the variation is 
slightly with decreasing plate thickness.  
 
It is observed that the mode arrangements vary considering isotropic plates with increasing 
material anisotropy. In the buckling problem, it is seen that the variation of validation is not 
only for mode arrangement as in the vibration problem but also for nodal point number.     
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