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Abstract 

In this paper the study of a chemically reacting free convection MHD micropolar flow, heat and mass transfer in with the 
effects of ohmic heating and viscous dissipation past an infinite vertical plate which is subjected to a constant heat flux 
and a concentration gradient. The non-linear coupled partial differential equations are solved by using multi parameter 
perturbation technique. The results for transverse velocity, angular velocity and temperature are obtained and illustrated 
graphically to observe the effects of various parameters on these functions. The numerical discussion with physical 
analysis of the influence of various parameters also presented. 
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1. Introduction 

We know that fluids in geothermal region are electrically conducting. Flows arising from 
temperature difference have great significance for the applications to the geophysics and engineering. 
There are many interesting aspects of such flows, so analytical solutions of such problem are 
presented by many authors. Gebhart and Pera [1], Sparrow et al. [2], Soundalgekar [3], Acharya et al. 
[4], Singh and Chand [5] are some of them. Investigations of the flow streaming into a porous and 
permeable medium, assuming velocity of the flow not small (Reynolds number is moderately high) 
were obtained by Yamamoto and Iwamura [6], Yamamoto and Yoshida [7], Brinkman [8], Raptis et 
al. [9, 10]. All above authors used generalized Darcy’s law, and the generalized Darcy’s law is 
derived without taking into account the angular velocity of the fluid particles. Raptis [11] in his 
research paper on a horizontal plate used flow equations with angular velocity. Such fluids are 
known as polar fluids in the literature. Raptis [12] in another research paper discussed magnetopolar 
fluid through a porous medium. 

Analysis of the transport processes and their interaction with chemical reactions can be quite difficult 
and is intimately connected to the underlying fluid dynamics. Such a combined analysis of chemical 
and physical processes constitutes the core of chemical reaction engineering. Combined heat and 
mass transfer problems with chemical reaction are of importance in many processes. In processes 
such as drying, evaporation at the surface of a water body, energy transfer in a wet cooling tower and 
the flow in a desert cooler, heat and mass transfer occur simultaneously. Natural convection 
processes involving the combined mechanisms are also encountered in many natural processes, such 
as evaporation, condensation and agricultural drying, and in many industrial applications, such as the 
curing of plastics, cleaning and chemical processing of materials relevant to the manufacture of 
printed circuitry, manufacture of pulp-insulated cables, etc. Diffusion rates can be altered 
tremendously by chemical reactions. The Effect of a chemical reaction depends whether the reaction 
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is homogeneous or heterogeneous. This depends on whether they occur in an interface or as a single 
phase volume reaction. In a well-mixed system, the reaction is heterogeneous if the reactants are in 
multiple phase, and homogeneous if the reactants are in the same phase. In most cases of chemical 
reactions, the reaction rate depends on the concentration of the species itself. For example, the 
formation of smog is a first-order homogeneous chemical reaction. Consider the emission of NO2 
from automobiles and other smoke stacks. This NO2 reacts chemically in the atmosphere with 
unburned hydrocarbons (aided by sunlight) and produces peroxyacetylnitrate, which forms an 
envelope termed as the photochemical smog. Kandasamy and Devi [13] studied the effects of 
chemical reaction, heat and mass transfer on non-linear laminar boundary-layer flow over a wedge 
with suction or injection. Also, the studies of heat generation or absorption in moving fluids for 
problems involving chemical reactions and those concerned with dissociating fluids are equally 
important. Specifically, the effects of heat generation may alter the temperature distribution, 
consequently affecting the particle deposition rate in nuclear reactors, electronic chips, and 
semiconductor wafers. In fact, the literature is replete with examples of heat transfer in the laminar 
flow of viscous fluids. The problem of heat transfer in MHD boundary-layer flow and heat 
annihilation over a stretching sheet is considered by Kumar [14]. 

Recently, considerable attention has also been focused on new applications of magneto-
hydrodynamics (MHD) and heat transfer in for example metallurgical processing. Melt refining 
involves magnetic field application to control excessive heat transfer rates. Both laminar and 
turbulent flows are of interest. Many studies in MHD thermo-convection flows have been conducted. 
Asghar et. al. [15] investigated the MHD flow due to non-coaxial rotations of a porous disk, moving 
with uniform acceleration in its own plane and a second grade fluid at infinity. Chen [16] studied the 
problem of combined heat and mass transfer of an electrically conducting fluid in MHD natural 
convection, adjacent to a vertical surface with Ohmic heating. 

In the present paper a study of steady free convection flow of a laminar, incompressible MHD 
micropolar fluid and thermal and mass diffusion in porous medium is carried out. The object of the 
paper is to analyze the effects of magnetic field, heat source and dissipation on the velocity and 
thermal transport in the boundary layer, when the wall is at prescribed heat flux. 

2. Mathematical Analysis 

Here in the paper it is considered to be a free convection flow of an incompressible and electrically 
conducting viscous thermo-micropolar fluid past an infinite vertical plate is considered. The vertical 
plate is assumed to be at a constant heat flux and a constant concentration gradient. A magnetic field 
(B0) of uniform strength is applied transversely to the direction of the flow that is y-axis and the 
induced magnetic field is neglected. Taking the x-axis along the vertical porous plate in upward 
direction and y axis normal to it. Since the length of the plate is large and fluid flow extends to 
infinity, therefore all physical variables are independent of x and hence the functions of y only. The 
governing equations of continuity, momentum, concentration, angular velocity and energy for the 
flow in the presence of ohmic heating, heat generation, chemical reaction and viscous dissipation are: 
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Fig.1:- Physical Model and Coordinate System 

0
*

*
=

∂
∂
y

v
                                                                        (1) 

0
* Vv −=   (Constant)                                                              (2)  

0
*

=
∂y

dp
p⇒  is independent of  *y                                               (3) 

( ) ( ) ( ) *2
0*2*

*2

*

*
* uB

y
ccgTTg

y

u

y

u
v a

cT σωκβρβρµκρ −
∂

∂
+−+−+

∂

∂+=
∂
∂

∞∞                (4) 

a
aa

yy
vj ωκωγωρ 2

2*

2

*
−

∂

∂
=















∂

∂
                                                        (5) 

2*2
0

2

*

*

2*

2

*
* )( uBTTQ

y

u

y

T
k

y

T
vc p σµρ +−+















∂
∂+

∂

∂=
∂
∂

∞                                  (6) 

( )∞−−
∂

∂=
∂
∂

cck
y

c
D

y

c
v l2*

2

*
*                                                         (7) 

with the boundary conditions:  
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Solution of the equation (12) is  
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In order to solve the coupled equations (9) to (11), for boundary conditions (13) we expand u , ω  
and θ  in powers of the Eckert number Ec which is very small (Ec<< 1) for incompressible fluids.  
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Thus on using the above series expansions in equations (9) to (11) and equating the coefficient of 
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Skin Friction: - The skin friction at the wall y = 0 is given by  
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Recovery Factor: - The recovery factor at the wall y = 0 is given by 
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where all the constants are given in the Appendix. 
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3. Result and Discussion 

The main findings of this paper is to study the effects magnetic field, viscous dissipation and Prandtl 
number on fluid temperature, effects of viscous dissipation, thermal Grashof number and magnetic 
field over the velocity. Effects of Prandtl number, dissipation and magnetic field on the skin friction 
and recovery factor. 

 

Fig.2:- Dimensionless transverse velocity against y for different values of M, when Sc = 0.6, 

cK =1.0, a =0.5, Pr = 2.0, S = 0.4, rG = 5.0, 5.0=cG  and Ec =0.01 

 

 

Fig.3:- Dimensionless transverse velocity against y for different values of rG , when Sc = 0.6, 

cK =1.0, a =0.5, Pr = 2.0, S = 0.4, M = 2.0, 5.0=cG  and Ec =0.01 
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Fig.4:- Dimensionless transverse velocity against y for different values of Ec, when Sc = 0.6, 

cK =1.0, a =0.5, Pr = 2.0, S = 0.4, M = 2.0, rG = 5.0 and 5.0=cG  

Transverse velocity is presented in fig. 2, fig. 3 and fig. 4 for different variations in M,  rG  and Ec 

respectively. The velocity decreases as M increases whereas it increases with an increase in rG  or 
Ec. Increasing magnetic field strength is to increase the retarding force and hence reduces the 
velocity, the thermal Grashof number rG  signifies the relative effect of the thermal buoyancy force 
to the viscous hydrodynamic force in the boundary layer, it is observed that there is a rise in the 
velocity due to the enhancement of thermal buoyancy force. The effect of Ec in the flow field is to 
increase the energy, yielding a greater buoyancy force, and hence the increase in buoyancy force due 
to increase in the dissipation parameter enhances the convective velocity. 

 

Fig.5:- Dimensionless angular velocity against y for different values of M, when Sc = 0.6, cK =1.0,  

a =0.5, Pr = 2.0, S = 0.4, M = 2.0, rG = 5.0 and 5.0=cG  

Figure 5 is drawn for the effects of Ec on angular velocity. Ec increases with ω . With increasing 
rotational velocity, the shear stress due to viscosity of the fluid, generates higher dissipation. 
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Fig.6:- Dimensionless temperature against y for different values of M, when Sc = 0.6, cK = 1.0,        

a = 0.5, Pr = 2.0, S = 0.4, rG = 5.0, 5.0=cG  and Ec =0.01 

 

 

 

Fig.7:- Dimensionless temperature against y for different values of Ec, when Sc = 0.6, cK = 1.0,        

a = 0.5, Pr = 2.0, S = 0.4, M = 2.0, rG = 5.0 and 5.0=cG  
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Fig.8:- Dimensionless temperature against y for different values of Pr, when Sc = 0.6, cK =1.0,        

a = 0.5, S = 0.4, M = 2.0, rG = 5.0, 5.0=cG  and Ec =0.01 

The temperature is drawn for various values of Pr, M and Ec in fig. 6, fig. 7 and fig. 8. θ  increases 
with Pr or M, whereas decreases with an increase of Ec. As the wall is at prescribed heat flux the 
temperature increases with an increase in Pr, as the temperature rise due to heat flux impinging on 
the surface. Also, it is evident from fig. 7, to the fact that magnetic field increases the temperature of 
the fluid inside the boundary-layer because of excess heating. Figure 8 depicts that higher dissipative 
fluid has lower thermal boundary layer. Increasing Ec implies that dissipation of thermal energy is 
higher and that reduces the temperature. 

 

Fig.9:- Skin friction coefficient against M for different values of Pr and Ec, when Sc = 0.6, cK =1.0, 

a =0.5, Pr = 2.0, S = 0.1, rG = 5.0 and 5.0=cG  
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Fig.10:- Recovery factor against M for different values of Pr and Ec, when Sc = 0.6, cK =1.0, a =0.5, 

Pr = 2.0, S = 0.1, rG = 5.0 and 5.0=cG  

Figures 9 and 10 represent the skin friction coefficient and the recovery factor. The τ  and fR  are 

plotted against magnetic field parameter, for the different values of Pr and Ec. It is noted that τ  
increases with Pr or Ec; and the phenomena reverses for M. fR  increases with Ec and decreases as 

Pr increases. 

4. Conclusions 

In this paper a problem of MHD free convective flow of a micropolar fluid with the effect of Ohmic 
heating and viscous dissipation over a chemically reacting plate is studied when the plate is at a 
constant heat flux. Increasing dissipation or thermal buoyancy, increases the transverse velocity and 
on the contrary effect of magnetic field is to decrease. The angular velocity found to be increased 
with dissipation. The fluid temperature increases as Prandtl number or magnetic field parameter 
increase; on the other hand for higher disspative fluid the temperature decreases. The skin friction 
coefficient increases with Prandtl number as well as with viscous dissipation; whereas decreases for 
Magnetic field parameter. The recovery factor increases with dissipation and decreases as Prandtl 
number increases. 
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Nomenclature 
 

y* horizontal coordinate                           (m) 

u* axial velocity                                     (m/s) 

v* transverse velocity                             (m/s) 

aω  angular velocity vector normal to the  

k  thermal conductivity                   (W/m K) 

D  mass diffusion coefficient             (m2 s-1) 

lk  rate of chemical reaction                    (s-1) 

q     rate of heat transfer                   (W/m2) 
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