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Abstract 

The present study covers a comprehensive numerical study on fully developed two-dimensional flow of viscous 
incompressible fluid through a curved rectangular duct of aspect ratio 4. Numerical calculations are carried out by using 
a spectral method, and covering a wide range of the Dean number, ,1000100  Dn for two cases of the duct curvature, 
Case I: 001.0  and Case II: 1.0 . The main concern of the present study is to find out effects of curvature as well 
as formation of Dean vortices on unsteady solutions as the unsteady flow is steady-state, periodic, multi-periodic or 
chaotic, if the Dn is increased. Time evolution calculations show that the steady-state flow turns into chaotic flow 
through various flow instabilities, if Dn is increased no matter what the curvature is. It is found that the unsteady flow is 
a steady-state solution for small Dn`s, and it oscillates periodically or non-periodically (chaotic) between two-, four-, 
six-, eight- ten- and twelve-vortex solutions, if Dn is increased. In this study, we obtained multi-vortex solutions due to 
strong centrifugal force. It is found that the chaotic solution is weak for small Dn’s but strong as Dn becomes large. It is 
also found that the axial flow shifted to the outer wall of the duct as Dn increases. 

Keywords: Curved duct; secondary flow; unsteady solutions; Dean number; aspect ratio. 

1. Introduction 

The Fluid flow through curved ducts has been extensively studied for a wide range of applications 
with a key base of heat transfer and mixing enhancement. Today, the flows in curved non-circular 
ducts are of increasing importance in micro-fluidics, where lithographic methods typically produce 
channels of square or rectangular cross-section. These channels are extensively used in many 
engineering applications, such as in turbo-machinery, refrigeration, air conditioning systems, heat 
exchangers, rocket engine, internal combustion engines and blade-to-blade passages in modern gas 
turbines. Changes in cross-sectional shape and curvature of the duct axis are of particular concern 
because these lead to vortical motions, flow reversals, and unsteadiness. In a curved duct, centrifugal 
forces are developed in the flow due to channel curvature causing a counter rotating vortex motion 
applied on the axial flow through the channel. This creates characteristics spiraling fluid flow in the 
curved passage known as secondary flow. At a certain critical flow condition and beyond, additional 
pairs of counter rotating vortices appear on the outer concave wall of curved fluid passages which are 
known as Dean vortices, in recognition of the pioneering work in this field by Dean [1]. After that, 
many theoretical and experimental investigations have been done by keeping this flow in mind; for 
instance, the articles by Berger et al. [2], Nandakumar and Masliyah [3], and Ito [4] may be 
referenced.  

Numerical solutions should be validated by the experimental results. Therefore, many researchers 
studied fluid flows in curved ducts using experimental techniques. Flow through a curved rectangular 
duct has been investigated, both experimentally and numerically, with large aspect ratio by Akiyama 
et al. [5]. Ligrani and Niver [6] found secondary vortex patterns doing experiments in curved 
channels for Dean numbers from 40 to 220 and aspect ratio of 1 to 40, in which the photographs 
illustrated the evidence of a pair of counter-rotating Dean vortices. Yamamoto et al. [7] investigated 
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secondary flows in a curved duct of square cross section using flow visualization technique. The 
photographs were taken by changing the Dean number at a constant Taylor number and received a 
good agreement with their numerical result. Bara et al. [8, 9] studied fully developed incompressible 
flow in curved square ducts using both experimental and numerical techniques, and obtained two-
vortex flow at Dn = 125 and four-vortex at Dn = 137 by Laser Doppler Velocimetry (LDV) 
measurements. An early analytical and experimental investigations, such as Baylis [10], Humphrey 
et al. [11], concluded that Dean number was solely responsible for secondary flow and Dean 
instability in the curved passages. However, later studies with curved rectangular ducts by Cheng et 
al. [12], Ghia and Sokhey [13] and Sugiyama et al. [14] have shown that the Dean instability is also 
dependent on the aspect ratio and curvature ratio along with the Dean number. Chandratilleke and 
Nursubyakto [15] reported a 2-dimensional study to examine the effects of curvature ratio and aspect 
ratio as well as the wall heat flux. Yanase et al. [16] investigated flow in a curved duct and classified 
the flow range into three different regimes; steady-stable, periodic and chaotic. They used spectral 
method to see the field response against perturbation and discovered that while for low flow rate 
system is confidently stable against perturbation it will turn into periodic and even chaotic behaviors 
for higher flow rates. Norouzi et al. [17] investigated the inertial and creeping flow of a second-order 
fluid in a curved duct with square cross-section by using finite difference method. The effect of 
centrifugal force due to the curvature of the duct and the opposing effects of the first and second 
normal stress difference on the flow field were investigated in that study. Recently, Chandratilleke et 
al. [18] presented a numerical investigation to examine the secondary vortex motion and heat transfer 
process in fluid flow through curved rectangular ducts of aspect ratios 1 to 6. Very recently, an 
analytical solution for incompressible viscous flow through the curved ducts with rectangular cross-
section has been made by Norouzi and Biglari [19] by using perturbation method. The effect of duct 
curvature and aspect ratio on flow field was investigated in that study.  

Time dependent analysis of fully developed curved duct flows was initiated by Yanase and 
Nishiyama [20] for a rectangular cross section. In that study, they investigated unsteady solutions for 
the case where dual solutions exist. The time-dependent behavior of the flow in a curved rectangular 
duct of large aspect ratio was investigated, in detail, by Yanase et al. [21] numerically. They 
performed time-evolution calculations of the unsteady solutions with and without symmetry 
condition and showed that periodic oscillations appear with symmetry condition while aperiodic time 
variation without symmetry condition. Wang and Liu [22] performed numerical as well as 
experimental investigations of periodic oscillations for the fully developed flow in a curved square 
duct. Flow visualization in the range of Dean numbers from 50 to 500 was conducted in their 
experiment. They showed, both experimentally and numerically, that a temporal oscillation takes 
place between symmetric/asymmetric 2-cell and 4-cell flows when there are no stable steady 
solutions. Yanase et al. [23] performed numerical investigation of isothermal and non-isothermal 
flows through a curved rectangular duct and addressed the time-dependent behavior of the unsteady 
solutions. Recently, Mondal et al. [24, 25] performed numerical prediction of time-dependent 
solutions for the flow through a curved square duct and discussed the transitional behavior of the 
unsteady solutions. Very recently, Mondal et al. [26] investigated spectral numerical study for non-
isothermal flow through a curved rectangular duct of aspect ratios 1 to 3, and showed that the steady-
state flow turns into chaotic flow through various flow instabilities if the aspect ratio is increased. 
However, transient behavior of the unsteady solutions is not yet resolved for the flow through a 
curved rectangular duct of large aspect ratio with the effects of curvatures, which motivated the 
present study to fill up this gap. In the present paper, we investigate unsteady flow characteristics for 
fully developed two-dimensional flow of viscous incompressible fluid through a curved rectangular 
duct of aspect ratio 4 with curvatures 0.001 and 0.1. Flow characteristics are studied by using a 
spectral-based numerical scheme over a wide range of the Dean number.  
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2. Governing Equations 

Consider a hydro-dynamically fully developed two-dimensional (2-D) flow of viscous 
incompressible fluid through a curved rectangular duct with constant curvature. The cross section of 
the duct is a rectangle with width d2 and height 2h. The yx,  and z axes are taken to be in the 
horizontal, vertical, and axial directions, respectively. It is assumed that the flow is uniform in the 
axial direction (i.e. in the z direction), and that it is driven by a constant pressure gradient G along 
the center-line of the duct, that is, the main flow in the axial direction as shown in Fig. 1.  

 

 

 

 
  
  
  
  
  
  
  
  
  
  

 
Figure 1: Coordinate system of the curved rectangular duct. 

The dimensional variables are non-dimensionalized by using the representative length d, the 
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where vu,  and w  are the non-dimensional velocity components in the yx, and z  directions, 
respectively ; t  is the non-dimensional time, P  is the non-dimensional pressure,   is the non-

dimensional curvature defined as 
L
d

 , Henceforth, all the variables are non-dimensionalized if not 

specified.  

Since the flow field is uniform in the z-direction, the sectional stream function   is introduced in the 
x- and y-directions as follows:  
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Then basic equations for the axial flow (w) and stream function of the secondary flow ( ) are 
derived from the Navier-Stokes equations with the Boussinesq approximation as: 
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The Dean number, Dn, which appears in equation (2) is defined  
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The no-slip boundary conditions for w  and   are taken as
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In the present study, we calculate unsteady solutions of the flow for the curved rectangular duct of 
aspect ratio 4 over the Dean number 100 1000Dn   for cases of the duct curvatures, Case I: 
Curvature 0.001   and Case II: Curvature 0.1  . 

3. Numerical Calculations 

In order to solve the Eqs. (2) and (3) numerically, the spectral method is used. This is the method 
which is thought to be the best numerical method to solve the Navier-Stokes equations as well as the 
energy equation (Gottlieb and Orazag [27]). Details of this method are discussed in Mondal [28]. By 
this method the variables are expanded in a series of functions consisting of the Chebyshev 
polynomials. That is, the expansion functions  xn  and  xn  are defined as  
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where     xcosncosxCn
1  is the n-th order Chebyshev polynomial.  , ,w x y z and  , ,x y t  are 

expanded in terms of  xn  and  xn  as   
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where M and N are the truncation numbers in the x- and y-directions, respectively. The expansion 
coefficients mnw  and mn  are then substituted into the basic Eqs. (2) and (3) and the collocation 
method is applied. As a result, the nonlinear algebraic equations for mnw  and mn  are obtained. The 
collocation points are taken to be   
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In the present study, for necessary accuracy of the solutions, we use M = 16 and N = 60. Then, in 
order to calculate the unsteady solutions, the Crank-Nicolson and Adams-Bashforth methods 
together with the function expansion (6) and the collocation method are applied to Eqs. (2) and (3) 

4. Resistance Coefficient 

The resistant coefficient   is used as the representative quantity of the flow state. It is also called the 
hydraulic resistance coefficient, and is generally used in fluids engineering, defined as  
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where quantities with an asterisk (*) denote dimensional ones,  stands for the mean over the cross 
section of the duct and *

hd  is the hydraulic diameter. The main axial velocity  *  is calculated by  
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Since   ,/ *
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1 GPP z   is related to the mean non-dimensional axial velocity     as        
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where vd /2 *   . Equation (10) will be used to find the resistance coefficient of the flow 
evolution by numerical calculations. 

 



Poly R. Shaha, Sajal K. Rudro, Nayan K. Poddar and Rabindra N. Mondal 

31 
 

5. Results and Discussion 

5.2. Case I: Unsteady Solutions for 0.001   

We first investigate time evolution of  for 100Dn  and 175Dn  as shown in Figs. 2(a) and 3(a) 
respectively. It is found that the unsteady flow is a steady-state solution for 100Dn  and 175Dn . 
To draw the contours of secondary flow ( ) and axial flow (w), we use the increments ∆  = 0.6 
and ∆w = 0.8, respectively. The same increments of   and w are used for all the figures in this 
paper, unless specified. The right-hand side of each duct box of   and w is in the outside direction 
of the duct curvature. In the figures of the streamlines, solid lines ( 0 ) show that the secondary 
flow is in the counter clockwise direction while the dotted lines  0  in the clockwise direction. 
Typical contours of secondary flow patterns and axial flow distributions are shown in Figure 2(b) 
for 100Dn  at time 10t  and in Figure 3(b) for 175Dn  at time t = 6, and it is found that both the 
unsteady solutions are symmetric two-vortex solutions. It is also found that axial flow distribution is 
consistence with the secondary vortices and the maximum axial flow is distributed through the centre 
of the duct. 

 

  

 

   w 

 

   (a) (b) 
  

Figure 2: (a) Time evolution of  for 100Dn and 001.0 , (b) Secondary flow patterns (left) 
and axial flow distribution (right) for 100Dn   at time t = 10. 
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Figure 3: (a) Time evolution of  for 175Dn and 001.0 , (b) Secondary flow patterns (left) and 

axial flow distribution (right) for 175Dn  at time t = 6.   
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       (b) 
                                                                                                     
                                                                                                    t      24.95      25.0       25.05      25.1 

Figure 4: (a) Time evolution of  for 205Dn and 001.0  (b) Phase space for 205Dn , (c) Secondary 
flow patterns (top) and axial flow distribution (bottom) for 205Dn   

Time evolution of  for 205Dn  is then shown in Fig. 4(a). As seen in Fig. 4(a), the flow oscillates 
periodically for 205Dn . The periodic solution is also well justified by drawing the phase space as 
shown in Fig. 4(b) in the    plane, where dxdy   . As seen in Fig. 4(b), the flow creates a 
single orbit, which suggests that the flow is periodic. Typical contours of secondary flow patterns 
and axial flow distributions are then shown in Fig. 4(c), for one period of oscillation at 
time 10.2595.24  t , where it is seen that the unsteady flow at 205Dn  oscillates between 
asymmetric two-vortex solutions. We also found that the axial flow distribution is consistent with the 
secondary flows and the axial flow is slightly shifted to the outer wall of the duct. Figure 5(a) shows 
time evolution result for 210Dn , where we see that the unsteady flow is multi-periodic, which is 
well justified by drawing the phase space as shown in Fig. 5(b). In Fig. 5(b), we observe that the flow 
creates multiple orbits in its way, which suggests that the flow is multi-periodic at 210Dn . Typical 
contours of secondary flow patterns and axial flow distribution, for one period of oscillation at 
time 52.2230.22  t , is shown in Fig. 5(c), where we observe that the flow oscillates between 
asymmetric two-vortex solutions. We also find that the axial flow distribution is consistent with the 
secondary vortices and the axial flow is shifted to the outer wall of the duct. It is found that the 
transition from periodic to multi-periodic oscillation occurs between 205Dn  and 210.Dn   

 

 

 

 

w 



Poly R. Shaha, Sajal K. Rudro, Nayan K. Poddar and Rabindra N. Mondal 

33 
 

 

 

 

  

 

        (a) 

                                                                                               (c) 

 

 

  

 
 

            (b)                                                                                           t     22.30     22.38     22.46     22.52 

Figure 5: (a) Time evolution of  for 210Dn and 001.0  (b) Phase space for 210Dn , (c) Secondary 
flow patterns (top) and axial flow distribution (bottom) for 210Dn  
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               (b)                                                                             t      10.35    10.40    10.45    10.50 

Figure 6: (a) Time evolution of  for 215Dn and 001.0 , (b) Phase space for 215Dn , (c) Secondary 
flow patterns (top) and axial flow distribution (bottom) for 215Dn . 
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The result of the time-dependent solution for 215Dn  is shown in Fig. 6(a). We found that the flow 
is multi-periodic for 215Dn , which is well justified by drawing the phase space as shown in Fig. 
6(b). In Fig. 6(b), we observe that the flow creates a couple of orbit, which suggests that the flow is 
multi-periodic at 215Dn . Contours of secondary flow patterns and axial flow distribution, for one 
period of oscillation at time 52.1035.10  t , are shown in Fig. 6(c), where we observe that the flow 
oscillates between asymmetric two-vortex solutions. By the time evolution calculation for 

220Dn , we find that the unsteady flow oscillates irregularly that means the flow is chaotic. Figure 
7(a) shows the time evaluation result for 220Dn . As seen in Figure 7(a) the time-dependent flow 
oscillates irregularly so that the flow is chaotic. The chaotic oscillation is well justified by drawing 
the phase spaces as shown in Fig. 7(b). Figures 7(b) shows that there occurs irregular orbits, which 
signifies that the unsteady flow presented in Fig. 7(a) is chaotic. Then typical contours of secondary 
flow patterns and axial flow distribution for the chaotic oscillation at 220Dn are obtained as shown 
in Figure 7(c), where it is found that the unsteady solution for 220Dn makes asymmetric four-
vortex solutions. We also found that the axial flow distribution is consistent with the secondary 
vortices and the axial flow shifted near the outer wall as time proceeds. Thus, it is found that the 
transition from multi-periodic to chaotic oscillation occurs between 215Dn   and 220Dn  . We 
perform time evolution calculation of  for 500Dn . Figure 8(a) shows the time evaluation results 
for 500Dn  and 0.001  . As seen in Figure 8(a), the time-dependent flow oscillates irregularly 
that means the flow is chaotic. The chaotic oscillation for 500Dn  is well justified by drawing the 
phase spaces as shown in Fig. 8(b). Then typical contours of secondary flow patterns and axial flow 
distribution for 500Dn  are shown in Fig. 8(c) for 7.114.11  t , and it is found that the unsteady 
solution oscillates irregularly making asymmetric six- to eight-vortex solutions. We also found that 
the axial flow is shifted to the outer wall of the duct as time passes. 
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             (b)                                                                                  t     11.8       11.9        12.0      12.10 

Figure 7: (a) Time evolution of  for 220Dn and 001.0  (b) Phase space for 220Dn , (c) Secondary 
flow patterns (top) and axial flow distribution (bottom) for 220Dn . 

 

 

w 



Poly R. Shaha, Sajal K. Rudro, Nayan K. Poddar and Rabindra N. Mondal 

35 
 

 

 

 

  

 

         (a) 

                                                                                               (c) 

 

  

 

 

             (b)                                                                                  t      11.4        11.50        11.6       11.70 

Figure 8: (a) Time evolution of   for 500Dn and 001.0  (b) Phase space for 500Dn , (c) Secondary 
flow patterns (top) and axial flow distribution (bottom) for 500Dn   
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          (b)                                                                       t       14.9       15.4       15.9         16.9 

Figure 9: (a) Time evolution of   for 1000Dn and 001.0  (b) Phase space for 1000Dn , (c) 
Secondary flow patterns (top) and axial flow distribution (bottom) for 1000Dn  
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Then we studied time evolution calculation for 1000Dn  as shown in Fig. 9(a). Figure 9(a) shows 
that the flow oscillates in strongly irregular pattern, i.e. the flow is strong chaotic for 1000Dn . To 
justify the chaotic oscillation, we draw the phase space for 1000Dn as shown in Fig. 9(b), where 
multiple orbits are seen to be distributed irregularly, which suggests that the flow presented in Fig. 
9(a) is strong chaotic (for details, see Mondal et al. [25]). To observe the change in the unsteady flow 
characteristics for 1000Dn , typical contours of secondary flow patterns and axial flow distribution 
are shown in Fig. 9(c) at time 9.169.14  t , where it is seen that the chaotic solution at 1000Dn  
oscillates between asymmetric eight- to twelve-vortex solutions. Here we see that the time dependent 
solutions are more chaotic than the previous solutions. We call this type of solution is strong chaotic 
(Mondal et al. [25]). We also found that the axial flow distribution is consistent with the secondary 
flows and the axial flow shifted to the outer wall of the duct as time proceeds.   

5.2. Case II : Unsteady solutions for 0.1   

In this sub-section, we investigated unsteady solutions of the flow through a curved rectangular duct 
of aspect ratio 4 and curvature 0.1  . To obtain the unsteady solutions, we studied time evolution 
of the resistance coefficient . Figure 10(a) shows unsteady flow results for 100Dn  . As seen in 
Fig. 10(a), the unsteady flow is a steady-state solution for 100Dn . Since the flow is steady-state, a 
single contour of the secondary flow pattern and axial flow distribution for 100Dn  is shown in Fig. 
10(b) at time 8t , and it is found that the unsteady flow for 100Dn  is a symmetric two-vortex 
solution. 

 

   

 

                (a) (b) 
 

Figure 10: (a) Time evolution of   for 100Dn and 1.0  (b) Secondary flow patterns (left) and axial flow 
distribution (right) for 100Dn at time t = 8.  

We then investigated time-dependent solution for 230Dn  as shown in Fig. 11(a). It is found that 
the flow is a periodic oscillating for 230Dn . The periodic solution is also well justified by drawing 
the phase space as shown in Fig. 11(b) in the    plane, where dxdy   . As seen in Fig. 
11(b), the flow creates a single orbit, which suggests that the flow is periodic. Typical contours of 
secondary flow patterns and axial flow distributions for the periodic oscillation, as time proceeds, are 
then obtained for 230Dn as shown in Figure 11(c), for one period of oscillation at 
time 20.130.13  t , where it is seen that the unsteady flow at 230Dn  oscillates between 
asymmetric two-vortex solutions. We also found that the axial flow distribution is consistent with the 
secondary flows and the axial flow is slightly shifted to the outer wall of the duct. By the time 
evolution calculation we obtained unsteady solutions for 250Dn  as shown in Figure 12(a). It is 
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found that the flow oscillates irregularly but it can not be well determined. Then we draw phase 
space of the time-evolution result as shown in Fig. 12(b), and it is found that the flow oscillates 
irregularly with multiple orbits, which suggests that the flow presented in Fig. 12(a) is chaotic. This 
type of chaotic oscillation is termed as weak chaos (Mondal et al. [25]). Then typical contours of 
secondary flow patterns and axial flow distribution are shown in Figure 12(c) for 8.102.10  t  and 
it is found that the unsteady solution oscillates between asymmetric two-, four- and five-vortex 
solutions. We also found that the axial flow distribution is consistent with the secondary flow and the 
axial flow shifted to the outer wall as time proceeds. It is found that the transition from periodic to 
chaotic oscillation occurs between 230Dn and 250Dn for 0.1  . 

 

  

        (a) 

                                                                                              (c) 

 

  

            (b) 

                                                                                              t     13.0       13.10       13.15      13.20 
Figure 11: (a) Time evolution of  for 230Dn and 1.0  (b) Phase space for 230Dn  (c) Secondary 

flow patterns and axial flow distribution for 230Dn  

Then we perform the time evolution of  for 300Dn . Figure 13(a) shows the time evaluation 
results for 300Dn . As seen in Figure 13(a), the time-dependent flow oscillates irregularly so that 
the flow is chaotic. The chaotic oscillation is well justified by drawing the phase space as shown in 
Fig. 13(b). Figure 13(b) shows that the flow oscillates irregularly in a nonlinear pattern creating 
multiple orbits, which suggests that the flow is chaotic. Typical contours of secondary flow patterns 
and axial flow distributions are shown in Figure 13(c), for one period of oscillation at time 

0.225.20  t , and it is found that the chaotic flow is asymmetric four-, five- and six-vortex 
solutions. We also found that the axial flow distribution is consistent with the secondary vortices and 
the axial flow shifted near the outer wall of the duct. Next, we investigated time evolution of  
for 380Dn . Figure 14(a) shows time evaluation results for 380Dn . As seen in Figure 14(a), the 
time-dependent solution oscillates irregularly which means the flow is chaotic, which is well justified 
by drawing a phase space of the time evolution result as shown in Fig. 14(b). Typical contours of 
secondary flow patterns and axial flow distributions are shown in Figure 14(c) for time interval 

8.102.10  t  and it is found that the unsteady flow for 380Dn makes asymmetric four- and five-
vortex solutions. 
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              (a) (c) 

 

  

              (b) 
     

                                                                                                    t    10.2      10.40      10.6       10.8 
Figure 12: (a) Time evolution of  for 250Dn  and 1.0  (b) Phase space for 250Dn  (c) 

Secondary flow patterns and axial flow distribution for 250Dn  

 

  

 

             (a) (c) 

 

  

 

               (b)                                                                               t     20.5        21.0        21.5       22.0 
Figure 13: (a) Time evolution of   for 300Dn and 1.0  (b) Phase space for 300Dn , (c) 

Secondary flow patterns (top) and axial flow distribution (bottom) for 300Dn . 
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           (a) 

 (c) 

 

  

             (b) 

                                                                                                    t    10.2     10.40     10.6      10.8 
Figure 14: (a) Time evolution of  for 380Dn  and 1.0 , (b) Phase space for 380Dn , (c) 

Secondary flow patterns (top) and axial flow distribution (bottom) for 380Dn . 

We studied time-dependent solution of  for 390Dn  as shown in Fig. 15(a). It is found that the 
flow is oscillates periodically for 390Dn . However, to justify whether the flow is periodic or 
multi-periodic, we sketch phase space of the time evolution result as shown in Fig. 15(b). Figure 
15(b) shows that the unsteady flow at 390Dn creates multiple orbits so that the flow is multi-
periodic rather than periodic. With a view to observe the change in secondary flow characteristics of 
the multi-periodic oscillation, as time proceeds, typical contours of secondary flow patterns and axial 
flow distributions are shown in Fig. 15(c), for one period of oscillation at time 45.103.10  t , and it 
is seen that the flow oscillates between asymmetric five- and six-vortex solutions. We also found that 
the axial flow distribution is consistent with the secondary vortices and the axial flow is shifted to the 
outer wall as Dn becomes large. Figure 16(a) shows time evolution result for 400Dn , where we 
see that the unsteady flow is also multi-periodic which is well justified by drawing the phase space as 
shown in Fig. 16(b). In Fig. 16(b), we observe that the flow creates multiple orbits, which suggests 
that the flow is multi-periodic at 400Dn . Contours of secondary flow patterns and axial flow 
distributions is then shown in Figure 16(c) for 400Dn , for one period of oscillation at 
time 35.422.42  t , where it is seen that the flow at 400Dn  oscillates between asymmetric four- 
and six-vortex solutions. We also found that the axial flow distribution is consistent to the secondary 
flow and the axial flow is slightly shifted to the outer wall of the duct. 
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              (a) 

 (c) 

 

  

 

                    (b)                                                                               t      10.30       10.35     10.40      10.45 
Figure 15: (a) Time evolution of  for 390Dn and 1.0 , (b) Phase space for 390Dn , (c) 

Secondary flow patterns (top) and axial flow distribution (bottom) for 390Dn  

 

  

 

(a)  (c) 

 

  

 

                 (b)                                                                         t     42.20      42.25     42.30      42.35 
Figure 16: (a) Time evolution of   for 400Dn and 1.0  (b) Phase space for 400Dn , (c) 

Secondary flow patterns (top) and axial flow distribution (bottom) for 400Dn . 
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          (a) 

 (c) 

  

 

(b) 
                                                                                                t   15.2    15.70    16.20     16.70 

Figure 17: (a) Time evolution of  for 450Dn and 1.0 , (b) Phase space for 450Dn , (c) 
Secondary flow patterns (top) and axial flow distribution (bottom) for 450Dn   

 

  

          (a) 

                                                                                            (c) 

 

  

 

        (b)                                                                                
 

                                                                                      t   7.5          8.0         8.5        9.0  
Figure 18: (a) Time evolution of   for 500Dn and 1.0 , (b) Phase space for 500Dn , (c) 

Secondary flow patterns (top) and axial flow distribution (bottom) for 500Dn  
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We perform time evolution of  for 450Dn  and 0.1  . Figure 17(a) shows time evaluation 
results for 450Dn . As seen in Figure 17(a), the time-dependent flow oscillates irregularly in a non-
linear pattern so that the flow is chaotic. The phase space of the chaotic oscillation is shown in Fig. 
17(b), where we clearly observe the chaotic orbits of the line spectrum. Typical contours of 
secondary flow patterns and axial flow distributions are then shown in Fig. 17(c) for time 

2.172.15  t  and it is found that the unsteady flow is an asymmetric five- and six-vortex solutions. 
We also found that the axial flow distribution is consistent with the secondary flows and the axial 
flow shifted to the outer wall. In this study, it is found that the transition from multi-periodic to 
chaotic oscillation occurs between 400Dn   and 450Dn  . Then we performed time evolution of  
for 500Dn  and 0.1   as shown in Figure 18(a). As seen in Figure 18(a), the time-dependent 
flow oscillates irregularly so that the flow is chaotic. To observe the characteristics of the chaotic 
oscillation, a phase space of the chaotic flow for Dn = 500 is shown in Fig. 18(b). Typical contours 
of secondary flow patterns and axial flow distributions are shown in Figure 18(c) for 0.95.7  t  
and it is found that the chaotic flow oscillates between asymmetric seven- and eight-vortex solutions.  

 

 

  

           (a) 

                                                                                               (c) 

 

  

         (b) 
                                                                                        t     7.0        7.5         8.0         8.5  

Figure 19: (a) Time evolution of  for 1000Dn and 1.0 , (b) Phase space for 1000Dn , (c) 
Secondary flow patterns (top) and axial flow distribution (bottom) for 1000Dn  

Then we studied the time evolution of  for 1000Dn  as shown in Fig. 19(a). We find that the flow 
is strong chaotic for 1000Dn . To observe the change in the flow characteristics, contours of 
secondary flow patterns and axial flow distribution are shown in Fig. 19(b), where it is seen that the 
chaotic solution at 1000Dn  oscillates between asymmetric eight-, nine- and ten-vortex solutions. 
We found that the axial flow distribution is consistence with the secondary vortices and the axial 
flow is shifted near the outer wall as Dn increases. In fact, the periodic oscillation, which is observed 
in the present study, is a traveling wave solution advancing in the downstream direction which is 
well justified in the recent investigation by Yanase et al. [29] for a three-dimensional (3D) travelling 
wave solutions as an appearance of 2D periodic oscillation. 
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6. Conclusions 

In this paper, a comprehensive numerical study is presented for the unsteady solutions of flow 
through a curved rectangular duct of aspect 4 by using a spectral method, and covering a wide range 
of the Dean number for two types of duct curvatures, 0.001  and 0.1  .  

At first, we investigated unsteady solutions for the small curvature 0.001  . It is found that the 
unsteady flow is a steady-state solution for 100Dn  and 175Dn , which creates symmetrical two 
vortices. It is found that the flow is periodic for 205Dn  but multi-periodic 
for 210Dn and 215Dn . Secondary flow patterns show that the periodic flow oscillates 
asymmetrically between two-vortex solutions while multi-periodic flows between asymmetric two- 
and three-vortex solutions. If Dn is increased further, the flow becomes chaotic and remains chaotic 
up to 1000Dn  . It is also found that the unsteady flow is a weak chaos for 220Dn   but strong 
chaos for 500Dn   and at larger Dn’s. Typical contours of secondary flow patterns and axial flow 
distribution show that the flow oscillates periodically/multi-periodically between asymmetric four-, 
six- and eight-vortex solutions, while chaotic flows between asymmetric eight- to twelve-vortex 
solutions, and the unsteady flow for 0.001   undergoes in the scenario ‘steady-state   
periodicmulti-periodicweak chaotic strong chaotic’, if Dn is increased. Then we studied 
unsteady solutions for the moderate curvature 0.1  , and it is found that the unsteady flow is a 
steady-state solution for 100Dn  but periodic for 230Dn . The steady-state or periodic flow 
consists of symmetric two-vortex solutions. It is found that the unsteady flow is chaotic solution 
for 250Dn  to 380Dn , and this chaotic flow oscillates irregularly between asymmetric two-, 
four-, five- and six-vortex solutions. Unsteady solutions for large Dn`s show that the flow is always 
chaotic, which oscillates asymmetrically between four- to ten-vortex solutions, and the unsteady flow 
for 0.1  undergoes through various flow instabilities in the scenario ‘steady-state  periodic  
chaotic  periodic  multi-periodicchaotic’, if Dn is increased. Phase spaces were found to be 
very fruitful to identify the transitional process from periodic to multi-periodic and multi-periodic to 
chaotic oscillation very clearly. In this regard, it should be worth mentioning that irregular oscillation 
of the isothermal flow through a curved rectangular duct has been observed experimentally by 
Ligrani and Niver [6] for the large aspect ratio.  
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