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Abstract: In this research, we study on general properties and basic concepts of spherical 
inversions in Tetrakis Hexahedron space. We also investigate cross ratio and harmonic 
conjugates and inverses of lines, planes and Tetrakis Hexahedron spheres in ℝ𝑇𝐻

3 ⁡under 
an inversion with respect to a Tetrakis Hexahedron sphere. 
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Öz: Bu çalışmada, Tetrakis Hexahedron uzayında küresel inversiyonların genel özellikleri 
ve temel kavramları üzerinde çalıştık. Ayrıca çifte oran ve harmonik eşlenik kavramları 
ile ℝ𝑇𝐻

3 ⁡de bir Tetrakis Hexahedron küresine göre bir inversiyon altında doğruların, 
düzlemlerin ve Tetrakis Hexahedron kürelerinin küresel tersleri araştırıldı.  
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1. Introduction
 
Inversion is one of the most interesting transformation in the plane, since it reveals difficult questions and many 
challenging problems. Also in geometry many problems become much manageable when an inversion is applied. As it 
has been stated in [1] Apollonious of Perga was probably the first to reveal this transformation in his last book Plane Loci. 
Later in 1820s Jakob Steiner investigated inversion systematically. Inversion would be used to examine some problems 
and theorems in geometry as Pappus chain theorem, Feuerbach’s theorem, Ptolemy’s theorem, Steiner porism, the 
problem of Apollonius, etc. [2]. When an inversion is considered the first  thing that comes to mind is an inversion with 
respect to a circle, but some authors investigated different inversion maps by using other objects, see [3, 4, 5, 6, 7] and 
some authors defined new inversion maps by using different distance functions, see [4, 8, 9, 10, 11]. Furthermore 
inversion has been studied in three dimensional Euclidean and non-Euclidean spaces, see [12, 13, 14]. 
As it has stated in [15] Minkowski geometry is a non-Euclidean geometry in a finite number of dimensions and only 
because the distance is not uniform in all directions it is a non-Euclidean geometry. The unit ball of a Minkowski geometry 
is a general symmetric convex set. Throughout the studies on polyhedra and metric geometry it has seen that unit balls 
of some Minkowski geometries are convex solids, some of these studies are [16, 17, 18, 19]. In [20, 21, 22, 23, 24, 25, 26, 
27] some metrics are given which are induced by some of convex polyhedra such that their unit spheres are corresponding 
convex solids. Since the only difference of a Minkowski geometry and the Euclidean geometry is the distance, it is 
interesting to study on the problems of the Euclidean geometry that include the distance concept in different Minkowski 
geometries. By these motivations in this study first we define the inversion with respect to a sphere in Tetrakis 
Hexahedron space. Then we investigate general properties and basic concepts of this inversion. Furthermore we give 
some properties related with spherical inversion in Tetrakis Hexahedron space such as cross-ratio and harmonic 
conjugates. 
 
 
2. Material and Method 
 
This section consists of two subsections to give primary definitions of Tetrakis Hexahedron space and spherical inversion 
in this space.  
 
2.1 Some Basics of Tetrakis Hexahedron Space 
 
Now we give some basic definitions of tetrakis hexahedron space, for more detail see [23]. Geometrical construction of 

Tetrakis Hexahedron space ℝ𝑇𝐻
3 ⁡ is similar to the well-known Euclidean space ℝ3. Set of points and collection of lines are 

the same, the angles are measured by the same way. The only difference is the definition of the distance. Tetrakis 
Hexahedron metric in ℝ3 is defined by using the distance function 
 

𝑑𝑇𝐻(𝑃1 , 𝑃2) = 𝑚𝑎𝑥{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|} + (√3 − 1)𝑚𝑖𝑑{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|}             (1) 

 

where  𝑃1 = (𝑥1, 𝑦1, 𝑧1), 𝑃2 = (𝑥2, 𝑦2, 𝑧2) ∈ ℝ3. Thus the distance is sum of maximum and (√3 − 1) times of middle of 

{|𝑥1 − 𝑥2|, |𝑦1 − 𝑦2|, |𝑧1 − 𝑧2|}. The unit ball in ℝ𝑇𝐻
3  is the set of all points (𝑥, 𝑦, 𝑧) satisfing the equation  

 

𝑚𝑎𝑥{|𝑥|, |𝑦|, |𝑧|} + (√3 − 1)𝑚𝑖𝑑{|𝑥|, |𝑦|, |𝑧|} = 1 

 
which is a Tetrakis Hexahedron. 
 

 
 
                Figure 1. Unit ball in ℝ𝑇𝐻

3   
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2.2 Preliminaries about Inversions in Tetrakis Hexahedron Space 
 
In this subsection we define an inversion with respect to a sphere in Tetrakis Hexahedron space as an analogue of 
inversion in ℝ3. As it has been stated in [4] and [28] an inversion with respect to a circle with radius r is a mapping that 
transforms points inside out and outside in of the circle such that a point 𝑃⁡and its inverse point 𝑃′ are on a ray emanating 
from the center 𝑂  of the circle where the points 𝑃⁡and 𝑃′⁡satisfies the equation ⁡𝑑(𝑂, 𝑃). 𝑑(𝑂, 𝑃′) = 𝑟2 . Since an 
inversion maps points close to 𝑂 to points far from 𝑂, and maps points far from 𝑂 to points close to 𝑂, this classical 
definition of inversion excludes 𝑂 the center of inversion. Thus expanding the Euclidean plane by adjoining one “ideal 
point”, or “point at infinity”, we can include 𝑂 in the domain and range of an inversion. 

Now we define the new concept of inversion in ℝ𝑇𝐻
3  as follows: 

 

Definition 2.4 Let 𝒯 be a 𝑇𝐻-sphere centered at the point 𝑂 with radius 𝑟 in ℝ𝑇𝐻
3 , and 𝑃∞ be the ideal point adjoined to 

the Tetrakis Hexahedron space. In ℝ𝑇𝐻
3  the TH-spherical inversion with respect to 𝒯 is the transformation  

 

𝐼𝒯(𝑂,𝑟):⁡ℝ𝑇𝐻
3 ∪ {𝑃∞} → ℝ𝑇𝐻

3 ∪ {𝑃∞} 

 

defined by 𝐼𝒯(𝑂,𝑟)(𝑂) = 𝑃∞, 𝐼𝒯(𝑂,𝑟)(𝑃∞) = 𝑂 ,  𝐼𝒯(𝑂,𝑟)(𝑃) = 𝑃′ for 𝑃 ≠ 0 and P' lies on the ray 𝑂𝑃⃗⃗⃗⃗  ⃗ and 

 
                                                                                𝑑𝑇𝐻(𝑂, 𝑃). 𝑑𝑇𝐻(𝑂, 𝑃′) = 𝑟2                                                                               

(2) 
 
𝒯 is called the sphere of the inversion, 𝑂 is called the center of inversion, the point 𝑃′ is called the inverse of the point 𝑃 
with respect to the sphere 𝒯. 
 
In Euclidean space, an inversion shifts the points outside to the inside of the sphere and vice versa. Now the following 
theorem states that this property is valid in the Tetrakis Hexahedron space. 
 
Lemma 2.5 Let 𝒯 be the 𝑇𝐻-sphere with center 𝑂 and the radius r. If  the point P is in the interior of 𝒯, the point 𝑃′  is 
exterior to 𝒯, and viceversa.  
 
Proof. Let us consider the inversion 𝐼𝒯(𝑂,𝑟) with respect to the sphere 𝒯 with center 𝑂 and the radius r and the point P 

which is in the interior of 𝒯. Thus, 𝑑𝑇𝐻(𝑂, 𝑃) < 𝑟 . Since 𝑃′ = 𝐼𝒯(𝑂,𝑟)(𝑃)  and by Eq. (3), 𝑟2 = 𝑑𝑇𝐻(𝑂, 𝑃). 𝑑𝑇𝐻(𝑂, 𝑃′) <

𝑟. 𝑑𝑇𝐻(𝑂, 𝑃′)  then 𝑑𝑇𝐻(𝑂, 𝑃′) > 𝑟. So the point 𝑃′ is in the exterior of 𝒯. 
 

Corollary 2.6 Under a spherical inversion 𝐼𝒯(𝑂,𝑟) in ℝ𝑇𝐻
3 , 𝒯 itself is left pointwise fixed. 

 
Theorem 2.7 If 𝑃 and 𝑃′ is a pair of inverse points with respect to the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟) with 

center 𝑂 = (0,0,0) and radius 𝑟 then 
𝑃′ = 𝜇𝑃                                                                                                  (3) 

where 𝜇 = 𝑟2/(𝑑𝑇𝐻(𝑂, 𝑃))
2
 

 
Proof. Let 𝑃 = (𝑥, 𝑦, 𝑧) and 𝑃′ = (𝑥′, 𝑦′, 𝑧′) be inverse pair with respect to the tetrakis hexahedron spherical inversion 
𝐼𝒯(𝑂,𝑟) with center 𝑂 = (0,0,0) and radius 𝑟. Since the points 𝑃 and 𝑃′ are on the ray emanating from 𝑂 

 

𝑂𝑃′⃗⃗⃗⃗⃗⃗  ⃗ = 𝜇𝑂𝑃⃗⃗⃗⃗  ⃗⁡⁡, 𝜇 ∈ ℝ+ 
 

Thus (𝑥′, 𝑦′, 𝑧′) = (𝜇𝑥, 𝜇𝑦, 𝜇𝑧). By the equation (2) we get that 𝜇 = 𝑟2/(𝑑𝑇𝐻(𝑂, 𝑃))
2
 and by substituting the resulting 

value of 𝜇 the required result is obtained. 
 
Note that since 𝑃 and 𝑃′ is a pair of inverse points with respect to the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟) with 

center 𝑂 = (0,0,0) and radius 𝑟, the coordinates of 𝑃 would be obtained by the coordinates of 𝑃′ by the same way in 

the Theorem 2.7. Thus 𝑃 = 𝜇𝑃′ where 𝜇 = 𝑟2/(𝑑𝑇𝐻(𝑂, 𝑃′))
2
 

 
Corollary 2.8 Let 𝑃 = (𝑥, 𝑦, 𝑧) and 𝑃′ = (𝑥′, 𝑦′, 𝑧′) is an inverse pair under the tetrakis hexahedron spherical inversion 
𝐼𝒯(𝑂,𝑟) with center 𝑂 = (𝑥0, 𝑦0, 𝑧0) and radius 𝑟 then 
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𝑃′ − 𝑂 = 𝜇(𝑃 − 𝑂)                                                                                      (4) 

where 𝜇 = 𝑟2/(𝑑𝑇𝐻(𝑂, 𝑃))
2
. 

Proof. It is easy to see that translation preserves distances in ℝ𝑇𝐻
3 . Thus by translating (0,0,0) to (𝑥0, 𝑦0, 𝑧0) in ℝ𝑇𝐻

3  
values of 𝑥′, 𝑦′, 𝑧′  would easily be obtained as required.  
 

Theorem 2.9  Let 𝑂, 𝑃 and 𝑄 be any three collinear distinct points in ℝ𝑇𝐻
3 . If 𝑃, 𝑃′ and 𝑄, 𝑄′ are inverse pairs with respect 

to the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟) then  

 

⁡⁡𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2.⁡⁡𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃)⁡.⁡𝑑𝑇𝐻(𝑂,𝑄)
                                                                               (5) 

 

Proof. Let 𝐼𝒯(𝑂,𝑟) be the spherical inversion with center 𝑂 and radius 𝑟 in ℝ𝑇𝐻
3 . If 𝑃, 𝑃′ and 𝑄, 𝑄′ are inverse pairs with 

respect to 𝐼𝒯(𝑂,𝑟)  then by equation (1), 𝑑𝑇𝐻(𝑂, 𝑃). 𝑑𝑇𝐻(𝑂, 𝑃′) = 𝑟2 = 𝑑𝑇𝐻(𝑂, 𝑄). 𝑑𝑇𝐻(𝑂, 𝑄′) . Since 𝑂 , 𝑃  and 𝑄  are 

collinear points and ratios of Euclidean and Tetrakis Hexahedron distances along a line are the same, 
 
 

𝑑𝑇𝐻(𝑃′, 𝑄′) = |𝑑𝑇𝐻(𝑂, 𝑃′) − 𝑑𝑇𝐻(𝑂, 𝑄′)| 

                           = |
𝑟2

𝑑𝑇𝐻(𝑂,𝑃)
−

𝑟2

𝑑𝑇𝐻(𝑂,𝑄)
| 

   =
𝑟2⁡.⁡⁡𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃)⁡.⁡⁡𝑑𝑇𝐻(𝑂,𝑄)
 

is obtained. 
 
Note that converse statement of the theorem above is not true. Also the theorem is not valid for any three non-
collinear points in ℝ𝑇𝐻

3 . But under some other conditions the equation (5) holds. Now we give the following theorem 
that shows the equation (5) is satisfied under such conditions. 
 

Theorem 2.10 Let 𝑂, 𝑃 and 𝑄 be any three distinct points in ℝ𝑇𝐻
3 , 𝑃, 𝑃′ and 𝑄, 𝑄′ be inverse pairs with respect to the 

tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟) with center 𝑂 and radius 𝑟, and 𝑢 and 𝑣 be direction vectors of the rays 

𝑂𝑃⃗⃗⃗⃗  ⃗ and 𝑂𝑄⃗⃗⃗⃗⃗⃗ , respectively. If 𝑢 ∈ ∆𝑖  and 𝑣 ∈ ∆𝑖 ∖ {𝑢}  where  
 
∆1= {(1,0,0), (0,1,0), (0,0,1), (−1,0,0), (0, −1,0), (0,0, −1)} 
∆2= {(1,1,0), (1,0,1), (0,1,1), (1,0,−1), (1,−1,0), (0,1,−1), (0,−1,1), (0,−1,−1), (−1,1,0), (−1,0,1), (−1,0, −1), (−1,−1,0)} 
∆3= {(1,1,1), (1,1,−1), (1,−1,1), (−1,1,1), (1, −1,−1), (−1,1,−1), (−1,−1,1), (−1,−1,−1)} 

 
and  𝑖 = 1,2,3, then  

⁡⁡𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2⁡. 𝑑𝑇𝐻(𝑃, 𝑄)

𝑑𝑇𝐻(𝑂, 𝑃)⁡. 𝑑𝑇𝐻(𝑂, 𝑄)
 

 
Proof. Since all translations are elements of the group of isometries of Tetrakis Hexahedron space it is convenient to 
consider 𝑂 the center of inversion as origin. So let 𝐼𝒯(𝑂,𝑟) be the tetrakis hexahedron spherical inversion with center 𝑂 

and radius 𝑟 in ℝ𝑇𝐻
3 . Suppose that 𝑢 ∈ ∆1 and 𝑣 ∈ ∆1 ∖ {𝑢}. If 𝑃 = (0,0, 𝑝) and 𝑄 = (𝑞, 0,0) then the inverses of 𝑃 and 

𝑄 with respect to 𝐼𝒯(𝑂,𝑟) are 𝑃′ = (0,0,
𝑟2

𝑝
) and 𝑄′ = (

𝑟2

𝑞
, 0,0), respectively. Thus we get  

 

𝑑𝑇𝐻(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

𝑝
| , |

𝑟2

𝑞
|} + (√3 − 1)𝑚𝑖𝑑 {|

𝑟2

𝑝
| , |

𝑟2

𝑞
|}. Here there are two subcases; 

 

Case 1: If |𝑝| ≥ |𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑝|+(√3−1)|𝑞|)

|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
.  

Case 2: If  |𝑝| < |𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑞|+(√3−1)|𝑝|)

|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
. 

 
Suppose that 𝑢 ∈ ∆2 and 𝑣 ∈ ∆2 ∖ {𝑢}. If 𝑃 = (𝑝, 𝑝, 0) and 𝑄 = (𝑞,−𝑞, 0) then the inverses of 𝑃 and 𝑄 with respect to 

𝐼𝒯(𝑂,𝑟) are 𝑃′ = (
𝑟2

𝑝
,
𝑟2

𝑝
, 0) and 𝑄′ = (

𝑟2

𝑞
,
−𝑟2

𝑞
, 0), respectively. Thus we get  

 

𝑑𝑇𝐻(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

𝑝
−

𝑟2

𝑞
| , |

𝑟2

𝑝
+

𝑟2

𝑞
| , 0} + (√3 − 1)𝑚𝑖𝑑 {|

𝑟2

𝑝
−

𝑟2

𝑞
| , |

𝑟2

𝑝
+

𝑟2

𝑞
| , 0}. Here there are two subcases; 
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Case 1: If |𝑝 − 𝑞| ≥ |𝑝 + 𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑝−𝑞|+(√3−1)|𝑝+𝑞|)

|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
.  

Case 2: If  |𝑝 + 𝑞| < |𝑝 − 𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑝+𝑞|+(√3−1)|𝑝−𝑞|)

|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
. 

 
Suppose that 𝑢 ∈ ∆3 and 𝑣 ∈ ∆3 ∖ {𝑢}. If 𝑃 = (𝑝, 𝑝, 𝑝) and 𝑄 = (−𝑞, 𝑞, 𝑞) then the inverses of 𝑃 and 𝑄 with respect to 

𝐼𝒯(𝑂,𝑟) are 𝑃′ = (
𝑟2

3𝑝
,
𝑟2

3𝑝
,
𝑟2

3𝑝
) and 𝑄′ = (

−𝑟2

3𝑞
,
𝑟2

3𝑞
,
𝑟2

3𝑞
), respectively. Thus we get  

 

𝑑𝑇𝐻(𝑃′, 𝑄′) = 𝑚𝑎𝑥 {|
𝑟2

3𝑝
−

𝑟2

3𝑞
| , |

𝑟2

3𝑝
+

𝑟2

3𝑞
|} + (√3 − 1)𝑚𝑖𝑑 {|

𝑟2

3𝑝
−

𝑟2

3𝑞
| , |

𝑟2

3𝑝
+

𝑟2

3𝑞
|}. Here there are two subcases; 

 

Case 1: If |𝑝 − 𝑞| ≥ |𝑝 + 𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑝−𝑞|+(√3−1)|𝑝+𝑞|)

3|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
.  

Case 2: If  |𝑝 + 𝑞| < |𝑝 − 𝑞|, then  𝑑𝑇𝐻(𝑃′, 𝑄′) =
𝑟2(|𝑝+𝑞|+(√3−1)|𝑝−𝑞|)

3|𝑝||𝑞|
=

𝑟2𝑑𝑇𝐻(𝑃,𝑄)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑄)
. 

 
For other possible choices of elements in ∆𝑖 , 𝑖 = 1,2,3, by similar calculations it is easy to see that equality is valid. 
 
  
3. Results 
 
This section includes two subsections to investigate results and definitions obtained by spherical inversions in tetrakis 
hexahedron space. We study on inverses of lines, planes and tetrakis hexahedron spheres under an inversion 𝐼𝒯(𝑂,𝑟) as a 

comparison of inverses of lines and circles in Euclidean plane under a circular inversion. Also we investigate cross-ratio 

and harmonic conjugates in ℝ𝑇𝐻
3 . 

 

3.1. Spherical Inversions of Lines, Planes and Tetrakis Hexahedron Spheres in ℝ𝑻𝑯
𝟑  

 
In Euclidean version inverse of a line is a circle and inverse of a circle is a line, only the lines passing through the inversion 
center is invariant. In this section, tetrakis hexahedron spherical inversions of lines, planes and tetrakis hexahedron 

spheres are studied according to their positions in ℝ𝑇𝐻
3 .  

 
Theorem 3.11 Let 𝐼𝒯(𝑂,𝑟) be a tetrakis hexahedron spherical inversion with center 𝑂 and radius 𝑟. Any line and any plane 

containing 𝑂 is invariant under 𝐼𝒯(𝑂,𝑟). 

 
Proof.  Consider the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟)  with center 𝑂  and radius 𝑟. By equation (2) it is 

obvious that a line passing through 𝑂 is invariant under 𝐼𝒯(𝑂,𝑟). Let 𝐴𝑥 + 𝐵𝑦 + 𝐶𝑧 = 0 be a plane containing 𝑂. Under 

𝐼𝒯(𝑂,𝑟) we get the equation of the plane as;  

 

𝐴
𝑟2𝑥′

(𝑑𝑇𝐻(𝑂,𝑃′))2
+ 𝐵

𝑟2𝑦′

(𝑑𝑇𝐻(𝑂,𝑃′))2
+ 𝐶

𝑟2𝑧′

(𝑑𝑇𝐻(𝑂,𝑃′))2
= 0. 

 
That is 𝐴𝑥′ + 𝐵𝑦′ + 𝐶𝑧′ = 0 which completes the proof. 
 
Theorem 3.12 Let 𝐼𝒯(𝑂,𝑟) be a tetrakis hexahedron spherical inversion with center 𝑂 and radius 𝑟. The inverse of a tetrakis 

hexahedron sphere with center 𝑂 under 𝐼𝒯(𝑂,𝑟) is a tetrakis hexahedron sphere with center 𝑂. 

 

Proof.  Since the translation preserves distance in ℝ𝑇𝐻
3  we would take center of inversion 𝐼𝒯(𝑂,𝑟)⁡as 𝑂 = (0,0,0), thus the 

tetrakis hexahedron sphere 𝒯 with center 𝑂 and radius 𝑟 is  
 

𝒯 = {𝑃 = (𝑥, 𝑦, 𝑧): 𝑑𝑇𝐻(𝑂, 𝑃) = 𝑟} 
 
Let 𝒯1 be the tetrakis hexahedron sphere with center 𝑂 and radius 𝑟1, then 
 

𝒯1 = {𝑃 = (𝑥, 𝑦, 𝑧): 𝑑𝑇𝐻(𝑂, 𝑃) = 𝑟1} 
 

Thus the inverse of 𝒯1 under 𝐼𝒯(𝑂,𝑟) is  𝒯′1 = {𝑃′ = (𝑥′, 𝑦′, 𝑧′): 𝑑𝑇𝐻(𝑂, 𝑃′) =
𝑟2

𝑟1
} which is a tetrakis hexahedron sphere. 
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Theorem 3.13  Let 𝐼𝒯(𝑂,𝑟) be a tetrakis hexahedron spherical inversion with center 𝑂 and radius 𝑟. The inverse of every 

edges, vertices and faces of  𝒯 is itself. 
 
Proof. By Corollary 2.6, 𝒯 is pointwise fixed under 𝐼𝒯(𝑂,𝑟). Thus every edges, vertices and faces of  𝒯  is invariant under 

𝐼𝒯(𝑂,𝑟). 

 

3.2. The Cross Ratio and Harmonic Conjugates in ℝ𝑻𝑯
𝟑  

 
The distance is not invariant under tetrakis hexahedron spherical inversion. Thus, the inversion in tetrakis hexahedron 
space is not an isometry. However, the fact that the cross-ratio is preserved under inversion reveals the necessity of 
focusing on the cross-ratio by means of the distance. Therefore, in this section, we investigate the cross ratio and 

harmonic conjugates in ℝ𝑇𝐻
3  under a spherical inversion.  

 
The following definition will be given in a similar sense of the definition given in [29]. 
 
Definition 3.13 For any two points 𝑋  and 𝑌  on a directed line 𝑙 , the directed tetrakis hexahedron length of the line 
segment 𝑋𝑌̅̅ ̅̅  is denoted by 𝑑𝑇𝐻[𝑋, 𝑌]. If the line segment 𝑋𝑌̅̅ ̅̅  and 𝑙 have the same direction, then 𝑑𝑇𝐻[𝑋, 𝑌] = 𝑑𝑇𝐻(𝑋, 𝑌) 
and if have the opposite direction, then 𝑑𝑇𝐻[𝑋, 𝑌] = −𝑑𝑇𝐻(𝑋, 𝑌). 
 

Definition 3.14 Let  𝑃,𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝑇𝐻
3 . The tetrakis hexahedron cross-ratio 

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 is defined by 
 

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 =
𝑑𝑇𝐻[𝑃,𝑅]𝑑𝑇𝐻[𝑄,𝑆]

𝑑𝑇𝐻[𝑃,𝑆]𝑑𝑇𝐻[𝑄,𝑅]
                                                                                    (6) 

 

Corollary 3.15 Let  𝑃, 𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝑇𝐻
3 . The tetrakis hexahedron cross-ratio 

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 is positive if both 𝑅 and 𝑆 are between 𝑃 and 𝑄 or if neither 𝑅 nor 𝑆 are between 𝑃 and 𝑄. 
 
Proof. Let both 𝑅 and 𝑆 points be between 𝑃 and 𝑄 points. For the directed line 𝑃𝑄 the tetrakis hexahedron cross-ratio 
is  

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 =
𝑑𝑇𝐻[𝑃𝑅]𝑑𝑇𝐻[𝑄𝑆]

𝑑𝑇𝐻[𝑃𝑆]𝑑𝑇𝐻[𝑄𝑅]

=
𝑑𝑇𝐻(𝑃, 𝑅). (−𝑑𝑇𝐻(𝑄, 𝑆))

𝑑𝑇𝐻(𝑃, 𝑆). (−𝑑𝑇𝐻(𝑄, 𝑅))
=

𝑑𝑇𝐻(𝑃, 𝑅). 𝑑𝑇𝐻(𝑄, 𝑆)

𝑑𝑇𝐻(𝑃, 𝑆). 𝑑𝑇𝐻(𝑄, 𝑅)

 

and thus (𝑃𝑄, 𝑅𝑆)𝑇𝐻 is positive. 
If neither 𝑅 nor 𝑆 are between 𝑃 and 𝑄, then there are six arrays for 𝑅 and 𝑆. Since it is similar to prove for all possible 
combinations we give the proof for the orientation 𝑅 − 𝑃 − 𝑄 − 𝑆. Thus the tetrakis hexahedron cross-ratio is  

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 =
𝑑𝑇𝐻[𝑃𝑅]𝑑𝑇𝐻[𝑄𝑆]

𝑑𝑇𝐻[𝑃𝑆]𝑑𝑇𝐻[𝑄𝑅]

=
(−𝑑𝑇𝐻(𝑃, 𝑅)). 𝑑𝑇𝐻(𝑄, 𝑆)

𝑑𝑇𝐻(𝑃, 𝑆). (−𝑑𝑇𝐻(𝑄, 𝑅))
=

𝑑𝑇𝐻(𝑃, 𝑅). 𝑑𝑇𝐻(𝑄, 𝑆)

𝑑𝑇𝐻(𝑃, 𝑆). 𝑑𝑇𝐻(𝑄, 𝑅)

 

and thus (𝑃𝑄, 𝑅𝑆)𝑇𝐻 is positive. 
 

Corollary 3.16 Let  𝑃, 𝑄, 𝑅 and 𝑆 are four distinct points on an oriented line in ℝ𝑇𝐻
3 . If the pairs {𝑃, 𝑄} and {𝑅, 𝑆} seperate 

each other, then the tetrakis hexahedron cross-ratio (𝑃𝑄, 𝑅𝑆)𝑇𝐻 is negative. 
 
Proof. If the pairs {𝑃, 𝑄} and {𝑅, 𝑆} seperate each other, then there are four arrays for 𝑅 and 𝑆. For the orientation 𝑅 −
𝑃 − 𝑆 − 𝑄 the tetrakis hexahedron cross-ratio is  

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 =
𝑑𝑇𝐻[𝑃𝑅]𝑑𝑇𝐻[𝑄𝑆]

𝑑𝑇𝐻[𝑃𝑆]𝑑𝑇𝐻[𝑄𝑅]

=
(−𝑑𝑇𝐻(𝑃, 𝑅)). (−𝑑𝑇𝐻(𝑄, 𝑆))

𝑑𝑇𝐻(𝑃, 𝑆). (−𝑑𝑇𝐻(𝑄, 𝑅))
= −

𝑑𝑇𝐻(𝑃, 𝑅). 𝑑𝑇𝐻(𝑄, 𝑆)

𝑑𝑇𝐻(𝑃, 𝑆). 𝑑𝑇𝐻(𝑄, 𝑅)

 

 
and since for other possible arrays, by similar calculations, same results are obtained, thus (𝑃𝑄, 𝑅𝑆)𝑇𝐻 is negative. 
 

Theorem 3.17 The tetrakis hexahedron cross-ratio is invariant under tetrakis hexahedron spherical inversion in ℝ𝑇𝐻
3 . 
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Proof. Let 𝐼𝒯(𝑂,𝑟) be a tetrakis hexahedron spherical inversion with center 𝑂 and radius 𝑟, and 𝑃, 𝑄, 𝑅 and 𝑆 be four points 

on an oriented line 𝑙 passing through 𝑂. Let 𝑃′, 𝑄′, 𝑅′ and 𝑆′ be inverse points of 𝑃, 𝑄, 𝑅 and 𝑆 respectively under 𝐼𝒯(𝑂,𝑟). 

Observe that the tetrakis hexahedron spherical inversion preserves the seperation or non-seperation of the pairs {𝑃, 𝑄} 
and {𝑅, 𝑆} and also it reverses the tetrakis hexahedron - directed distance from the point 𝑃 to the point 𝑄 along a line 𝑙 
to tetrakis hexahedron -directed distance from the point 𝑄′ to the point 𝑃′. The required result follows from Theorem 
2.9; 

(𝑃′𝑄′, 𝑅′𝑆′)𝑇𝐻 =
𝑑𝑇𝐻(𝑃′, 𝑅′). 𝑑𝑇𝐻(𝑄′𝑆′)

𝑑𝑇𝐻(𝑃′𝑆′). 𝑑𝑇𝐻(𝑄′𝑅′)
 

 

                                    =

𝑟2.𝑑𝑇𝐻(𝑃,𝑅)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑅)
.

𝑟2.𝑑𝑇𝐻(𝑄,𝑆)

𝑑𝑇𝐻(𝑂,𝑄).𝑑𝑇𝐻(𝑂,𝑆)

𝑟2.𝑑𝑇𝐻(𝑃,𝑆)

𝑑𝑇𝐻(𝑂,𝑃).𝑑𝑇𝐻(𝑂,𝑆)
.

𝑟2.𝑑𝑇𝐻(𝑄,𝑅)

𝑑𝑇𝐻(𝑂,𝑄).𝑑𝑇𝐻(𝑂,𝑅)

 

 

                                                                                                      =
𝑑𝑇𝐻(𝑃,𝑅).𝑑𝑇𝐻(𝑄,𝑆)

𝑑𝑇𝐻(𝑃,𝑆).𝑑𝑇𝐻(𝑄,𝑅)
 

 
                                              = (𝑃𝑄,𝑅𝑆)𝑇𝐻 
 

Definition 3.18 Let 𝑙 be a line in ℝ𝑇𝐻
3 . Suppose that 𝑃, 𝑄, 𝑅 and 𝑆 are four points on 𝑙. It is called that 𝑃, 𝑄, 𝑅 and 𝑆 form 

a harmonic set if (𝑃𝑄, 𝑅𝑆)𝑇𝐻 = −1 and it is denoted by 𝐻(𝑃𝑄, 𝑅𝑆)𝑇𝐻. That is, any pair 𝑅 and 𝑆 on 𝑙 for which  
 

𝑑𝑇𝐻[𝑃,𝑅]𝑑𝑇𝐻[𝑄,𝑆]

𝑑𝑇𝐻[𝑃,𝑆]𝑑𝑇𝐻[𝑄,𝑅]
= −1                                                                                  (7) 

 
is said to divide 𝑃  and 𝑄  harmonically. The points 𝑅  and 𝑆  are called tetrakis hexahedron harmonic conjugates with 
respect to 𝑃 and 𝑄. 
 

Theorem 3.19 Let 𝑇 be a tetrakis hexahedron sphere with center 𝑂, and line segment [𝑃𝑄] be a diameter of 𝑇 in ℝ𝑇𝐻
3 . 

Let 𝑅 and 𝑆 be distinct points of the ray 𝑂𝑃⃗⃗⃗⃗  ⃗, which divide the segment [𝑃𝑄] internally and externally. Then 𝑅 and 𝑆 are 
tetrakis hexahedron harmonic conjugates with respect to 𝑃 and 𝑄 if and only if 𝑅 and 𝑆 are inverse points with respect 
to the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟). 

 
Proof. Let 𝑅 and 𝑆 are tetrakis hexahedron harmonic conjugates with respect to 𝑃 and 𝑄. Then  
 

(𝑃𝑄, 𝑅𝑆)𝑇𝐻 = −1 ⇒
𝑑𝑇𝐻[𝑃, 𝑅]. 𝑑𝑇𝐻[𝑄, 𝑆]

𝑑𝑇𝐻[𝑃, 𝑆]. 𝑑𝑇𝐻[𝑄, 𝑅]
= −1 

 

Since 𝑅 divides the line segment [𝑃𝑄] internally and 𝑅 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , 
 

𝑑𝑇𝐻(𝑅, 𝑄) = 𝑟 − 𝑑𝑇𝐻(𝑂, 𝑅)  and  𝑑𝑇𝐻(𝑃, 𝑅) = 𝑟 + 𝑑𝑇𝐻(𝑂, 𝑅). 
 

Since 𝑆 divides the line segment [𝑃𝑄] externally and 𝑆 is on the ray 𝑂𝑄⃗⃗⃗⃗⃗⃗ , 
 

𝑑𝑇𝐻(𝑃, 𝑆) = 𝑟 + 𝑑𝑇𝐻(𝑂, 𝑆) and 𝑑𝑇𝐻(𝑄, 𝑆) = 𝑑𝑇𝐻(𝑂, 𝑆) − 𝑟. 
 
Thus  
 

(𝑟 + 𝑑𝑇𝐻(𝑂, 𝑅)). (𝑑𝑇𝐻(𝑂, 𝑆) − 𝑟)

(𝑟 + 𝑑𝑇𝐻(𝑂, 𝑆)). (𝑟 − 𝑑𝑇𝐻(𝑂, 𝑅))
= −1 

 

⟹ (𝑟 + 𝑑𝑇𝐻(𝑂, 𝑅)). (𝑑𝑇𝐻(𝑂, 𝑆) − 𝑟) = (𝑟 + 𝑑𝑇𝐻(𝑂, 𝑆)). (𝑑𝑇𝐻(𝑂, 𝑅) − 𝑟). 

 
Simplifying the last equality 𝑑𝑇𝐻(𝑂, 𝑅). 𝑑𝑇𝐻(𝑂, 𝑆) = 𝑟2 is obtained. So 𝑅 and 𝑆 are tetrakis hexahedron spherical inverse 
points with respect to the tetrakis hexahedron spherical inversion 𝐼𝒯(𝑂,𝑟). For the other condition (𝑆 and 𝑅 are on the ray 

𝑂𝑃⃗⃗⃗⃗  ⃗ ) by similar calculations the same conclusion is obtained. 
Conversely, if 𝑅 and 𝑆 are tetrakis hexahedron spherical inverse points with respect to the tetrakis hexahedron spherical 
inversion 𝐼𝒯(𝑂,𝑟) the proof is similar. 
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4. Discussion and Conclusion 
 
Inversion theory is of interest to geometers today, as it used to be, since it suggests challenging problems and when it is 
applied many problems in geometry became much manageable. Classical inversion is defined with respect to a circle but 
there are many different definitions of inversion in the literature by using other objects or using different distance 
functions or expanding dimension. In this study inversion is defined in a three dimensional non-Euclidean geometry and 
by using obtained results in this space some properties of this inversion is investigated. We hope that this topic would 
provoke further researches by interested readers or their students. 
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