
ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

DEVELOPMENT OF A FAULT INJECTION TOOL & DATASET FOR VERIFICATION OF
CAMERA BASED PERCEPTION IN ROBOTIC SYSTEMS

Uğur YAYAN1* , Alim Kerem ERDOĞMUŞ2

1 Software Engineering Department, Eskisehir Osmangazi University, Eskisehir, Turkey, ORCID No : http://orcid.org/

0000-0003-1394-5209
2 Research and Development Department, Inovasyon Muhendislik Ltd.Şti., Eskisehir, Turkey, ORCID No :

http://orcid.org/ 0000-0001-5111-5965

Keywords Abstract
Robotics
Verification
Fault Injection
Image Dataset
Camera-based Perception

Nowadays, camera-based perception is most popular topic in robotic systems.
Verification of camera-based perception systems are crucial and difficult with current
tools and methods. This study proposes Camera Fault Injection Tool (CamFITool), which
enables different kind of fault injection methods to RGB and TOF cameras in order to
perform verification and validation activities on robotic systems. Besides, Fault Injected
Image Database which is created by CamFITool is introduced. In addition, the study
guides to readers to create new datasets by injecting faults into existing image libraries
or camera streams with CamFITool. CamFITool, an open source camera fault injection
tool, has been proposed as a critical tool for assessing the safety and security of fault
tolerant systems. Also, a fault injected image dataset created by CamFITool for
verification of camera-based perception studies in robotic systems is given.

ROBOTİK SİSTEMLERDE KAMERA TABANLI ALGININ DOĞRULANMASI İÇİN HATA
ENJEKSİYON ARACI VE VERİ KÜMESİNİN GELİŞTİRİLMESİ

Anahtar Kelimeler Öz
Robotik
Doğrulama
Hata Enjeksiyonu
Veri Kümesi
Kamera Tabanlı Algı

Günümüzde robotik sistemlerde kamera tabanlı algılama en popüler konulardan biridir.
Mevcut araç ve yöntemlerle kamera tabanlı algılama sistemlerinin doğrulanması da çok
önemli ve zordur. Bu çalışma, robotik sistemlerde doğrulama ve doğrulama faaliyetlerini
gerçekleştirmek için RGB ve TOF kameralara farklı türlerde hata enjeksiyon yöntemleri
sağlayan Kamera Hatası Enjeksiyon Aracını (CamFITool) önermektedir. Ayrıca
CamFITool tarafından oluşturulan hata enjekte edilmiş resim veri kümesi
tanıtılmaktadır. Buna ek olarak çalışma, CamFITool ile mevcut görüntü kitaplıklarına
veya kamera akışlarına hatalar enjekte ederek yeni veri kümeleri oluşturmak için
okuyuculara rehberlik etmektedir. Sonuç olarak, hataya dayanıklı sistemlerin emniyet ve
güvenliğini değerlendirmek için kritik bir araç olan açık kaynaklı bir hata enjeksiyon
aracı olan CamFITool önerilmiştir. Ayrıca robotik sistemlerde kamera tabanlı algılama
çalışmalarının doğrulanması için CamFITool tarafından oluşturulan hata enjekte
edilmiş görüntü veri kümesi verilmiştir.

Araştırma Makalesi Research Article
Başvuru Tarihi
Kabul Tarihi

: 07.01.2022
: 29.06.2022

Submission Date
Accepted Date

: 07.01.2022
: 29.06.2022

1. Introduction

The robotics industry has evolved over the years and
has become a growing market share. According to the

* Corresponding Author; e-mail : ugur.yayan@ogu.edu.tr

Bu eser, Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/)
hükümlerine göre açık erişimli bir makaledir.
This is an open access article under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0/).

2021 report of World Robotics (IFR, 2021), it was stated
that the use of robots in factories around the world
increased by 10 percent compared to the previous year
and reached 3 million. It is thought that this rate will

http://orcid.org/
http://orcid.org/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

329

reach 15 percent in the 2022 and the robotics industry
will become widespread with an increasing momentum.
Considering the sectoral distribution of robots sold, it
can be seen that the use of robots in heavy and medium
industry is at a considerable point (see Figure 1).

Figure 1. Annual installations of industrial robots by
customer industry (World Robotics, 2021)

The widespread use of robotic systems in the industry
also makes it possible for errors that may arise in
robotic systems to have critical consequences. Since the
importance of the software has become much more
critical in the robotic systems and the anomalies that
may occur in the systems are mostly possible to be
realized by the software, thus it is crucial to test the
system with fault injection into the system. Sensors used
in robotic systems and data transfer between robots
must be carried out safely. The rapid progress of robotic
communication technologies has led to an increase in
the data used in this field. The safely use and processing
of increasing data causes situations that force designers
and users to take instantaneous decisions faster. The
basis of its safely use is to quickly find and intervene the
anomalies that develop during the transfer. For this
determination, it is critical to ensure validation and
verification of systems. Implementation of an anomaly
detection system based on artificial intelligence can be a
solution to this verification (Kendall, Grimes and Cipolla,
2015; Osadcuks, Pudzs, Zujevs, Pecka and Ardavs, 2020;
Park and Mu Lee, 2017).

Studies related to this study are given below. In Chapter
2, information is given about the literature that the
robotic software (SRVT) studied. In the Chapter 3,
details about SRVT, the environment and methods used
by SRVT and CamFITool are given. Conclusion and
future work are in Chapter 4.

2. Literature

Fault injection is an important methodology for
assessing the reliability of software and associated
system. Researchers, engineers, etc., who are familiar

with software, develop many new methods that can be
applied both in hardware and in software to injections
that may cause faults in software into the relevant
systems. The situations seen among these hardware and
software methods under development are as follows:

 Fault injection zones accessible to software
developers and researchers,

 The cost of the injection made,
 The level of corruption caused by the fault

created in the system, etc.

are factors. With fault injection into the hardware, faults
can be created on chip pins and internal components
such as circuits and registers that cannot be addressed
by software. On the other hand, in fault injection into the
software, it is possible to produce a direct change at the
level of the general state of the software. Given these
situations, it is possible to use hardware methods to
evaluate low-level fault detection and masking
mechanisms, and software methods to test higher-level
mechanisms (Hsueh, Tsai and Iyer, 1997).

Studies have been carried out on many software and
interfaces to create this type of fault injection. GemFI
(Parasyris, Tziantzoulis, Antonopoulos and Bellas,
2014) by Parasyris and his team, GOOFI (Aidemark,
Vinter, Folkesson and Karlsson, 2001) by Aidemark and
his team, SASSIFI (Hari, Tsai, Stephenson, Keckler and
Emer, 2017) by Hari and his team, and MODIFI
(Svenningsson, Vinter, Eriksson and Törngren, 2010) by
Svenningsson and his team are just a few of the
important fault injection tool studies in the literature. All
these studies are studies that enable fault injection for
various software, simulation or hardware systems, thus
enabling the testing of fault tolerance and weaknesses of
the systems. Among the aforementioned sample tools,
only the GemFI tool has image fault injection. Since this
injection is not one of the main purposes of the study, it
can be said that CamFITool's purpose of injecting fault
into the image is more specific.

An anomaly in a system refers to the occurrence of the
expected response, events, or other elements in a
dataset that cannot usually be detected by a human
expert. Such anomalies are usually caused by structural
errors in the system, and these errors can turn into
critical problems for the system ("Anomaly Detection, A
Key Task for AI and Machine Learning, Explained",
2019). For this type of artificial intelligence systems,
data sets consisting of data that are revealed as a result
of the correct and incorrect operation of the mechanism
that occurs anomaly can be used.

Anomalies can be seen in many different areas. For
example, it is an anomaly to see plants with weak or
faulty mutations during the development of plants, and
research has been carried out to detect them through
datasets created with samples collected from these

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

330

plants (Scharr, Minervini, Fischbach and Tsaftaris,
2014). Human actions are also an area where anomaly
investigation can be done. An artificial intelligence is
supported by the data sets created to detect the
differences in these actions and anomaly detection can
be made (Rezazadegan, Shirazi, Upcrofit and Milford,
2017). Examples like this and researches show the
importance of creating appropriate resources for
anomaly detection using data sets.

Datasets provide accessible comparisons to improve
algorithms and test new techniques. Recent
developments in the fields of artificial intelligence and
deep learning have accelerated with the use of data sets
that are being developed. Today, data sets contain more
pictures with the proliferation of researches and their
use in different fields is becoming more common day by
day.

Deep behavioral learning is one of the research areas
where the use of data sets has an important place. In this
area, the characteristics of the same people are
determined and learned in different data sets (Su,
Zhang, Xing, Gao and Tian, 2016), the use of object
recognition features and typical movements such as
describing the actions of people from video recordings
(Per, Kenk, Mandeljc, Kristan and Kovacic, 2012, p. 3;
Russell, Torralba, Murphy and Freeman, 2008; Wu,
Oreifej and Shah, 2011) and recognizing human mobility
in an environment with autonomously moving robots
(Rezazadegan et al., 2017).

Datasets from images collected from the Web were also
created to be used for analysis and validation in
scientific research (Deng et al., 2009; Everingham, Van
Gool, Williams, Winn and Zisserman, 2010; Osadcuks et
al., 2020; Torralba, Fergus and Freeman, 2008). Such
datasets are important studies created to collect and
classify many different kinds of pictures, to be a
resource that can be used for other scientific research
and to be published openly for the use of researchers. As
an example of this situation, Torralba et al. The large
data set (Torralba et al., 2008) created by collecting
about 80 million images and listing them in the
dictionary dataset by tagging each image can be shown.

Datasets are used in these studies as augmented reality
(Leitner, Dansereau, Shirazi and Corke, 2015; Noguchi
and Harada, 2020; Orchard, Jayawant, Cohen and
Thakor, 2015), robotics (Ravi, Shankar, Frankel,
Elgammal and Iftode, 2007), autonomous drone
navigation (Padhy, Verma, Ahmad, Choudhury and Sa,
2018), forensic techniques (Gloe and Böhme, 2010),
botany (Scharr et al., 2014), data classification (Nene,
Nayar and Murase, 1996; Xiao, Hays, Ehinger, Oliva and
Torralba, 2010), traffic control (Fregin, Muller, Krebel
and Dietmayer, 2018), it has also been used in scientific
studies such as user location detection (GAZEBO
website., 2021). In addition, it is seen that more complex

data sets are created and presented to scientists with
the active use of data sets for issues such as editing and
correction of distorted images (Park and Mu Lee, 2017)
and the progress of studies in these areas.

Camera Fault Injection Tool (CamFITool) is an open-
source tool to make necessary fault injections to robot
cameras in order to take action before such robotic
system faults occur. By injecting these faults into robot
cameras, it is aimed to create a dataset that can be used
for anomaly detection that may occur in robotic
systems. For this purpose, fault injected image datasets
created from images obtained by fault injections using
CamFITool. With CamFITool, such datasets can be
created, as well as injecting real-time faults into the
camera stream and observing the system's response to
it.

In this study, offline and realtime fault injections were
made using CamFITool and the details of 10000-image
dataset, which were created by injecting fault into the
cameras in the robotic environment described in the
third section, are explained. It also details how
CamFITool was developed, in which environments it
was tested, and a dataset generated by this software that
provides verification and validation on robot cameras.
Python-based CamFITool has been tested on Simulation
Based Robot Verification Tool (SRVT), a robotic system
running on the ROS Noetic system (Yayan and
Erdoğmuş, 2021). These tests were performed on the
robot cameras of the ROKOS system (Yayan &
Erdoğmuş, 2021) simulated in SRVT. Additionally, it has
been open sourced to make up for the lack of such a fault
injection testing tool in the ROS environment.

3. Methods

In this section, the methods and application area of the
study are explained. In addition, in this study, article
research and publication ethics were complied with.

3.1. Experimental Environment

ROKOS (OTOKAR Robot Control System) shortens the
quality control period of the product with its innovative
visual inspection techniques and makes the presence-
absence control of the parts that make up the bus body-
in-white more sensitive. The basis of this work is to
reveal a production system that performs better in
terms of fault tolerance to achieve better quality control
(Figure 2). With its cartesian robot and camera sensor
system, ROKOS can fully automatically control the
presence of 2500-3000 body parts that make up a bus
body-in-white.

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

331

Figure 2. Robot inspection system for quality control
(ROKOS)

Thanks to the Simulation-based Robot Verification
Testing (SRVT) tool, the ROKOS system has been
realistically transferred to the Gazebo (Figure 4)
simulation environment. In the simulation environment,
ROKOS can perform its tasks as in the real environment
and can take images from the bus body-in-white
transferred to the simulation environment in the same
way (Figure 3). (Yayan and Erdoğmuş, 2021).

Figure 3. Image of one of the ROKOS robot arms in the
SRVT simulation environment

ROKOS is converted into the SRVT environment,
designed to run on versions of ROS Noetic (Quigley et al.,
2009) and GAZEBO 11 (GAZEBO website., 2021) (Figure
4). Moveit (Chitta, Sucan and Cousins, 2012) software is
used as the planner in SRVT.

Figure 4. ROKOS system and bus body-in-white
modelled on the GAZEBO simulation environment

Figure 5. SRVT simulation architecture

Figure 6. SRVT system architecture

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

332

The main architecture of the SRVT consists of five parts
(Figure 6). These sections are;

1) Gazebo

The ROKOS robot arms and bus body-in-white are
remodeled in the simulation environment of Gazebo 11.
It is used as the simulation engine of SRVT.

2) Image Server

The ROS node, which enables ROKOS robot arms to take
camera images from the bus body-in-white, is a system
called Image Server. When this ROS node receives the
"take photo" command by the ROS SMACH node, it
records the photo in a folder with a special naming
format defined for it. This node is manipulated at the
execution of CamFITool's fault injections. In Figure 7,
image examples from SRVT are given.

Figure 7. RGB and TOF image examples

3) Moveit

It is the planning element of the SRVT system which
contains trajectory planners for robot arms.

4) Task Server

The Task Server node determines the coordinates which
are visited and photo taken and sent it to the SMACH
node.

5) SMACH

The SMACH node is a finite state machine for controlling
the behaviors of SRVT.

3.2. Development of Camera Fault Injection Tool

This study proposes an open-source Camera Fault
Injection Tool (CamFITool), which enables state-of-art
fault injection methods to RGB and TOF cameras in
order to perform verification and validation activities on
robotic systems. This fault injection tool is written in
Python and Qt5 for interface. The CamFITool is also ROS
Noetic compatible (Figure 8).

Figure 8. CamFITool main screen

CamFITool makes it possible to inject faults into camera
stream or into images folder. In addition, datasets that
can be used for artificial intelligence based anomaly
detection studies. With CamFITool, an interface has
been created that can be used in applications such as
testing, verification, validation activities.

3.2.1. CamFITool Interface

CamFITool has an interface that could be apply faults in
two different types (Offline and Realtime). When
switching to these types, the interface changes
accordingly. CamFITool, works in a single page makes it
simple to use and easy to understand.

Figure 9. File selection screen of CamFITool interface

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

333

Figure 9 shows the tabs on the left side of the CamFITool
interface where the folders to be processed. In Figure 9-
1, The Image Folders section could be seen for image
folder selection. It is possible to make this selection with
the button (Figure 9-4). With the "Fault Implementation
Rate" section in Figure 9-3, it is possible to select what
percentage of the images in the normal image folder will
be injected with faults.

Figure 10. Normal image directory selection screen

In Figure 9-2, The FI Image Folders section is given and
fault injected images could be find here. It is possible to
make this selection with the button indicated by (Figure
9-5).

Figure 11. Camera Fault Configuration menu

Figure 11 shows the central part of the CamFITool
interface, the Camera Fault Configuration menu. This
menu is designed for the user to set the desired type of
fault. The descriptions of the selection sections are as
follows:

Fault Injection Type: In this feature, the user selects
the fault application type. It has two options, Offline and
Realtime. When Offline is selected, the last two options
are deleted from the screen.

Camera Type: The camera type (RGB or TOF) could be
selected with this feature for fault injection. For both
options, different fault types are presented in the Fault
Type section.

Fault Type: In this feature, the user selects the type of
fault to be applied. There are Open, Close, Erosion,
Dilation, Motion-blur and Gradient fault types for RGB
camera, Salt&Pepper, Gaussian and Poisson fault types
for TOF camera.

Fault Rate: It is the feature where the user determines
the fault injection rate. The rate is directly proportional
to the degradation of the image.

Robot Camera: It is the feature where the user selects
the type of camera stream to be apply a fault.

ROS Camera Topic: It is the feature where the user
selects the relevant topic of the ROS camera stream to be
inject a fault.

Camera Stream Frequency: This feature is related with
ROS camera topic and could be used in realtime fault
application.

Figure 12. CamFITool interface’s application and
information screen

Figure 12 shows the rest of CamFITool. In this section,
there is an information tab (Figure 12-2), which
contains information about the processes taking place in

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

334

CamFITool, and the FI Plans tab (Figure 12-3), where the
records of the fault configurations we have applied are
displayed. In addition, there are buttons that provide
interface control. The features of these buttons are as
follows:

(Figure 12-1) Robot Cam: It is the button that allows the
snapshot of the ROS camera written in the Topic section
to be displayed on the screen.

(Figure 12-2) Information Tab: Information tab
contains information about the processes taking place in
CamFITool.

(Figure 12-3) Fault Injection Plans Tab: FI Plans tab
where the records of the fault configurations we have
applied are displayed.

(Figure 12-4) Randomize: This is the option that allows
the offline fault application to be applied to a random
number of images.

(Figure 12-5) Apply Fault: It is the button that starts the
fault injection of with the fault configuration set by the
user.

(Figure 12-6) Save FI Plan: This is the button that allows
the user to save the fault configuration set. Saved plans
can be viewed in the FI Plan tab.

(Figure 12-7) Show FIP Details: This is the button used
for the user to view the details of the recorded fault
plans in the Info tab. The user can select the plan who
wants to see from the FI Plans tab and click this button
to view the details.

(Figure 12-8) About: This is the button that displays
CamFITool's tag information.

(Figure 12-9) Help: This is the button that opens the
help section prepared for CamFITool.

3.3. Construction of Fault Injected Image Dataset
The faulty image dataset is an image library that
contains samples of faulty images that a robot camera
has recorded as a result of various faults it may
encounter. Possible camera malfunctions, such as the
camera recording the faulty images at that time and the
system continuing to work on these faulty images, can
cause serious problems in the system. CamFITool is
designed to simulate such failures, collect faulty picture
outputs of the systems as a result of these failures, and
create faulty output source for artificial intelligence
systems to be developed to detect these problems.
CamFITool can inject faults into the SRVT or any other
camera-based detection system, corrupting the images
that the system is supposed to record with various
image degradation techniques. The faulty image dataset
mentioned in this study consists of normal images and
degraded images recorded by the SRVT system from
ROKOS cameras running on Gazebo (Figure 13).

Figure 13. Camera fault injection outcome examples

The dataset was created using two different application
types to test all the fault injection features of CamFITool
and to obtain different outputs. The first dataset was
created from fault injected and normal images obtained
by applying realtime fault injection to the cameras on
the robot arms operating in the SRVT. The second
dataset was created from fault injected images obtained
by offline fault injection to the images taken by the SRVT.
Dataset creation processes with these two fault injection
application types are explained in the following sections.

3.3.1. Realtime Fault Injected Image Dataset from
SRVT Simulation Environment

In order to create this dataset, fault injection was
performed by CamFITool to the RGB image nodes of two
robot cameras running on the SRVT system. While
injected 6 types of image faults defined in accordance
with RGB cameras, the system continued to work and
save pictures. The tasks were repeated until a certain
number of pictures of each fault type were recorded
(Erdogmus, Karaca and Yayan, 2021).

CamFITool allows us to create a dataset of 5000 normal
and 5000 fault injected images (see Table 1) from the
SRVT system. In addition, users can create such datasets
in desired configurations and camera-based perception-
based environments by using CamFITool. It has been
observed that there is no such tool in ROS yet.
CamFITool makes use of a software fault injection
system that works directly in compatible with ROS
(CamFITool ROS Wiki, 2021).

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

335

Table 1
RGB Camera Fault Types

Fault Method Description Example Image

Dilation It is used to enlarge
the highlighted parts
of an image
(Jankowski, 2006).
There are 476 of
these faults injected
pictures in the
dataset.

Erosion It is used to reduce
the highlighted part
of an image
(Jankowski, 2006).
There are 637 of
these faults injected
images in the dataset.

Open It is created by first
etching and then
spreading an image
(Acton and
Mukherjee, 2000).
There are 640 of
these faults injected
images in the dataset.

Close It is created by first
spreading and then
etching an image
(Acton and
Mukherjee, 2000).
There are 841 of
these faults injected
images in the dataset.

Gradient It is created by
subtracting the
etched version from
the smeared version
of an image (Larnier,
Fehrenbach and
Masmoudi, 2012).
There are 632 of
these faults injected
images in the dataset.

Motion-blur It is created by
providing blur in an
image (Ji and Liu,
2008). There are 687
of these faults
injected images in the
dataset.

Partialloss It is created by
destroying a specified
part of an image.
There are three
different partialloss
types: horizontal,
vertical and odd-
even. There are 1087
of these faults
injected pictures in
the dataset.

The dataset was created by extracting the fault injected
and normal ones from the pictures collected while the
SRVT system was running. All images have been tagged
with standard SRVT tags. This is because the system also
saves fault injected pictures as if they were normal
pictures for inspection processes. The created dataset
could be used to train the artificial intelligence that will
detect the fault injected pictures of the system and to
create this anomaly detection system.

3.3.2. Offline Fault Injected Image Dataset from
SRVT Created Images

To use CamFITool's offline fault injection feature, an
image dataset of images recorded by TOF cameras in the
SRVT was used. TOF camera images captured by the
SRVT were injected by CamFITool with faults of three
types (see Table 2). As in the studies described above,
different types of fault-injected images can be obtained,
and datasets can be created from these images.

The listed image fault types can be examined in two
different classes (see Table 3) as virtual environment
faults and real environment faults. Virtual environment
faults like Dilation/Erosion, Open/Close, Gradient,
InjectionPayload are artificial image errors that can only
be revealed in the simulation environment and through
software (OpenCV Python libraries, etc.). These faults
can be counted as virtual environment faults. Such faults
are not seen in real environment/hardware with non-
software methods.

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

336

Table 2
TOF Camera Fault Types

Fault Method Description Example Image

Gaussian Gaussian noise is
statistical noise with
a probability density
function equal to the
normal distribution,
also known as the
Gaussian distribution.
In other words, the
values that the noise
can take are Gaussian
distribution (Figure
17 (Barbu, 2013).

Poisson Shot noise or Poisson
noise is a type of
noise that can be
modeled with a
Poisson process. In
electronics,
gravitational noise is
due to the discrete
nature of electric
charge. Shot noise
also occurs in photon
counting in optical
devices where the
shot noise is related
to the particle nature
of light (Figure 18)
(Blanter and Büttiker,
2000; Schottky,
2018).

Salt&Pepper Salt and pepper noise
is a type of noise that
can sometimes be
observed. Also known
as impulse noise. This
noise can be caused
by sharp and sudden
disturbances in the
image signal. It
presents itself as
sparsely occurring
white and black
pixels (Figure 19)
(Rosin and
Collomosse, 2012).

Real environment faults like (Motion-blur, Partialloss,
Freeze/Slow, Random, Gaussian, Poisson, Salt&Pepper)
(or camera / hardware faults), on the other hand, are
image faults that may occur in real environment
cameras, not only through software, but also due to
problems that may occur in the camera hardware. These
faults can be counted as real environment faults. For
example, a Poisson noise may be generated in electronic
circuits by random fluctuations of electric current in a
DC current, which is caused by the fact that the current
is actually the flow of discrete charges (electrons). This
fault may cause related corruption in camera hardware.

Table 3
General Camera Fault Types/Methods

Fault Types
Camera

Types

Virtual/Real En-
vironment Fault

Dataset

Dilation RGB Virtual X

Erosion RGB Virtual X

Open RGB Virtual X

Close RGB Virtual X

Gradient RGB Virtual X

Motion-blur RGB/TOF Real X**

Partialloss RGB/TOF Real X**

Freeze RGB Real

Slow RGB Real

InjectionPayload RGB/TOF Virtual

Random RGB/TOF Real

Gaussian TOF Real X*

Poisson TOF Real X*

Salt&Pepper TOF Real X*

‘**' In marked these ones, only RGB samples are available in the
dataset.

‘*’ In marked these ones will be added to the dataset.

4. Conclusion and Future Works

In this study, CamFITool, an open-source fault injection
tool, which is a critical tool for assessing of fault tolerant
systems’ safety and security, is proposed. In addition,
CamFITool can apply faults not only to the Realtime
camera stream, but also to the offline recorded image
folders. As a result, a fault injected image dataset for the
camera-based perception studies in robotic systems,
and to help determine the fault tolerances of the systems
is published. In addition, users can create such datasets
in desired configurations and camera-based perception-
based environments by using CamFITool. It has been
observed that there is no such tool in ROS or robotics
community yet.

 In the future works, it is planned to develop the
CamFITool interface and continue to add new features.
The interface is completely open source and
developments can be followed in the current version of
the interface, Github repository (CamFITool Github
repository, 2021). It is also planned to work on a deep
learning-based anomaly detection system that will
detect fault injected pictures in created datasets by
CamFITool.

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

337

Acknowledgment

This study is supported by TÜBİTAK Project under grant
number 120N803 which conducted by the İnovasyon
Mühendislik.

Also, the research leading to this paper has received
funding from the ECSEL Joint Undertaking (JU) under
grant agreement No 876852. The JU receives support
from the European Union's Horizon 2020 research and
innovation programme and Austria, Czech Republic,
Germany, Ireland, Italy, Portugal, Spain, Sweden,
Turkey. The views expressed in this document are the
sole responsibility of the authors and do not necessarily
reject the views or position of the European
Commission.

Conflicts of Interest

They declared that there is no conflict of interest
between the authors and their respective institutions.

Contributions of the Authors

In this work, Uğur YAYAN created the article concept,
conducted the research, tested it, edited it, managed the
project, and wrote the article in this work. The article's
concept, research, coding, testing, development of SRVT
and CamFITool, and writing have been completed by
Alim Kerem ERDOĞMUŞ.

References

Acton, S. T., & Mukherjee, D. P. (2000). Scale space
classification using area morphology. IEEE
Transactions on Image Processing, 9(4), 623-635.
https://doi.org/10.1109/83.841939

Aidemark, J., Vinter, J., Folkesson, P., & Karlsson, J.
(2001). GOOFI: Generic object-oriented fault
injection tool. 2001 International Conference on
Dependable Systems and Networks, 83-88.
https://doi.org/10.1109/DSN.2001.941394

Anomaly Detection, A Key Task for AI and Machine
Learning, Explained. (2019). KDnuggets. Available 06
January 2022,
https://www.kdnuggets.com/anomaly-detection-a-
key-task-for-ai-and-machine-learning-
explained.html/

Barbu, T. (2013). Variational Image Denoising Approach
with Diffusion Porous Media Flow. Abstract and
Applied Analysis, 2013, e856876.
https://doi.org/10.1155/2013/856876

Blanter, Ya. M., & Büttiker, M. (2000). Shot noise in
mesoscopic conductors. Physics Reports, 336(1), 1-

166. https://doi.org/10.1016/S0370-
1573(99)00123-4

CamFITool Github repository. (2021). Camera Fault
Injection Tool [Python]. Inovasyon Muhendislik.
https://github.com/inomuh/camfitool (Original
work published 2021)

CamFITool ROS Wiki. (2021). camfitool—ROS Wiki
[Wiki]. CamFITool ROS Wiki Page.
http://wiki.ros.org/camfitool/

Chitta, S., Sucan, I., & Cousins, S. (2012). MoveIt! [ROS
Topics]. IEEE Robotics & Automation Magazine,
19(1), 18-19.
https://doi.org/10.1109/MRA.2011.2181749

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L.
(2009). ImageNet: A large-scale hierarchical image
database. 2009 IEEE Conference on Computer Vision
and Pattern Recognition, 248-255.
https://doi.org/10.1109/CVPR.2009.5206848

Erdogmus, A. K., Karaca, M., & Yayan, A. P. D. U. (2021).
Manipulation of Camera Sensor Data via Fault
Injection for Anomaly Detection Studies in
Verification and Validation Activities For AI.
arXiv:2108.13803 [cs].
http://arxiv.org/abs/2108.13803

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J., &
Zisserman, A. (2010). The Pascal Visual Object
Classes (VOC) Challenge. International Journal of
Computer Vision, 88(2), 303-338.
https://doi.org/10.1007/s11263-009-0275-4

Fregin, A., Muller, J., Krebel, U., & Dietmayer, K. (2018).
The DriveU Traffic Light Dataset: Introduction and
Comparison with Existing Datasets. 2018 IEEE
International Conference on Robotics and Automation
(ICRA), 3376-3383.
https://doi.org/10.1109/ICRA.2018.8460737

GAZEBO website. (2021). http://GAZEBOsim.org/

Gloe, T., & Böhme, R. (2010). The “Dresden Image
Database” for benchmarking digital image forensics.
Proceedings of the 2010 ACM Symposium on Applied
Computing, 1584-1590.
https://doi.org/10.1145/1774088.1774427

Hari, S. K. S., Tsai, T., Stephenson, M., Keckler, S. W., &
Emer, J. (2017). SASSIFI: An architecture-level fault
injection tool for GPU application resilience
evaluation. 2017 IEEE International Symposium on
Performance Analysis of Systems and Software
(ISPASS), 249-258.
https://doi.org/10.1109/ISPASS.2017.7975296

Hsueh, M.-C., Tsai, T. K., & Iyer, R. K. (1997). Fault
injection techniques and tools. Computer, 30(4), 75-
82. https://doi.org/10.1109/2.585157

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

338

IFR. (2021). IFR presents World Robotics 2021 reports.
IFR International Federation of Robotics. Available
06 January 2022, https://ifr.org/ifr-press-
releases/news/robot-sales-rise-again

Jankowski, M. (2006). Erosion, dilation and related
operators. 10.

Ji, H., & Liu, C. (2008). Motion blur identification from
image gradients. 2008 IEEE Conference on Computer
Vision and Pattern Recognition, 1-8.
https://doi.org/10.1109/CVPR.2008.4587537

Kendall, A., Grimes, M., & Cipolla, R. (2015). PoseNet: A
Convolutional Network for Real-Time 6-DOF Camera
Relocalization. 2938-2946.
https://openaccess.thecvf.com/content_iccv_2015/
html/Kendall_PoseNet_A_Convolutional_ICCV_2015
_paper.html

Larnier, S., Fehrenbach, J., & Masmoudi, M. (2012). The
Topological Gradient Method: From Optimal Design
to Image Processing. Milan Journal of Mathematics,
80(2), 411-441. https://doi.org/10.1007/s00032-
012-0196-5

Leitner, J., Dansereau, D., Shirazi, S., & Corke, P. (2015).
The need for dynamic and active datasets. CVPR
Workshop on The Future of Datasets in Computer
Vision, 1-1. https://eprints.qut.edu.au/105801/

Nene, S. A., Nayar, S. K., & Murase, H. (1996). Columbia
Object Image Library (COIL-100). 6.

Noguchi, A., & Harada, T. (2020). RGBD-GAN:
Unsupervised 3D Representation Learning From
Natural Image Datasets via RGBD Image Synthesis.
arXiv:1909.12573 [cs].
http://arxiv.org/abs/1909.12573

Orchard, G., Jayawant, A., Cohen, G. K., & Thakor, N.
(2015). Converting Static Image Datasets to Spiking
Neuromorphic Datasets Using Saccades. Frontiers in
Neuroscience, 9, 437.
https://doi.org/10.3389/fnins.2015.00437

Osadcuks, V., Pudzs, M., Zujevs, A., Pecka, A., & Ardavs, A.
(2020). Clock-based time sync hronization for an
event-based camera dataset acquisition platform *.
2020 IEEE International Conference on Robotics and
Automation (ICRA), 4695-4701.
https://doi.org/10.1109/ICRA40945.2020.919730
3

Padhy, R. P., Verma, S., Ahmad, S., Choudhury, S. K., & Sa,
P. K. (2018). Deep Neural Network for Autonomous
UAV Navigation in Indoor Corridor Environments.
Procedia Computer Science, 133, 643-650.
https://doi.org/10.1016/j.procs.2018.07.099

Parasyris, K., Tziantzoulis, G., Antonopoulos, C. D., &
Bellas, N. (2014). GemFI: A Fault Injection Tool for
Studying the Behavior of Applications on Unreliable

Substrates. 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and
Networks, 622-629.
https://doi.org/10.1109/DSN.2014.96

Park, H., & Mu Lee, K. (2017). Joint Estimation of Camera
Pose, Depth, Deblurring, and Super-Resolution From a
Blurred Image Sequence. 4613-4621.
https://openaccess.thecvf.com/content_iccv_2017/
html/Park_Joint_Estimation_of_ICCV_2017_paper.ht
ml

Per, J., Kenk, V. S., Mandeljc, R., Kristan, M., & Kovacic, S.
(2012). Dana36: A Multi-camera Image Dataset for
Object Identification in Surveillance Scenarios. 2012
IEEE Ninth International Conference on Advanced
Video and Signal-Based Surveillance, 64-69.
https://doi.org/10.1109/AVSS.2012.33

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T.,
Leibs, J., Berger, E., Wheeler, R., & Ng, A. (2009). ROS:
an open-source Robot Operating System. 6.

Ravi, N., Shankar, P., Frankel, A., Elgammal, A., & Iftode,
L. (2007). Indoor Localization Using Camera Phones.
Seventh IEEE Workshop on Mobile Computing Systems
Applications (WMCSA’06 Supplement), Supplement, 1-
7. https://doi.org/10.1109/WMCSA.2006.4625206

Rezazadegan, F., Shirazi, S., Upcrofit, B., & Milford, M.
(2017). Action recognition: From static datasets to
moving robots. 2017 IEEE International Conference
on Robotics and Automation (ICRA), 3185-3191.
https://doi.org/10.1109/ICRA.2017.7989361

Rosin, P., & Collomosse, J. (2012). Image and Video-Based
Artistic Stylisation. Springer Science & Business
Media.

Russell, B. C., Torralba, A., Murphy, K. P., & Freeman, W.
T. (2008). LabelMe: A Database and Web-Based Tool
for Image Annotation. International Journal of
Computer Vision, 77(1), 157-173.
https://doi.org/10.1007/s11263-007-0090-8

Scharr, H., Minervini, M., Fischbach, A., & Tsaftaris, S. A.
(2014). Annotated Image Datasets of Rosette Plants.
17.

Schottky, W. (2018). On spontaneous current
fluctuations in various electrical conductors. Journal
of Micro/Nanolithography, MEMS, and MOEMS, 17(4),
041001.
https://doi.org/10.1117/1.JMM.17.4.041001

Su, C., Zhang, S., Xing, J., Gao, W., & Tian, Q. (2016). Deep
Attributes Driven Multi-camera Person Re-
identification. Içinde B. Leibe, J. Matas, N. Sebe, & M.
Welling (Ed.), Computer Vision – ECCV 2016 (ss. 475-
491). Springer International Publishing.
https://doi.org/10.1007/978-3-319-46475-6_30

ESOGÜ Müh Mim Fak Derg. 2022, 30(3), 328-339 J ESOGU Engin Arch Fac. 2022, 30(3), 328-339

339

Svenningsson, R., Vinter, J., Eriksson, H., & Törngren, M.
(2010). MODIFI: A MODel-Implemented Fault
Injection Tool. Içinde E. Schoitsch (Ed.), Computer
Safety, Reliability, and Security (ss. 210-222).
Springer. https://doi.org/10.1007/978-3-642-
15651-9_16

Torralba, A., Fergus, R., & Freeman, W. T. (2008). 80
Million Tiny Images: A Large Data Set for
Nonparametric Object and Scene Recognition. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 30(11), 1958-1970.
https://doi.org/10.1109/TPAMI.2008.128

Wu, S., Oreifej, O., & Shah, M. (2011). Action recognition
in videos acquired by a moving camera using motion
decomposition of Lagrangian particle trajectories.
2011 International Conference on Computer Vision,
1419-1426.
https://doi.org/10.1109/ICCV.2011.6126397

Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., & Torralba, A.
(2010). SUN database: Large-scale scene recognition
from abbey to zoo. 2010 IEEE Computer Society
Conference on Computer Vision and Pattern
Recognition, 3485-3492.
https://doi.org/10.1109/CVPR.2010.5539970

Yayan, U., & Erdoğmuş, A. (2021). Endüstriyel Robot
Hareket Planlama Algoritmaları Performans
Karşılaştırması. Journal of Scientific, Technology and
Engineering Research, 2(2), 31-45.
https://doi.org/10.53525/jster.979689

