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Nowadays, camera-based perception is most popular topic in robotic systems. 
Verification of camera-based perception systems are crucial and difficult with current 
tools and methods. This study proposes Camera Fault Injection Tool (CamFITool), which 
enables different kind of fault injection methods to RGB and TOF cameras in order to 
perform verification and validation activities on robotic systems. Besides, Fault Injected 
Image Database which is created by CamFITool is introduced. In addition, the study 
guides to readers to create new datasets by injecting faults into existing image libraries 
or camera streams with CamFITool. CamFITool, an open source camera fault injection 
tool, has been proposed as a critical tool for assessing the safety and security of fault 
tolerant systems. Also, a fault injected image dataset created by CamFITool for 
verification of camera-based perception studies in robotic systems is given. 

 

ROBOTİK SİSTEMLERDE KAMERA TABANLI ALGININ DOĞRULANMASI İÇİN HATA 
ENJEKSİYON ARACI VE VERİ KÜMESİNİN GELİŞTİRİLMESİ 

Anahtar Kelimeler Öz 
Robotik 
Doğrulama 
Hata Enjeksiyonu 
Veri Kümesi 
Kamera Tabanlı Algı 

Günümüzde robotik sistemlerde kamera tabanlı algılama en popüler konulardan biridir. 
Mevcut araç ve yöntemlerle kamera tabanlı algılama sistemlerinin doğrulanması da çok 
önemli ve zordur. Bu çalışma, robotik sistemlerde doğrulama ve doğrulama faaliyetlerini 
gerçekleştirmek için RGB ve TOF kameralara farklı türlerde hata enjeksiyon yöntemleri 
sağlayan Kamera Hatası Enjeksiyon Aracını (CamFITool) önermektedir. Ayrıca 
CamFITool tarafından oluşturulan hata enjekte edilmiş resim veri kümesi 
tanıtılmaktadır. Buna ek olarak çalışma, CamFITool ile mevcut görüntü kitaplıklarına 
veya kamera akışlarına hatalar enjekte ederek yeni veri kümeleri oluşturmak için 
okuyuculara rehberlik etmektedir. Sonuç olarak, hataya dayanıklı sistemlerin emniyet ve 
güvenliğini değerlendirmek için kritik bir araç olan açık kaynaklı bir hata enjeksiyon 
aracı olan CamFITool önerilmiştir. Ayrıca robotik sistemlerde kamera tabanlı algılama 
çalışmalarının doğrulanması için CamFITool tarafından oluşturulan hata enjekte 
edilmiş görüntü veri kümesi verilmiştir. 
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1. Introduction 

The robotics industry has evolved over the years and 
has become a growing market share. According to the 
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2021 report of World Robotics (IFR, 2021), it was stated 
that the use of robots in factories around the world 
increased by 10 percent compared to the previous year 
and reached 3 million. It is thought that this rate will 
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reach 15 percent in the 2022 and the robotics industry 
will become widespread with an increasing momentum. 
Considering the sectoral distribution of robots sold, it 
can be seen that the use of robots in heavy and medium 
industry is at a considerable point (see Figure 1). 

 

Figure 1. Annual installations of industrial robots by 
customer industry (World Robotics, 2021) 
 
The widespread use of robotic systems in the industry 
also makes it possible for errors that may arise in 
robotic systems to have critical consequences. Since the 
importance of the software has become much more 
critical in the robotic systems and the anomalies that 
may occur in the systems are mostly possible to be 
realized by the software, thus it is crucial to test the 
system with fault injection into the system. Sensors used 
in robotic systems and data transfer between robots 
must be carried out safely. The rapid progress of robotic 
communication technologies has led to an increase in 
the data used in this field. The safely use and processing 
of increasing data causes situations that force designers 
and users to take instantaneous decisions faster. The 
basis of its safely use is to quickly find and intervene the 
anomalies that develop during the transfer. For this 
determination, it is critical to ensure validation and 
verification of systems. Implementation of an anomaly 
detection system based on artificial intelligence can be a 
solution to this verification (Kendall, Grimes and Cipolla, 
2015; Osadcuks, Pudzs, Zujevs, Pecka and Ardavs, 2020; 
Park and Mu Lee, 2017).  

Studies related to this study are given below. In Chapter 
2, information is given about the literature that the 
robotic software (SRVT) studied. In the Chapter 3, 
details about SRVT, the environment and methods used 
by SRVT and CamFITool are given. Conclusion and 
future work are in Chapter 4. 

 
2. Literature 

Fault injection is an important methodology for 
assessing the reliability of software and associated 
system. Researchers, engineers, etc., who are familiar 

with software, develop many new methods that can be 
applied both in hardware and in software to injections 
that may cause faults in software into the relevant 
systems. The situations seen among these hardware and 
software methods under development are as follows: 

 Fault injection zones accessible to software 
developers and researchers, 

 The cost of the injection made, 
 The level of corruption caused by the fault 

created in the system, etc. 

are factors. With fault injection into the hardware, faults 
can be created on chip pins and internal components 
such as circuits and registers that cannot be addressed 
by software. On the other hand, in fault injection into the 
software, it is possible to produce a direct change at the 
level of the general state of the software. Given these 
situations, it is possible to use hardware methods to 
evaluate low-level fault detection and masking 
mechanisms, and software methods to test higher-level 
mechanisms (Hsueh, Tsai and Iyer, 1997). 

Studies have been carried out on many software and 
interfaces to create this type of fault injection. GemFI 
(Parasyris, Tziantzoulis, Antonopoulos and Bellas, 
2014) by Parasyris and his team, GOOFI (Aidemark, 
Vinter, Folkesson and Karlsson, 2001) by Aidemark and 
his team, SASSIFI (Hari, Tsai, Stephenson, Keckler and 
Emer, 2017) by Hari and his team, and MODIFI 
(Svenningsson, Vinter, Eriksson and Törngren, 2010) by 
Svenningsson and his team are just a few of the 
important fault injection tool studies in the literature. All 
these studies are studies that enable fault injection for 
various software, simulation or hardware systems, thus 
enabling the testing of fault tolerance and weaknesses of 
the systems. Among the aforementioned sample tools, 
only the GemFI tool has image fault injection. Since this 
injection is not one of the main purposes of the study, it 
can be said that CamFITool's purpose of injecting fault 
into the image is more specific. 

An anomaly in a system refers to the occurrence of the 
expected response, events, or other elements in a 
dataset that cannot usually be detected by a human 
expert. Such anomalies are usually caused by structural 
errors in the system, and these errors can turn into 
critical problems for the system ("Anomaly Detection, A 
Key Task for AI and Machine Learning, Explained", 
2019). For this type of artificial intelligence systems, 
data sets consisting of data that are revealed as a result 
of the correct and incorrect operation of the mechanism 
that occurs anomaly can be used. 

Anomalies can be seen in many different areas. For 
example, it is an anomaly to see plants with weak or 
faulty mutations during the development of plants, and 
research has been carried out to detect them through 
datasets created with samples collected from these 
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plants (Scharr, Minervini, Fischbach and Tsaftaris, 
2014). Human actions are also an area where anomaly 
investigation can be done. An artificial intelligence is 
supported by the data sets created to detect the 
differences in these actions and anomaly detection can 
be made (Rezazadegan, Shirazi, Upcrofit and Milford, 
2017). Examples like this and researches show the 
importance of creating appropriate resources for 
anomaly detection using data sets. 

Datasets provide accessible comparisons to improve 
algorithms and test new techniques. Recent 
developments in the fields of artificial intelligence and 
deep learning have accelerated with the use of data sets 
that are being developed. Today, data sets contain more 
pictures with the proliferation of researches and their 
use in different fields is becoming more common day by 
day. 

Deep behavioral learning is one of the research areas 
where the use of data sets has an important place. In this 
area, the characteristics of the same people are 
determined and learned in different data sets (Su, 
Zhang, Xing, Gao and Tian, 2016), the use of object 
recognition features and typical movements such as 
describing the actions of people from video recordings 
(Per, Kenk, Mandeljc, Kristan and Kovacic, 2012, p. 3; 
Russell, Torralba, Murphy and Freeman, 2008; Wu, 
Oreifej and Shah, 2011) and recognizing human mobility 
in an environment with autonomously moving robots 
(Rezazadegan et al., 2017). 

Datasets from images collected from the Web were also 
created to be used for analysis and validation in 
scientific research (Deng et al., 2009; Everingham, Van 
Gool, Williams, Winn and Zisserman, 2010; Osadcuks et 
al., 2020; Torralba, Fergus and Freeman, 2008). Such 
datasets are important studies created to collect and 
classify many different kinds of pictures, to be a 
resource that can be used for other scientific research 
and to be published openly for the use of researchers. As 
an example of this situation, Torralba et al. The large 
data set (Torralba et al., 2008) created by collecting 
about 80 million images and listing them in the 
dictionary dataset by tagging each image can be shown. 

Datasets are used in these studies as augmented reality 
(Leitner, Dansereau, Shirazi and Corke, 2015; Noguchi 
and Harada, 2020; Orchard, Jayawant, Cohen and 
Thakor, 2015), robotics (Ravi, Shankar, Frankel, 
Elgammal and Iftode, 2007), autonomous drone 
navigation (Padhy, Verma, Ahmad, Choudhury and Sa, 
2018), forensic techniques (Gloe and Böhme, 2010), 
botany (Scharr et al., 2014), data classification (Nene, 
Nayar and Murase, 1996; Xiao, Hays, Ehinger, Oliva and 
Torralba, 2010), traffic control (Fregin, Muller, Krebel 
and Dietmayer, 2018), it has also been used in scientific 
studies such as user location detection (GAZEBO 
website., 2021). In addition, it is seen that more complex 

data sets are created and presented to scientists with 
the active use of data sets for issues such as editing and 
correction of distorted images (Park and Mu Lee, 2017) 
and the progress of studies in these areas. 

Camera Fault Injection Tool (CamFITool) is an open-
source tool to make necessary fault injections to robot 
cameras in order to take action before such robotic 
system faults occur. By injecting these faults into robot 
cameras, it is aimed to create a dataset that can be used 
for anomaly detection that may occur in robotic 
systems. For this purpose, fault injected image datasets 
created from images obtained by fault injections using 
CamFITool. With CamFITool, such datasets can be 
created, as well as injecting real-time faults into the 
camera stream and observing the system's response to 
it. 

In this study, offline and realtime fault injections were 
made using CamFITool and the details of 10000-image 
dataset, which were created by injecting fault into the 
cameras in the robotic environment described in the 
third section, are explained. It also details how 
CamFITool was developed, in which environments it 
was tested, and a dataset generated by this software that 
provides verification and validation on robot cameras. 
Python-based CamFITool has been tested on Simulation 
Based Robot Verification Tool (SRVT), a robotic system 
running on the ROS Noetic system (Yayan and 
Erdoğmuş, 2021). These tests were performed on the 
robot cameras of the ROKOS system (Yayan & 
Erdoğmuş, 2021) simulated in SRVT. Additionally, it has 
been open sourced to make up for the lack of such a fault 
injection testing tool in the ROS environment. 

 
3. Methods 

In this section, the methods and application area of the 
study are explained. In addition, in this study, article 
research and publication ethics were complied with. 

 
3.1. Experimental Environment 

ROKOS (OTOKAR Robot Control System) shortens the 
quality control period of the product with its innovative 
visual inspection techniques and makes the presence-
absence control of the parts that make up the bus body-
in-white more sensitive. The basis of this work is to 
reveal a production system that performs better in 
terms of fault tolerance to achieve better quality control 
(Figure 2). With its cartesian robot and camera sensor 
system, ROKOS can fully automatically control the 
presence of 2500-3000 body parts that make up a bus 
body-in-white. 
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Figure 2. Robot inspection system for quality control 
(ROKOS) 

 

Thanks to the Simulation-based Robot Verification 
Testing (SRVT) tool, the ROKOS system has been 
realistically transferred to the Gazebo (Figure 4) 
simulation environment. In the simulation environment, 
ROKOS can perform its tasks as in the real environment 
and can take images from the bus body-in-white 
transferred to the simulation environment in the same 
way (Figure 3). (Yayan and Erdoğmuş, 2021). 

 

Figure 3. Image of one of the ROKOS robot arms in the 
SRVT simulation environment 

 

ROKOS is converted into the SRVT environment, 
designed to run on versions of ROS Noetic (Quigley et al., 
2009) and GAZEBO 11 (GAZEBO website., 2021) (Figure 
4). Moveit (Chitta, Sucan and Cousins, 2012) software is 
used as the planner in SRVT. 

 

 

Figure 4. ROKOS system and bus body-in-white 
modelled on the GAZEBO simulation environment 

 

 

Figure 5. SRVT simulation architecture 

 

 

Figure 6. SRVT system architecture 
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The main architecture of the SRVT consists of five parts 
(Figure 6). These sections are; 

1) Gazebo 

The ROKOS robot arms and bus body-in-white are 
remodeled in the simulation environment of Gazebo 11. 
It is used as the simulation engine of SRVT. 

2) Image Server  

The ROS node, which enables ROKOS robot arms to take 
camera images from the bus body-in-white, is a system 
called Image Server. When this ROS node receives the 
"take photo" command by the ROS SMACH node, it 
records the photo in a folder with a special naming 
format defined for it. This node is manipulated at the 
execution of CamFITool's fault injections. In Figure 7, 
image examples from SRVT are given. 

 

Figure 7. RGB and TOF image examples 

 

3) Moveit  

It is the planning element of the SRVT system which 
contains trajectory planners for robot arms. 

4) Task Server  

The Task Server node determines the coordinates which 
are visited and photo taken and sent it to the SMACH 
node. 

5) SMACH  

The SMACH node is a finite state machine for controlling 
the behaviors of SRVT. 

 
3.2. Development of Camera Fault Injection Tool  

This study proposes an open-source Camera Fault 
Injection Tool (CamFITool), which enables state-of-art 
fault injection methods to RGB and TOF cameras in 
order to perform verification and validation activities on 
robotic systems. This fault injection tool is written in 
Python and Qt5 for interface. The CamFITool is also ROS 
Noetic compatible (Figure 8). 

 

Figure 8. CamFITool main screen 

 
CamFITool makes it possible to inject faults into camera 
stream or into images folder. In addition, datasets that 
can be used for artificial intelligence based anomaly 
detection studies. With CamFITool, an interface has 
been created that can be used in applications such as 
testing, verification, validation activities. 

 
3.2.1. CamFITool Interface 

CamFITool has an interface that could be apply faults in 
two different types (Offline and Realtime). When 
switching to these types, the interface changes 
accordingly. CamFITool, works in a single page makes it 
simple to use and easy to understand. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. File selection screen of CamFITool interface 
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Figure 9 shows the tabs on the left side of the CamFITool 
interface where the folders to be processed. In Figure 9-
1, The Image Folders section could be seen for image 
folder selection. It is possible to make this selection with 
the button (Figure 9-4). With the "Fault Implementation 
Rate" section in Figure 9-3, it is possible to select what 
percentage of the images in the normal image folder will 
be injected with faults. 

 

Figure 10. Normal image directory selection screen 

 
In Figure 9-2, The FI Image Folders section is given and 
fault injected images could be find here. It is possible to 
make this selection with the button indicated by (Figure 
9-5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Camera Fault Configuration menu 

 
Figure 11 shows the central part of the CamFITool 
interface, the Camera Fault Configuration menu. This 
menu is designed for the user to set the desired type of 
fault. The descriptions of the selection sections are as 
follows: 

Fault Injection Type: In this feature, the user selects 
the fault application type. It has two options, Offline and 
Realtime. When Offline is selected, the last two options 
are deleted from the screen. 

Camera Type: The camera type (RGB or TOF) could be 
selected with this feature for fault injection. For both 
options, different fault types are presented in the Fault 
Type section. 

Fault Type: In this feature, the user selects the type of 
fault to be applied. There are Open, Close, Erosion, 
Dilation, Motion-blur and Gradient fault types for RGB 
camera, Salt&Pepper, Gaussian and Poisson fault types 
for TOF camera. 

Fault Rate: It is the feature where the user determines 
the fault injection rate. The rate is directly proportional 
to the degradation of the image. 

Robot Camera: It is the feature where the user selects 
the type of camera stream to be apply a fault. 

ROS Camera Topic: It is the feature where the user 
selects the relevant topic of the ROS camera stream to be 
inject a fault. 

Camera Stream Frequency: This feature is related with 
ROS camera topic and could be used in realtime fault 
application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12. CamFITool interface’s application and 
information screen 

 
Figure 12 shows the rest of CamFITool. In this section, 
there is an information tab (Figure 12-2), which 
contains information about the processes taking place in 
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CamFITool, and the FI Plans tab (Figure 12-3), where the 
records of the fault configurations we have applied are 
displayed. In addition, there are buttons that provide 
interface control. The features of these buttons are as 
follows: 

(Figure 12-1) Robot Cam: It is the button that allows the 
snapshot of the ROS camera written in the Topic section 
to be displayed on the screen. 

(Figure 12-2) Information Tab:  Information tab 
contains information about the processes taking place in 
CamFITool. 

(Figure 12-3) Fault Injection Plans Tab: FI Plans tab 
where the records of the fault configurations we have 
applied are displayed. 

(Figure 12-4) Randomize: This is the option that allows 
the offline fault application to be applied to a random 
number of images. 

(Figure 12-5) Apply Fault: It is the button that starts the 
fault injection of with the fault configuration set by the 
user. 

(Figure 12-6) Save FI Plan: This is the button that allows 
the user to save the fault configuration set. Saved plans 
can be viewed in the FI Plan tab. 

(Figure 12-7) Show FIP Details: This is the button used 
for the user to view the details of the recorded fault 
plans in the Info tab. The user can select the plan who 
wants to see from the FI Plans tab and click this button 
to view the details. 

(Figure 12-8) About: This is the button that displays 
CamFITool's tag information. 

(Figure 12-9) Help: This is the button that opens the 
help section prepared for CamFITool. 

 
3.3. Construction of Fault Injected Image Dataset 
The faulty image dataset is an image library that 
contains samples of faulty images that a robot camera 
has recorded as a result of various faults it may 
encounter. Possible camera malfunctions, such as the 
camera recording the faulty images at that time and the 
system continuing to work on these faulty images, can 
cause serious problems in the system. CamFITool is 
designed to simulate such failures, collect faulty picture 
outputs of the systems as a result of these failures, and 
create faulty output source for artificial intelligence 
systems to be developed to detect these problems. 
CamFITool can inject faults into the SRVT or any other 
camera-based detection system, corrupting the images 
that the system is supposed to record with various 
image degradation techniques. The faulty image dataset 
mentioned in this study consists of normal images and 
degraded images recorded by the SRVT system from 
ROKOS cameras running on Gazebo (Figure 13). 

 

 

Figure 13. Camera fault injection outcome examples 

 
The dataset was created using two different application 
types to test all the fault injection features of CamFITool 
and to obtain different outputs. The first dataset was 
created from fault injected and normal images obtained 
by applying realtime fault injection to the cameras on 
the robot arms operating in the SRVT. The second 
dataset was created from fault injected images obtained 
by offline fault injection to the images taken by the SRVT. 
Dataset creation processes with these two fault injection 
application types are explained in the following sections. 

 
3.3.1. Realtime Fault Injected Image Dataset from 
SRVT Simulation Environment 

In order to create this dataset, fault injection was 
performed by CamFITool to the RGB image nodes of two 
robot cameras running on the SRVT system. While 
injected 6 types of image faults defined in accordance 
with RGB cameras, the system continued to work and 
save pictures. The tasks were repeated until a certain 
number of pictures of each fault type were recorded 
(Erdogmus, Karaca and Yayan, 2021). 

CamFITool allows us to create a dataset of 5000 normal 
and 5000 fault injected images (see Table 1) from the 
SRVT system. In addition, users can create such datasets 
in desired configurations and camera-based perception-
based environments by using CamFITool. It has been 
observed that there is no such tool in ROS yet. 
CamFITool makes use of a software fault injection 
system that works directly in compatible with ROS 
(CamFITool ROS Wiki, 2021). 
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Table 1 
RGB Camera Fault Types 

Fault Method Description Example Image 

Dilation It is used to enlarge 
the highlighted parts 
of an image 
(Jankowski, 2006). 
There are 476 of 
these faults injected 
pictures in the 
dataset. 

 

Erosion It is used to reduce 
the highlighted part 
of an image 
(Jankowski, 2006). 
There are 637 of 
these faults injected 
images in the dataset. 

 

Open It is created by first 
etching and then 
spreading an image 
(Acton and 
Mukherjee, 2000). 
There are 640 of 
these faults injected 
images in the dataset. 

 

Close It is created by first 
spreading and then 
etching an image 
(Acton and 
Mukherjee, 2000). 
There are 841 of 
these faults injected 
images in the dataset. 

 

Gradient It is created by 
subtracting the 
etched version from 
the smeared version 
of an image (Larnier, 
Fehrenbach and 
Masmoudi, 2012). 
There are 632 of 
these faults injected 
images in the dataset. 

 

Motion-blur It is created by 
providing blur in an 
image (Ji and Liu, 
2008). There are 687 
of these faults 
injected images in the 
dataset. 

 

Partialloss It is created by 
destroying a specified 
part of an image. 
There are three 
different partialloss 
types: horizontal, 
vertical and odd-
even. There are 1087 
of these faults 
injected pictures in 
the dataset.  

 

 
The dataset was created by extracting the fault injected 
and normal ones from the pictures collected while the 
SRVT system was running. All images have been tagged 
with standard SRVT tags. This is because the system also 
saves fault injected pictures as if they were normal 
pictures for inspection processes. The created dataset 
could be used to train the artificial intelligence that will 
detect the fault injected pictures of the system and to 
create this anomaly detection system. 

 
3.3.2. Offline Fault Injected Image Dataset from 
SRVT Created Images 

To use CamFITool's offline fault injection feature, an 
image dataset of images recorded by TOF cameras in the 
SRVT was used. TOF camera images captured by the 
SRVT were injected by CamFITool with faults of three 
types (see Table 2). As in the studies described above, 
different types of fault-injected images can be obtained, 
and datasets can be created from these images. 

The listed image fault types can be examined in two 
different classes (see Table 3) as virtual environment 
faults and real environment faults. Virtual environment 
faults like Dilation/Erosion, Open/Close, Gradient, 
InjectionPayload are artificial image errors that can only 
be revealed in the simulation environment and through 
software (OpenCV Python libraries, etc.). These faults 
can be counted as virtual environment faults. Such faults 
are not seen in real environment/hardware with non-
software methods. 
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Table 2 
TOF Camera Fault Types 

Fault Method Description Example Image 

Gaussian Gaussian noise is 
statistical noise with 
a probability density 
function equal to the 
normal distribution, 
also known as the 
Gaussian distribution. 
In other words, the 
values that the noise 
can take are Gaussian 
distribution (Figure 
17 (Barbu, 2013).  

 

Poisson Shot noise or Poisson 
noise is a type of 
noise that can be 
modeled with a 
Poisson process. In 
electronics, 
gravitational noise is 
due to the discrete 
nature of electric 
charge. Shot noise 
also occurs in photon 
counting in optical 
devices where the 
shot noise is related 
to the particle nature 
of light (Figure 18) 
(Blanter and Büttiker, 
2000; Schottky, 
2018). 

 

Salt&Pepper Salt and pepper noise 
is a type of noise that 
can sometimes be 
observed. Also known 
as impulse noise. This 
noise can be caused 
by sharp and sudden 
disturbances in the 
image signal. It 
presents itself as 
sparsely occurring 
white and black 
pixels (Figure 19) 
(Rosin and 
Collomosse, 2012).  

 

 
Real environment faults like (Motion-blur, Partialloss, 
Freeze/Slow, Random, Gaussian, Poisson, Salt&Pepper)  
(or camera / hardware faults), on the other hand, are 
image faults that may occur in real environment 
cameras, not only through software, but also due to 
problems that may occur in the camera hardware. These 
faults can be counted as real environment faults. For 
example, a Poisson noise may be generated in electronic 
circuits by random fluctuations of electric current in a 
DC current, which is caused by the fact that the current 
is actually the flow of discrete charges (electrons). This 
fault may cause related corruption in camera hardware. 

Table 3 
General Camera Fault Types/Methods  

Fault Types 
Camera 

Types 

Virtual/Real En-
vironment Fault  

Dataset 

Dilation RGB Virtual X 

Erosion RGB Virtual X 

Open RGB Virtual X 

Close RGB Virtual X 

Gradient RGB Virtual X 

Motion-blur RGB/TOF Real X** 

Partialloss RGB/TOF Real X** 

Freeze RGB Real  

Slow RGB Real  

InjectionPayload RGB/TOF Virtual  

Random RGB/TOF Real  

Gaussian TOF Real X* 

Poisson TOF Real X* 

Salt&Pepper TOF Real X* 

‘**' In marked these ones, only RGB samples are available in the 
dataset.  

‘*’ In marked these ones will be added to the dataset. 

 
4. Conclusion and Future Works  

In this study, CamFITool, an open-source fault injection 
tool, which is a critical tool for assessing of fault tolerant 
systems’ safety and security, is proposed. In addition, 
CamFITool can apply faults not only to the Realtime 
camera stream, but also to the offline recorded image 
folders. As a result, a fault injected image dataset for the 
camera-based perception studies in robotic systems, 
and to help determine the fault tolerances of the systems 
is published. In addition, users can create such datasets 
in desired configurations and camera-based perception-
based environments by using CamFITool. It has been 
observed that there is no such tool in ROS or robotics 
community yet. 

 In the future works, it is planned to develop the 
CamFITool interface and continue to add new features. 
The interface is completely open source and 
developments can be followed in the current version of 
the interface, Github repository (CamFITool Github 
repository, 2021). It is also planned to work on a deep 
learning-based anomaly detection system that will 
detect fault injected pictures in created datasets by 
CamFITool. 
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