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Abstract

The concept of generalized KKM maps was initiated by Kassay-Kolumbán in 1990 and Chang-Zhang in 1991.
Recently, Balaj and his colleagues extended generalized KKM maps w.r.t. a multimap to weak KKM maps
and generalized weak KKM maps w.r.t. a multimap, and applied them to various problems in the KKM
theory. However, their results are mainly concerned within the realm of topological vector spaces. Our aim
in this article is to extend some of them to abstract convex spaces. Some related facts are also discussed.
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1. Introduction

In 1929, Knaster, Kuratowski, and Mazurkiewicz (simply, KKM) obtained an intersection theorem which
is known to be equivalent to the Brouwer �xed point theorem in 1912, the weak Sperner combinatorial lemma
in 1928, and many important theorems. The KKM theory is �rst named by ourselves in 1992 as the study
of applications of extensions or equivalents of the KKM theorem. Nowadays the theory is mainly concerned
with abstract convex spaces and (partial) KKM spaces due to ourselves, and became a large scale logical
system called the Grand KKM Theory; see [26] in 2021.

One of the topics in the KKM theory is related to generalized KKM maps initiated by Kassay-Kolumbán
in 1990 [16] and Chang-Zhang in 1991 [11]. Since then many authors studied generalized KKM maps on
various types of spaces and applied them to extend or re�ne well-known previous results. In fact, it has been
followed by Chang-Ma in 1993, Yuan in 1995, Cheng in 1997, Tan in 1997, Lin-Chang in 1998, Lee-Cho-Yuan
in 1999, Kirk-Sims-Yuan in 2000 for various classes of abstract convex spaces; see [24]. All of those authors
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applied their results on KKM type theorems and others to extend or re�ne well-known previous results in
the KKM theory; for example, variational or quasi-variational inequalities, �xed point theorems, the Ky
Fan type minimax inequalities, the von Neumann type minimax or saddle point theorems, Nash equilibrium
problems, and others.

In our previous review [24], we gave a uni�ed account for generalized KKM maps on abstract convex
spaces in the previous works of Kim-Park [17], Lee [18], and Park-Lee [27]. We were mainly concerned with
results closely related to the KKM type theorems and characterizations of generalized KKM maps on various
types of abstract convex spaces. In short, we showed that generalized KKM maps can be reduced to the
usual KKM maps in our abstract convex spaces. Some related topics were also added in [24].

Recently, Balaj and his colleagues extended generalized KKM maps w.r.t. a multimap to weak KKM
maps and generalized weak KKM maps w.r.t. a multimap, and applied them to various problems in the
KKM theory; see [1, 4, 5, 7, 8]. However, their works are mainly concerned within the realm of topological
vector spaces.

Recall that we have recently established the Grand KKM Theory mainly on abstract convex spaces; see
[26]. Since the recent results of Balaj and his colleagues in [1, 4, 5, 7, 8] are on topological vector spaces or
G-convex spaces, it is better to extend them to abstract convex spaces. Our aim in this article is simply to
try this task.

This article is organized as follows: Section 2 devotes to preliminary for concepts on abstract convex
spaces, partial KKM spaces and their subclasses in our previous works. In Section 3, we extend the concepts
of generalized KKM maps, weak KKM maps, and generalized weak KKM maps to the realm of abstract
convex spaces. Sections 4 is to improve certain facts on weak KKM maps mainly in Balaj [5] in 2004.

Section 5 deals with generalized equi-KKM families of Balaj [6] in 2010. In Section 6, we deal with
variational problems of Agarwal-Balaj-O'Regan [1] in 2016. Section 7 concerns with the works of Agarwal-
Balaj-O'Regan [2, 3, 4] in 2017-19 on weak KKM maps.

In Section 8, we extend some key results on generalized weak KKM maps due to Balaj [7] in 2021 to the
corresponding ones in abstract convex spaces. Finally in Section 9, we recall some basic known results and
indicate the di�culty of extending Balaj's results to abstract convex spaces.

Note that terminology in the original sources di�erent from our current usage is preserved in the present
article. This may not give any confusion to the readers.

2. Preliminaries on Abstract Convex Spaces

For the concepts on abstract convex spaces, partial KKM spaces and their subclasses, we follow [22, 23,
25, 26] with some modi�cations and the references therein:

De�nition 2.1. Let E be a topological space, D a nonempty set, ⟨D⟩ the set of all nonempty �nite subsets
of D, and Γ : ⟨D⟩ ⊸ E a multimap with nonempty values ΓA := Γ(A) for each A ∈ ⟨D⟩. The triple (E,D; Γ)
is called an abstract convex space whenever the Γ-convex hull of any D′ ⊂ D is denoted and de�ned by

coΓD
′ :=

⋃
{ΓA : A ∈ ⟨D′⟩} ⊂ E.

A subset X of E is called a Γ-convex subset of (E,D; Γ) relative to some D′ ⊂ D if for any N ∈ ⟨D′⟩, we
have ΓN ⊂ X, that is, coΓD

′ ⊂ X.

De�nition 2.2. Let (E,D; Γ) be an abstract convex space. If a multimap G : D ⊸ E satis�es

ΓA ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ ⟨D⟩,

then G is called a KKM map.

De�nition 2.3. The partial KKM principle for an abstract convex space (E,D; Γ) is the statement that,
for any closed-valued KKM map G : D ⊸ E, the family {G(y)}y∈D has the �nite intersection property. The
KKM principle is the statement that the same property also holds for any open-valued KKM map.
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An abstract convex space is called a (partial) KKM space if it satis�es the (partial) KKM principle, resp.

The (partial) KKM principle has a large number of equivalent formulations and, for example, the following
(0) and (1) are equivalent:

(0) The KKM principle: For any closed-valued [resp. open-valued] KKM map G : D ⊸ E, the family
{G(z) : z ∈ D} has the �nite intersection property.

(I) The Fan matching property: Let S : D ⊸ E be a map satisfying
(i) S(z) is open [resp. closed] for each z ∈ D; and
(ii) E =

⋃
z∈M S(z) for some M ∈ ⟨D⟩.

Then there exists an N ∈ ⟨M⟩ such that

ΓN ∩
⋂
z∈N

S(z) ̸= ∅.

There are plenty of examples of KKM spaces; see [25] and the references therein.

Now we have the following diagram for subclasses of abstract convex spaces (E,D; Γ):

Simplex =⇒ Convex subset of a t.v.s. =⇒ Lassonde type convex space

=⇒ Horvath space =⇒ G-convex space =⇒ ϕA-space

=⇒ KKM space =⇒ Partial KKM space

=⇒ Abstract convex space.

De�nition 2.4. Let (E,D; Γ) be an abstract convex space and Z a topological space. For a multimap
F : E ⊸ Z with nonempty values, if a multimap G : D ⊸ Z satis�es

F (ΓA) ⊂ G(A) :=
⋃
y∈A

G(y) for all A ∈ ⟨D⟩,

then G is called a KKM map with respect to F . A KKM map G : D ⊸ E is a KKM map with respect to
the identity map 1E .

A multimap F : E ⊸ Z is called a KC-map [resp. a KO-map] if, for any closed-valued [resp. open-valued]
KKM map G : D ⊸ Z with respect to F , the family {G(y)}y∈D has the �nite intersection property. We
denote

KC(E,Z) := {F : E ⊸ Z | F is a KC-map}.

Similarly, KO(E,Z) is de�ned.

3. Various types of generalized weak KKM maps

In the KKM theory, many authors adopted the concept of generalized KKM maps and applied it to
extend or re�ne well-known previous results. In this section, we give a uni�ed account for such maps in
abstract convex spaces. Our results include the KKM type theorems and characterizations of generalized
KKM maps.

From now on all numbers attached to De�nitions, Theorems and other statements are the same one in
the original sources, and the one attached * marks are our corresponding generalizations.

The following de�nition is given in Balaj [7]:

De�nition 3.1. ([7]) Let X be a convex set in a vector space, let Z be a nonempty set and let S, T : X ⊸ Z
be two set-valued mappings. We say that:
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(i) S is a generalized KKM mapping w.r.t. T if for each nonempty �nite subset {x1, . . . , xn} of X,

T (co{x1, . . . , xn}) ⊂
n⋃

i=1

S(xi).

(ii) S is a weak KKM map w.r.t. T (see [5]) if for each nonempty �nite subset {x1, . . . , xn} of X, and
any x ∈ co{x1, . . . , xn},

T (x) ∩ (

n⋃
i=1

S(xi)) ̸= ∅.

We can extend these de�nitions as follows:

De�nition 3.1.* Let (E,D; Γ) be an abstract convex space and Z a set [or a topological space]. For two
multimaps F : E ⊸ Z and G : D ⊸ Z with nonempty values,

(i) G is a KKM map w.r.t. F if for each nonempty �nite subset {x1, . . . , xn} of D,

F (Γ{x1, . . . , xn}) ⊂
n⋃

i=1

G(xi).

(ii) If a multimap G : D ⊸ Z satis�es

F (x) ∩G(A) ̸= ∅ for all A ∈ ⟨D⟩ and x ∈ ΓA,

then G is called a weak KKM map w.r.t. F . A KKM map G : D ⊸ E is a weak KKM map w.r.t. the
identity map 1E .

Balaj [7] introduced a new concept, more general than those mentioned above, by the following de�nition:

De�nition 3.2. ([7]) Let X and Z be two nonempty sets, let Y be a convex set in a vector space and let
S : X ⊸ Z, T : Y ⊸ Z be two set-valued mappings. We say that S is a generalized weak KKM mapping
w.r.t. T if for each nonempty �nite subset {x1, . . . , xn} of X there exists a subset {y1, . . . , yn} of Y such
that for each nonempty index set I ⊂ {1, . . . , n} and any y ∈ co{yi : i ∈ I},

T (y) ∩ (
⋃
i∈I

S(xi)) ̸= ∅.

We can extend this de�nition as follows:

De�nition 3.2.* Let X and Z be two nonempty sets, and (E,D; Γ) be an abstract convex space. For a
multimap F : E ⊸ Z with nonempty values and a multimap G : D ⊸ Z, we say that F is a generalized weak
KKM map w.r.t. G if for each nonempty �nite subset {x1, . . . , xn} of X there exists a subset {y1, . . . , yn} of
D such that for each nonempty index set I ⊂ {1, . . . , n} and any y ∈ Γ{yi : i ∈ I},

F (y) ∩ (
⋃
i∈I

G(xi)) ̸= ∅.

The following characterization of generalized KKM maps given in [24] extends many other previously
given versions by other authors:

Theorem 3.3. Let (X,D; Γ) be a partial KKM space [resp. KKM space], Y a nonempty set, and T : Y ⊸ X
a map with closed [resp. open] values.

(i) If T is a generalized KKM map, then the family of its values has the �nite intersection property.
(ii) The converse holds whenever X = D and Γ{x} = {x} for all x ∈ X.
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4. Weak KKM maps [5]

In 1998, Lin, Ko and Park [19] introduced the concepts of generalized G-KKM mapping (w.r.t. T ) and
weakly G-KKM mapping (w.r.t. T ). Relating to this, they obtained some intersection results and minimax
inequalities of Ky Fan type. They also gave a new class of mappings with G-KKM property and a new Sion
type minimax inequality.

Later in 2008, Park [21] obtained variants of the KKM principle for KKM spaces related to weak KKM
maps and indicated some applications of them. These results properly generalize the corresponding ones in
G-convex spaces and ϕA-spaces. Consequently, results by Balaj in 2004, Liu in 1991, and Tang et al. in 2007
can be properly generalized and uni�ed.

All results in Park [21] are stated for KKM spaces and they can be extended to partial KKM spaces.
We recall some earlier works of Balaj [5].
The following extension to G-convex spaces of Fan's matching theorem is well known. For instance, it is

equivalent to the assertion (i) of Theorem 1 in [21].

Lemma 1. ([5]) Let (X,D; Γ) be a G-convex space, A ∈ ⟨D⟩ and {Mz : z ∈ A} an open or closed cover of
X. Then there exists a nonempty subset B of A such that Γ(B) ∩

⋂
{Mz : z ∈ B} ≠ ∅.

Lemma 1.* Lemma 1 holds for a partial KKM space (X,D; Γ) instead of a G-convex space.

Note that this is simply the Fan matching property.

Theorem 2. ([5]) Let (X,D; Γ) be a compact G-convex space, Y a nonempty set and T : X ⊸ Y, S : D ⊸ Y
two maps satisfying the following conditions:

(i) S is weakly G-KKM map w.r.t. T;
(ii) for each z ∈ D the set {x ∈ X : T (x) ∩ S(z) ̸= ∅} is closed.

Then there exists an x0 ∈ X such that T (x0) ∩ S(z) ̸= ∅ for each z ∈ D.

This is extended to KKM spaces in Park [21, Theorem 4.3]. But we have more general one as follows:

Theorem 2.* Theorem 2 holds for a partial KKM space (X,D; Γ) instead of a G-convex space.

Proof. Suppose the conclusion does not hold and for every z ∈ D put

Mz = {x ∈ X : T (x) ∩ S(z) = ∅}.

Then the family {Mz : z ∈ D} is an open cover of X and since X is compact there is a set A ∈ ⟨D⟩ such
that

⋃
{Mz : z ∈ A} = X. By Lemma 1* there exists a nonempty subset B of A and a point

x0 ∈ Γ(B) ∩
⋂

{Mz : z ∈ B}.

Since S is weak KKM map w.r.t. T , by x0 ∈ Γ(B) we get T (x0) ∩ S(B) ̸= ∅. On the other hand, since
x0 ∈

⋂
{Mz : z ∈ B}, we have T (x0) ∩ S(z) = ∅ for each z ∈ B, hence T (x0) ∩ S(B) = ∅. The obtained

contradiction completes the proof. 2

Remark 1. Condition (ii) in Theorem 2* is ful�lled if Y is a topological space, T is upper semicontinuous
and S has closed values.

Recall that [21, Theorem 4.3] is the case for KKM spaces of Theorem 2*. Note that many results of [5]
on G-convex spaces can be extended to partial KKM spaces as above.

5. Generalized equi-KKM family [6]

Using the Brouwer �xed point theorem, Balaj [6] in 2010 established a common �xed point theorem for
a family of multimaps. As applications of this result he obtained existence theorems for the solutions of two
types of vector equilibrium problems, a Ky Fan type minimax inequality and a generalization of a known
result due to Iohvidov.
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Inspired by generalized KKM map, Balaj [6] introduced the following:

De�nition 1. ([6]) Let X be a nonempty set, Z be a convex subset of a vector space and T be a family of
set-valued mappings with nonempty values from X into Z. We say that T is generalized equi-KKM if for any
nonempty �nite subset {x1, . . . , xn} of X there is {z1, . . . , zn} ⊂ Z such that co{zi : i ∈ I} ⊂

⋃
i∈I T (xi), for

each nonempty subset I of {1, . . . , n} and for all T ∈ T .

De�nition 1.* Let X be a nonempty set, (E,D,Γ) be a abstract convex space and T be a family of
multimaps with nonempty values from X into E. We say that T is generalized equi-KKM if for any nonempty
�nite subset {x1, . . . , xn} of X there is {z1, . . . , zn} ⊂ D such that Γ{zi : i ∈ I} ⊂

⋃
i∈I T (xi), for each

nonempty subset I of {1, . . . , n} and for all T ∈ T .

Remark 1. ([6]) If Z is a convex subset of a topological vector space and T is generalized equi-KKM then,
according to Lemma 3.3 in [15], for each T ∈ T , {T (x) : x ∈ X} has the �nite intersection property.

Remark 1.* Suppose that (E,D; Γ) is a partial KKM space. Every element T ∈ T is a generalized KKM
map and hence {T (x) : x ∈ X} has the �nite intersection property by Theorem 3.3.

6. Variational problems [1]

In 2008, Luc [20] proposed a general model for a large class of problems in optimization and nonlinear
analysis and called his model a variational relation problem. A variational relation R is represented as a
subset of a product space X×Y ×Z, so that R(x, y, z) holds if and only if the point (x, y, z) belongs to that
set.

In 2016, Agarwal-Balaj-O'Reagan [1] considered variational relation problems involving a binary relation.
The framework presented is more general than that in Luc[20] and in other recent papers which deal with
this subject.

The next lemma is a particular case of Ky Fan's 1981 KKM theorem:

Lemma 4.1. ([1]) Let X be a nonempty convex subset of a topological vector space and let T : X ⊸ X be
a KKM mapping such that for each x ∈ X, T (x) is a relatively closed subset of X. If there exist a compact
convex subset C of X and a compact subset K of X such that

⋂
x∈C T (x) ⊂ K, then

⋂
x∈X T (x) ̸= ∅.

Fan's 1981 KKM theorem was generalized in the later work of Park [23], where we can �nd several
generalizations of Lemma 4.1.

De�nition 4.2. ([1]) Let X be a convex set in a vector space, D a nonempty subset of X and ρ(x, y) a
relation linking elements x, y ∈ X. We say that the relation ρ is KKM w.r.t. D if, for every �nite subset
{y1, y2, . . . , yn} of X and for every x ∈ co{y1, y2, . . . , yn} ∩D, one can �nd some index i such that ρ(x, yi)
holds.

De�nition 4.2.* Let (X ⊃ D; Γ) be an abstract convex space. De�nition 4.2 can be extended to this space.

In the case of a ternary relation, the previous de�nition induces two new concepts of KKM relation
relative to a set, as follows.

De�nition 4.3. ([1]) Let X be a convex set in a vector space, D a nonempty subset of X, Z a nonempty
set and P : X ×X ⊸ Z. A relation R ⊂ X ×X × Z is said to be

(i) s-P -KKM with respect to D if, for every �nite subset {y1, y2, . . . , yn} of X and for every x ∈
co{y1, y2, . . . , yn} ∩D, one can �nd some index i such that R(x, yi, z) holds for all z ∈ P (x, yi);

(ii) w-P -KKM with respect to D if, for every �nite subset {y1, y2, . . . , yn} of X and for every x ∈
co{y1, y2, . . . , yn} ∩D, one can �nd some index i such that R(x, yi, z) holds for all z ∈ P (x, yi).

Remark 4.4. ([1]) (i) When D = X, the concept of s-P -KKM relation reduces to the concept of P -KKM
relation introduced in [20, De�nition 3.2].

(ii) Clearly a relation R ⊂ X×X×Z is s-P -KKM (resp. w-P -KKM) if and only if the relation ρ de�ned
by ρ(x, y) holds i� R(x, y, z) holds for all (resp. for some) z ∈ P (x, y) is KKM with respect to D.
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Regarding the KKM concepts introduced above, the abstract form of Proposition 4.5 in [1] can be easily
established and useful in concrete problems. See also Theorem 4.6, Corollaries 4.7, 4.9, Theorems 4.10, 4.11
in [1].

7. Weak KKM maps by Agarwal-Balaj-O'Regan [2-4]

In each year in 2017-19, Agarwal, Balaj, and O'Regan published papers on weak KKM maps.
In 2017 [2], they present two methods for obtaining common �xed point theorems in topological vector

spaces. Both methods combine an intersection theorem and a �xed point theorem, but the order in which
they are applied di�ers.

In 2018 [3], they established two intersection theorems which are useful in considering some optimization
problems (complementarity problems, variational inequalities, minimax inequalities, saddle point problems).

Finally, in 2919 [4], they obtained open versions of the above mentioned intersection theorems related to
a compact convex set in Rn. As applications, they established several minimax inequalities and existence
criteria for the solutions of three types of set-valued equilibrium problems.

These three papers based on the following lemma (Lemma 3.1 [2] and Lemma 3.2 [3]):

Lemma 3.1. ([2, 3]) Let X be a nonempty and convex set and Y be a nonempty, compact and convex set,
each in a topological vector space. If P : X ⊸ Y is a closed mapping with nonempty convex values and
convex co�bers, then

⋂
u∈X P (u) ̸= ∅.

This is hard to extend to abstract convex spaces.

8. Generalized weak KKM maps [7]

Abstract of [7]: In this paper, we introduce the concept of generalized weak KKM mapping that is more
general than many others encountered in the KKM theory. Then, two previous intersection theorems of the
author are extended from weak KKM mappings to generalized weak KKM mappings. Applications of these
results to set-valued equilibrium problems and minimax inequalities are given in the last two sections.

The lemma below is a particular case of Theorem 2 of Park-Lee [27]:

Lemma 3.1. ([7]) Let X be a nonempty set and let Y be a nonempty compact convex subset of a topological
vector space. If G : X ⊸ Y is a generalized KKM set-valued mapping with nonempty closed values, then⋂

x∈X G(x) ̸= ∅.

Lemma 3.1.* Let X be a nonempty set and let (E,D; Γ) be a abstract convex space. If G : X ⊸ E is a
generalized KKM map with nonempty closed values, then

⋂
x∈X G(x) ̸= ∅.

In [7], using Lemma 3.1, Theorem 1.4 can be generalized as follows:

Theorem 3.2. ([7]) Let Y be a compact convex subset of a topological vector space, let X and Z be nonempty
sets and let S : X ⊸ Z, T : Y ⊸ Z be two nonempty-valued set-valued mappings satisfying the following
conditions:

(i) for each x ∈ X, the set {y ∈ Y : T (y) ∩ S(x) ̸= ∅} is closed;
(ii) S is a generalized weak KKM mapping w.r.t. T.

Then, there exists y0 ∈ Y such that T (y0) ∩ S(x) ̸= ∅ for all x ∈ X.

This can be generalized as follows:

Theorem 3.2.* Let (E,D; Γ) be a compact abstract convex space, let Z be a nonempty set and let F : E ⊸
Z, G : D ⊸ Z be two nonempty-valued multimap satisfying the following conditions:

(i) for each x ∈ D, the set {y ∈ E : F (y) ∩G(x) ̸= ∅} is closed;
(ii) G is a generalized weak KKM map w.r.t. F.

Then, there exists y0 ∈ E such that F (y0) ∩G(x) ̸= ∅ for all x ∈ D.
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Proof. For each x ∈ D, set
H(X) := {y ∈ E : F (y) ∩G(x) ̸= ∅}.

Since G is generalized weak KKM map w.r.t. F , for each nonempty �nite subset {x1, . . . , xn} of E, there
exists {y1, . . . , yn} ⊂ D such that for each nonempty index set I ⊂ {1, . . . , n} and any y ∈ Γ{yi : i ∈ I},⋃n

i=1(F (y) ∩G(xi)) ̸= ∅, hence y ∈
⋃n

i=1H(xi). This proves that H is a generalized KKM map. Moreover,
by (i), H has closed values. By Lemma 3.1*, there exists a point y0 ∈

⋂
x∈X H(x). Clearly, this means that

F (y0) ∩G(x) ̸= ∅ for all x ∈ D. 2

Remark 3.3. ([7]) It is obvious that condition (i) in Theorem 3.2 holds whenever Z is a topological space,
F is upper semicontinuous and G is closed-valued. This fact will be used in last two sections.

In the sequel we need the following lemma:

Lemma 3.4. (see [2, Lemma 3.1]) Let X be a nonempty and convex set and let Y be a nonempty, compact
and convex set, each in a topological vector space. If H : X ⊸ Y is a closed mapping with nonempty convex
values and convex co�bers, then

⋂
x∈X H(x) ̸= ∅.

At present, we are unable to have the abstract convex space version of this Lemma. Consequently, we
can not generalize Theorems 3.5, 4.2, and others in [7].

In the sequel, we tried to obtain possible abstract convex space versions of results of Balaj [8].
Given three sets X,Y and Z, a relation R between their elements is represented as a nonempty subset

of the product set X × Y × Z. Adopting Luc's terminology, we say that R(x, y, z) holds, if (x, y, z) ∈ R.
Let X,Y and Z be three nonempty sets, let P : Y ⊸ Z be a set-valued mapping with nonempty values

and let R(x, y, z) be a relation linking elements x ∈ X, y ∈ Y and z ∈ Z. The variational relation problems
considered in [8] are the following:

(VRP) Find y0 ∈ Y , such that for each x ∈ X, there exists z ∈ P (y0) for which R(x, y0, z) holds.
(SVRP) Find y0 ∈ Y and z0 ∈ P (y0), such that R(x, y0, z0) holds for all x ∈ X.

Theorem 4.1. ([8]) Assume that Y is a compact convex set in a topological vector space and that X and Z are
topological spaces. Problem (VRP) has at least a solution if the set-valued mapping P is upper semicontinuous
and the relation R satis�es the following conditions:

(i) for each x ∈ X, the set {(y, z) ∈ Y × Z : R(x, y, z) holds} is closed in Y × Z;
(ii) for each nonempty �nite set {x1, . . . , xn} ⊂ X, there exists {y1, . . . , yn} ⊂ Y such that for each

nonempty index set I ⊂ {1, . . . , n} and any y ∈ conv{yi : i ∈ I}, there exist i ∈ I and z ∈ P (y) for which
R(xi, y, z) holds.

Theorem 4.1.* Assume that Y is a compact abstract convex space and that X and Z are topological spaces.
Then Theorem 4.1 still holds.

Proof. Let the multimaps T : Y ⊸ Y × Z, S : X ⊸ Y × Z be de�ned by

T (y) = {y} × P (y), S(x) = {(y, z) ∈ Y × Z : R(x, y, z) holds}.

Clearly, T is upper semicontinuous, and from (i), S is closed-valued. Taking into account Remark 3.3*,
condition (i) in Theorem 3.2* is satis�ed. Note that condition (ii) is nothing else than condition similarly
noted in Theorem 3.2.* By Theorem 3.2*, there exists y0 ∈ Y such that T (y0) ∩ S(x) ̸= ∅. for all x ∈ X.
This means that for each x ∈ X there exists z ∈ P (y0) such that R(x, y0, z) holds. 2

Theorem 5.1. ([8]) Let X, Y and Z be nonempty convex subsets of three topological vector spaces such that
Y and Z are compact. Let S : X ⊸ Z and P : Y ⊸ Z be two set-valued mappings with nonempty values and
f and g be two real functions de�ned on Y × Z. Assume that:

(i) g is upper semicontinuous on Y × Z;
(ii) for every x ∈ X there exists y ∈ Y such that supz∈P (y) f(y

′, z) ≤ maxz∈S(x) g(y
′, z) for all y′ ∈ Y ;

(iii) for each y′ ∈ Y , the function y 7−→ supz∈P (y) f(y
′, z) is quasiconvex on Y;
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(iv) S is closed-valued.
Then, there exists y0 ∈ Y such that

inf
y∈Y

sup
z∈P (y)

f(y, z) ≤ inf
x∈X

max
z∈S(x)

g(y0, z).

Theorem 5.1.* Let X, Y and Z be nonempty abstract convex spaces such that Y and Z are compact. Then
Theorem 5.1 holds.

We have the proof by simply modifying the one of Theorem 5.1 as follows:

Proof. First, let us observe that if g is upper semicontinuous on Y × Z, then for each y ∈ Y , g(y, ·) is also
an upper semicontinuous function of z on Z and therefore its maximum maxz∈S(x) g(y, z) on the compact
set S(x) exists. Assuming that m := infy∈Y supz∈P (y) f(y, z) > −∞, we de�ne the multimap T : Y ⊸ Z by

T (y) = {z ∈ Z : g(y, z) ≤ m}.

From (i), the graph of T is closed, and since Z is compact, T is upper semicontinuous. In view of Remark
3.3*, condition (i) of Theorem 3.2* is satis�ed.

Let {x1, . . . , xn} be a �nite subset ofX. By (ii), for each xi there exists yi ∈ Y such that supz∈P (yi) f(y
′, z) ≤

maxz∈S(xi) g(y
′, z) for all y′ ∈ Y .

We claim that for every nonempty set I ⊂ {1, . . . , n} and any y ∈ Γ{yi : i ∈ I}, T (y)∩ (
⋃

i∈I S(xi)) ̸= ∅.
Assume by way of contradiction that for some index set I and ȳ ∈ Γ{yi : i ∈ I} we have T (ȳ) ∩ S(xi) = ∅,
for each i ∈ I. This means that for each i ∈ I and z ∈ S(xi), g(ȳ, z) < m, whence

sup
z∈P (yi)

f(ȳ, z) ≤ max
z∈S(xi)

g(ȳ, z) < m.

Since the function y 7→ supz∈P (y) f(ȳ, z) is quasiconvex, we infer that

sup
z∈P (ȳ)

f(ȳ, z) < m; a contradiction.

We have thus proved that S is a generalized weak KKM map w.r.t. T . By Theorem 3.2*, there exists y0 ∈ Y
such that T (y0)∩S(x) ̸= ∅, for all x ∈ X. Then, for every x ∈ X, there is zx ∈ S(x) such that g(y0, zx) ≥ m,
hence maxz∈S(x) g(y0, z) ≥ m. Thus, infx∈X maxz∈S(x) g(y0, z) ≥ m. 2

9. Remarks on related works of Balaj et al.

In 1986 Granas and Liu [12] stated in Section 4 as follows: We are now able to formulate and to prove
our most general coincidence result.

Theorem 4.1. ([12]) Let X be a convex subset of a vector space with �nite topology and Y be a topological
space. Let G,S : X ⊸ Y be two set-valued maps such that G ∈ Φ(X,Y ) and S ∈ V ∗

w(X,Y ). If either, (i) Y
is compact or (ii) the map S is compact, then the maps G and S has a coincidence.

In 2003 C.W. Ha [14] derived the following intersection theorem on which the main result of his paper
based:

Theorem 2.1. ([14]) Let X, Y be nonempty convex sets, each in a Hausdor� topological vector space, X
compact and let F ⊂ G ⊂ H ⊂ X × Y such that

(a) F (x), H(x) are convex for each x ∈ X, and F−1(y), H−1(y) are open in X for each y ∈ Y ;
(b) G(x) is open in Y for each x ∈ X, and X \G−1(y) is convex for each y ∈ Y .
Then either there exists x0 ∈ X such that F (x0) = ∅ or

⋂
x∈X H(x) ̸= ∅.

Ha applied this theorem to a three function minimax theorem.
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From now on, we brie�y introduce the works of Balaj et al. in four papers [1, 2, 7, 8] on applications of
the above two theorems.

In [1], the authors consider variational relation problems involving a binary relation. The framework
presented is more general than that in [J. Optim. Theory Appl. 138 (2008) 65�76] and in other recent
papers which deal with this subject.

In [1], the following lemma was stated as a particular case of the main result in Granas and Liu [12] (see
also [9, 10]).

Lemma 3.1. ([12]) Let X and Y be convex subsets of two topological vector spaces, and let F,G : Y ⊸ X be
set-valued mappings satisfying

(i) F is upper semicontinuous and has nonempty closed and convex values;
(ii) G has open values and nonempty convex �bres.
If F is compact, then F and G have a coincidence, that is, there exists (x̄, ȳ) ∈ X × Y such that x̄ ∈

F (ȳ) ∩G(ȳ).

In [2], it is stated that Lemma 3.1 is a reformulation of Theorem 3.1 in [1] (this seems to be incorrect) with
a di�erent proof. Lemma 3.1 implies Theorem 3.3, a new common �xed point theorem, with applications to
Ky Fan's best approximation theorem, the Stampacchia variational inequality, and existence of better forms
of common �xed point theorems. Lemma 3.2 is a dual of Lemma 3.1 and is a particular case of Theorem 2.1
of Ha [14].

In Balaj [7] in 2021, Lemma 3.4 is Ha's one. It implies Theorem 3.5, which in turn implies Theorem 4.2
for variational relation problem (SVRP). Theorem 4.2 is applied to Theorems 4.11 and 4.12 for existence
criteria of the strong solutions for two set-valued equilibrium problems. Moreover, Theorem 3.5 implies the
minimax inequality in Theorem 5.3.

Finally, Balaj [8] in 2021 applied Lemma 2 [2, Lemma 3.1] to Theorem 1, a quasi-intersection theorem.
Consequently, Balaj showed that the theorem of Ha has numerous applications.
The late Professors A. Granas and C. W. Ha were old friends of the author.
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