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Oscillation of noncanonical second-order advanced differential
equations via canonical transform
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ABSTRACT. In this paper, we develop a new technique to deduce oscillation of a second-order noncanonical ad-
vanced differential equation by using established criteria for second-order canonical advanced differential equations.
We illustrate our results by presenting two examples.
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1. INTRODUCTION

Consider the second-order noncanonical advanced differential equation

(1.1) (µ1η
′)′(t) + f1(t)η(σ(t)) = 0, t ≥ t0

subject to
(P1) µ1, f1 ∈ C([t0,∞), (0,∞)),
(P2) σ ∈ C1([t0,∞),R), σ′(t) > 0, σ(t) ≥ t for all t ≥ t0,
(P3) Equation (1.1) is in noncanonical form, that is,

Ω(t0) :=

∫ ∞

t0

dt

µ1(t)
<∞.

If (P3) does not hold, then we say that (1.1) is in canonical form.
In recent years, there are many results dealing with the oscillation of (1.1) and its modifica-

tions for the delay case, that is, σ(t) ≤ t, see for example [2, 4, 7, 11, 12, 14], and few results
in the case of σ(t) ≥ t, see [1, 3, 5, 6, 8–10, 13–17, 19, 20, 23]. Many authors paid attention to
a comparison technique, which is a powerful tool in the theory of oscillation, see, for instance,
the papers [11, 19, 21, 24] for more details. Further, many authors used the Riccati transfor-
mation method to obtain oscillation criteria for delay equations. For the mixed case, that is,
σ(t) ≤ t and σ(t) ≥ t, the author in [22] discussed the oscillatory and nonoscillatory behavior
of systems of differential equations based on the analysis of the corresponding characteristic
equations. On the other hand in [10], Jozef Džurina already obtained oscillation criteria for the
canonical second-order advanced differential equation

(ru′)′(t) + p(t)u(σ(t)) = 0

Received: 09.01.2022; Accepted: 13.02.2022; Published Online: 16.02.2022
*Corresponding author: Martin Bohner; bohner@mst.edu
DOI: 10.33205/cma.1055356

7



8 Martin Bohner, Kumar S. Vidhyaa, Ethiraju Thandapani

from those of a related ordinary differential equation

(ru′)′(t) + q(t)u(t) = 0.

In this paper, we will rewrite (1.1) in noncanonical form equivalently as an equation in canon-
ical form, then apply the results established by Jozef Džurina in [10] to the obtained equation
in canonical form, thus establishing new results for our equation (1.1) in noncanonical form.

Section 2 contains some preliminary results, the main results are presented in Section 3, and
two illustrative examples are offered in Section 4.

2. PRELIMINARY RESULTS

Throughout, without loss of generality, considering nonoscillatory solutions of (1.1), we re-
strict our attention to the positive case, since the negative case is similar.

Lemma 2.1. We have

(2.1) (µ1η
′)′ =

1

Ω

(
µ1Ω2

( η
Ω

)′)′

.

Proof. A straightforward calculation shows that

1

Ω

(
µ1Ω2

( η
Ω

)′)′

=
1

Ω

(
µ1Ω2 η

′Ω− ηΩ′

Ω2

)′

=
1

Ω

(
µ1

(
η′Ω− η

(
− 1

µ1

)))′

=
1

Ω
(µ1η

′Ω + η)
′

=
1

Ω
(Ω(µ1η

′)′ + µ1η
′Ω′ + η′)

=(µ1η
′)′ +

1

Ω

(
µ1η

′
(
− 1

µ1

)
+ η′

)
=(µ1η

′)′,

completing the proof. �

Lemma 2.2. Equation (1.1) can be written in the equivalent canonical form as

(2.2) (µz′)′(t) + f(t)z(σ(t)) = 0

where
µ = µ1Ω2, z =

η

Ω
, and f = Ω(Ω ◦ σ)f1.

Proof. The equivalence of (1.1) and (2.2) follows from Lemma 2.1. Moreover, since∫ ∞

t0

dt

µ1(t)Ω2(t)
= lim
t→∞

1

Ω(t)
− 1

Ω(t0)
=∞,

(2.2) is in canonical form. �

Corollary 2.1. The noncanonical differential equation (1.1) has an eventually positive solution if and
only if the canonical equation (2.2) has an eventually positive solution.
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From Corollary 2.1, it is clear that the investigation of oscillation of (1.1) is reduced to that of
(2.2), and therefore, we deal with only one class of an eventually positive solution, namely,

(2.3) z(t) > 0, µ(t)z′(t) > 0 and (µ(t)z′(t))′ < 0

for t ≥ t1 ≥ t0, see [10, Lemma 2.1]. Define

w(t) =

∫ t

t0

ds

µ(s)
.

Now, we state a basic oscillation result given in [10, 18], which will be improved in the next
section.

Theorem 2.1. Assume that there exists a constant δ such that

(2.4) w(t)

∫ ∞

t

f(s)ds ≥ δ > 1

4

eventually. Then (2.2) is oscillatory.

3. OSCILLATION RESULTS

In this section, we obtain results for (1.1) by applying results from [10] to the equivalent
equation (2.2). If the condition (2.4) fails to hold (δ ≤ 1/4), then we can derive a new oscillation
criterion using the constant δ.

Theorem 3.2. Let η be a positive solution of (1.1) and suppose

(3.1) w(t)

∫ ∞

t

f(s)ds ≥ δ > 0

eventually. Then
η(t)

Ω(t)wδ(t)

is increasing eventually.

Proof. Let η > 0 be a solution of (1.1). By Lemma 2.2, z > 0 is a solution of (2.2) satisfying (2.3).
Hence, the assumption [10, (3.1) of Theorem 3.1] is satisfied, and therefore the conclusion of
[10, Theorem 3.1] holds, which says that z/wδ is strictly increasing, completing the proof. �

Next, we present a new comparison result.

Theorem 3.3. Let (3.1) hold. If the differential equation

(3.2) (µz′)′(t) +

(
w(σ(t))

w(t)

)δ
f(t)z(t) = 0

is oscillatory, then so is (1.1).

Proof. Since [10, assumption (E2) of Theorem 3.3] is satisfied, (2.2) is oscillatory, and then so is
(1.1). �

Using any criterion for the oscillation of (3.2), we immediately obtain an oscillation result
for (1.1).

Theorem 3.4. Let (3.1) hold. If there exists a constant δ1 such that

(3.3) w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ
f(s)ds ≥ δ1 >

1

4

eventually, then (1.1) is oscillatory.
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Proof. Use [10, Theorem 3.4] to complete the proof. �

If the condition (3.3) fails to hold (δ1 ≤ 1/4), then we can derive a new oscillation criterion
using the constant δ1.

Theorem 3.5. Let (3.1) hold. Assume that η is a positive solution of (1.1) and

w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ
f(s)ds ≥ δ1 > 0

eventually. Then
η(t)

Ω(t)wδ1(t)

is increasing eventually.

Proof. Use [10, Theorem 3.8] to complete the proof. �

Theorem 3.6. Let (3.1) and (3.3) hold. If the differential equation

(3.4) (µz′)′(t) +

(
w(σ(t))

w(t)

)δ1
f(t)z(t) = 0

is oscillatory, then so is (1.1).

Theorem 3.7. Let (3.1) and (3.3) hold. If there exists a constant δ2 such that

(3.5) w(t)

∫ ∞

t

(
w(σ(s))

w(s)

)δ1
f(s)ds ≥ δ2 >

1

4

eventually, then (1.1) is oscillatory.

The proofs of Theorems 3.6 and 3.7 follow from [10, Theorems 3.9 and 3.10].
For convenience, let us use the additional condition that there is a positive constant β such

that

(3.6)
w(σ(t))

w(t)
≥ β > 1

eventually. Thus, in view of (3.1), conditions (3.3) and (3.5) can be written in simpler forms as

δ1 =βδδ >
1

4
,

δ2 =βδ1δ >
1

4
,

respectively. Repeating the above process, we have the increasing sequence {δn} defined by

δ0 =δ,

δn+1 =βδnδ.

Now as in [10, Theorem 3.12], one can generalize the oscillation criteria obtained in Theorems
3.4 and 3.7.

Theorem 3.8. Let (3.1) and (3.6) hold. If there exists n ∈ N such that δj ≤ 1/4 for j = 0, 1, 2, . . . , n−1
and

δn >
1

4
,

then (1.1) is oscillatory.
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4. EXAMPLES

We support the obtained results with some examples.

Example 4.1. Consider the second-order advanced differential equation

(4.1) (t2η′(t))′ + aλη(λt) = 0, t ≥ 1,

where a > 0. Here µ1(t) = t2, f1(t) = aλ, σ(t) = λt, λ > 1. A simple calculation shows that

Ω(t) =
1

t
, µ(t) = 1, w(t) = t, f(t) =

a

t2
.

The transformed canonical equation is

z′′(t) +
a

t2
z(λt) = 0.

Condition (3.1) clearly holds, and (3.3) becomes

aλδ >
1

4
.

Now δ = a, and by Theorem 3.4, (4.1) is oscillatory provided

aλa >
1

4
.

For example, if a = 1
5 , then we see that λ ≥ 3.052, and for λ = 1.8, we need a ≥ 0.22.

Example 4.2. Consider the second-order advanced differential equation

(4.2) (t2η′(t))′ + 0.35742η(1.61t) = 0.

The transformed canonical equation is

z′′(t) +
0.222

t2
z(1.61t) = 0.

For (4.2), δ0 = 0.222 and λ = 1.61. A simple calculation shows that

δ1 = 0.2468 and δ2 = 0.24968.

Therefore, Theorems 3.4 and 3.7 fail for (4.2). But

δ3 = 0.25003 >
1

4

and Theorem 3.8 implies the oscillation of (4.2). However, it is easy to see that [5, Theorems 3, 5, 6], [8,
Theorems 3.3, 3.4, and Corollary 4.4] and [4, Theorem 2] do not get oscillation of (4.2). Thus, our result
improve these results.

5. CONCLUSION

In this paper, we derive oscillation criteria for the noncanonical equation (1.1) by transform-
ing it to the canonical equation (2.2), and then we use the comparison technique available for
the canonical equation (2.2) to get new oscillation criteria for the studied equation (1.1). Our
oscillation criteria improve [5, Theorems 3, 5, 6], [8, Theorems 3.3, 3.4 and Corollary 4.4] and
[4, Theorem 2] for the special case α = β = 1. Finally, the results obtained in [10] cannot be
applied to (4.1) and (4.2) since they are of noncanonical type.
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