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Abstract

In this paper, we apply continuous distributions such as the exponential distribution, gamma distribution,
beta distribution and uniform distribution and discontinuous random distribution such as Poisson distribution
by using neutrosophic random variables. This study opens a new way for dealing with issues that follow
the classical distributions which appear in classical random variables and at the same time contain data not
speci�ed accurately.
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1. Introduction and Background

The notion of neutrosophic probability measure as a function NP : Y → [0, 1]3 was introduced by F.
Smarandache where U is a neutrosophic sample space, and de�ned the probability mapping to take the
form NP(S) = (ch(S), ch(neutS), ch(antiS)) = (α, β, γ) where 0 ≤ α, β, γ ≤ 1 and 0 ≤ α + β + γ ≤ 3
[36]. Besides, many researchers have investigated many neutrosophic probability distributions like Poisson,
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exponential, binomial, normal, uniform, Weibull,...etc. (See, [35], [2], [19], [27]). Additionally, researchers
have investigated the notion of neutrosophic queueing theory in [38], [39] this is one branch of neutrosophic
stochastic modelling. Furthermore, researchers have also studied neutrosophic time series prediction and
modelling in many cases like neutrosophic moving averages, neutrosophic logarithmic models, neutrosophic
linear models and so on. [3], [4], [12]. Recently, researchers have started to study the notion of neutrosophic
random variable (see, De�nition 1.5). Bisher and Hatip in 2020 [7] presented the �rst notion of neutrosophic
random variables in which they presented some basics notions. later on, Granados in 2021 [13] showed
new notions on neutrosophic random variables and then Granados and Sanabria [14] studied independence
neutrosophic random variables. On the other hand, neutrosophic logic is an extension of intuitionistic fuzzy
logic by adding indeterminacy component (I) where I2 = I, ..., In = I, 0.I = 0;n ∈ N and I−1 is unde�ned
(see [21], [35]). Neutrosophic logic has a huge brand of applications in many �elds including decision making
[30], [20], [26], machine learning [6], [28], intelligent disease diagnosis [33], [11], communication services [8],
pattern recognition [29], social network analysis and e-learning systems [22], physics [37], sequences spaces
[15] and so on. Neutrosophic logic has solved many decision-making problems e�ciently like evaluating
green credit rating, personnel selection, . . . etc. [23], [24], [25], [1]. For more notions related to neutrosophic
theory, we refer the reader to [15, 17, 9, 16, 18, 10].

In this paper, we highlight the use of neutrosophic neutrosophic random variables [7] with the classical
probability distributions, particularly Poisson distribution, Exponential distribution and Uniform distribu-
tion, which opens the way for dealing with issues that follow the classical distributions and at the same
time contain data not speci�ed accurately and neutrosophic probability distributions. In this paper, we
discuss continuous random distributions such as the Exponential distribution and Uniform distribution , and
discontinuous random distribution such as Poisson distribution by using neutrosophic random variables.

Throughout this paper, the set of real number is denoted by R or R, Ω denotes the set of sample space
and ω denotes an event of the sample space, XN and YN denote neutrosophic random variables.

Next, we show some well-known de�nitions and properties of neutrosophic logic and neutrosophic prob-
ability which are useful for the development of this paper.

De�nition 1.1. (see [34]) Let X be a non-empty �xed set. A neutrosophic set A is an object having the form
{x, (µA(x), δA(x), γA(x)) : x ∈ X}, where µA(x), δA(x) and γA(x) represent the degree of membership, the
degree of indeterminacy , and the degree of non-membership respectively of each element x ∈ Xto the set A.

De�nition 1.2. (see [5]) Let K be a �eld, the neutrosophic �led generated by K and I is denoted by ⟨K ∪ I⟩
under the operations of K, where I is the neutrosophic element with the property I2 = I.

De�nition 1.3. (see [35]) Classical neutrosophic number has the form a+ bI where a, b are real or complex
numbers and I is the indeterminacy such that 0.I = 0 and I2 = I which results that In = I for all positive
integers n.

De�nition 1.4. (see [36]) The neutrosophic probability of event A occurrence is NP (A) = (ch(A), ch(neutA), ch(antiA)) =
(T, I, F ) where T, I, F are standard or non-standard subsets of the non-standard unitary interval ]−0, 1+[.

Recently, Bisher and Hatip [7] introduced and studied the notions of neutrosophic random variables by
using the concepts presented by [36], these notions were de�ned as follows:

De�nition 1.5. Consider the real valued crisp random variable X which is de�ned as follows:

X : Ω → R

where Ω is the events space. Now, they de�ned a neutrosophic random variable XN as follows:

XN : Ω → R(I)

and

XN = X + I
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where I is indeterminacy.

Theorem 1.6. Consider the neutrosophic random variable XN = X + I where cumulative distribution
function of X is FX(x) = P (X ≤ x). Then, the following statements hold:

1. FXN
(x) = FX(x− I),

2. fXN
(x) = fX(x− I).

Where FXN
and fXN

are cumulative distribution function and probability density function of XN , respectively.

Theorem 1.7. Consider the neutrosophic random variable XN = X + I, expected value can be found as
follows:

E(XN ) = E(X) + I.

Proposition 1.8 (Properties of expected value of a neutrosophic random variable). Let XN and YN be
neutrosophic random variables, then the following properties holds:

1. E(aXN + b+ cI) = aE(XN ) + b+ cI; a, b, c ∈ R,
2. If XN and YN are neutrosophic random variables, then E(XN ± E(YN ) = E(XN )± E(YN ),

3. E[(a+ bI)XN ] = aE(XN ) + bIE(XN ); a, b ∈ R,
4. |E(XN )| ≤ E|XN |.

Theorem 1.9. Consider the neutrosophic random variable XN = X+I, variance of XN is equal to variance
of X, i.e. V (XN ) = V (X).

Granados [13, 14] studied the notions of neutrosophic random vector and joint neutrosophic random
variable, these notions were de�ned as follows:

De�nition 1.10. A neutrosophic random vector of two dimension is a vector (XN , YN ) in which each
coordinate is a neutrosophic random variable. Analogously, we can de�ne a neutrosophic random vector mul-
tidimensional as follows (XN1 , XN2 , ..., XNn) in which XN1 , XN2 , ..., XNn are neutrosophic random variables
for each n = 1, 2, ....

De�nition 1.11. Let (XN , YN ) be a neutrosophic random vector, we de�ne probability function of a neutro-
sophic continuous random vector (XN , YN ). Then, joint probability neutrosophic function of a discrete ran-
dom vector (XN , YN ) fN (x, y) : R2 → [0,∞) in which is non-negative and integrable, and for any (x, y) ∈ R2

, it is de�ned as follows

P (XN ≤ x, YN ≤ y) = P (X ≤ x− I, Y ≤ y − I) =

∫ y−I

−∞

∫ x−I

−∞
f(XN ,YN )(u, v)dvdu

Similarly, probability function of a neutrosophic discrete random vector (XN , YN ) is de�ned similar by
using sum.

De�nition 1.12. Let (XN , YN ) be a neutrosophic random vetor, we de�ne neutrosophic joint distribution
function which will be denoted by F(XN ,YN )(x, y) = P (XN ≤ x, YN ≤ y) = P (X ≤ x− I, Y ≤ y − I).

De�nition 1.13. Let f(XN ,YN )(x, y) be a joint probability neutrosophic function of a continuous random
variable (XN , YN ). We de�ne neutrosophic marginal function of XN as follows:

fXN
(x) =

∫ +∞

−∞
f(XN ,YN )(x, y)dy

and we de�ne neutrosophic marginal function of YN as follows:

fYN
(y) =

∫ +∞

−∞
f(XN ,YN )(x, y)dx
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2. Main Results

In this section, we use the notion of neutrosophic continuous distribution which were introduced by [2],
and we apply them in neutrosophic random variable and present some examples.

2.1. Neutrosophic Possion Distribution in Neutrosophic Random Variables

Neutrosophic Poisson distribution of a neutrosophic random variable XN is a neutrosophic Poisson dis-
tribution of X+ I, but its parameter is imprecise and it has a level of indeterminacy . For example, λ can be
set with two or more elements and I is a function which is de�ned as a classical neutrosophic theory which
takes value in [0, 1]. This distribution is de�ned as follows:

NPN (x) = e−λN
(λN )(x−I)

(x− I)!
,

for x = 1, 2, 3, ....
Where, λN is the neutrosophic distribution parameter and it is the expected value i.e., λM + I, λM is

the distribution parameter.

Example 2.1. In a company, Phone employee receives phone calls, the calls arrive with rate of [2, 3] calls
per minute, we will calculate the probability that the employee will not receive any call within a minute with
indeterminacy I ∈ [0, 1]. Solution: Let us consider x the number of calls in a minute, then

NP (x = I) = e−λN
(λN )0

0!
= e−λN = e−[2,3]+[0,1] = e[−2,−2] = e−2 = 0.1353.

Thus, the probability that employee won't receive any call, within a minute is 0.1353.
Now, consider that we want to �nd the probability that employee won't receive any call within 5 minutes.

So, we have λN = 5[2, 3] + 5[0, 1] = [10, 15] + [0, 5] = [10, 20]. Hence,

NP (x = I) = e−[10,20] ([10, 20])
0

0!
= e−[10,20].

For λ = 10, NP (I) = e−10 = 0.00004 and for λ = 20, NP (I) = e−20 = 0.000000002. Thus, the
probability that employee won't receive any call, within a �ve minutes is [0.000000002, 0.00004].

If we make this exercise in classical neutrosophic probability, we obtain NP (0) = [0.00000003054, 0.00004] ∈
[0.000000002, 0.00004] = NP (I).

2.2. Neutrosophic Exponential Distribution in Neutrosophic Random Variables

Neutrosophic exponential distribution is de�ned as a generalization of classical exponential distribution,
Neutrosophic exponential distribution in random variables can deals with all the data even non-speci�c, we
express the density function as:

XN ∼ exp(λM ) = fX(x− I) = λMe−(x−I)λM ; I < x < ∞.

Where exp(λM ) is the neutrosophic exponential distribution, XN is a neutrosophic random variable and λM

is the distribution parameter.
By mentioned above, we have the following properties:

1. E(XN ) =
1

λ
+ I,

2. V ar(XN ) =
1

(λ)2
.
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Example 2.2. The time required to terminate client's service in the bank follow an exponential distribution,
with an average of [0.67, 2] minute. let us write a density function that represents the time required for
terminating client's service, and then calculate the probability of terminating client's service in less than a
minute with an indeterminacy probability of 0.1.

Solution We have,
1

λM
= [0, 67, 2], then λM = [0.5, 1.5]. Thus, the probability density function is de�ned

as follows

fX(x− I) = [0.5, 1.5]e−(x−0.1)[0.5,1.5]).

Probability to terminate the client's service in less than a minute is

NP (X ≤ 0.9) = (1− e−(0.9)[0.5,1.5]) = (1− e−[0.45,1.35]).

We can see that for λ = 0.45,

NP (X ≤ 0.9) = 1− e−0.45 = 1− 0.6376 = 0.3624,

and for λ = 1.35,

NP (X ≤ 0.9) = 1− e−1.35 = 1− 0.2231 = 0.7769.

That is, the probability of terminating client's service in less than a minute ranges between [0.3624, 0.7407].
If we make this exercise as a classical way, we will obtain that P (X ≤ 1) = 0.63 ∈ [0.3624, 0.7407] =

NP (X ≤ 0.9) = NP (XN ≤ 1)

2.3. Relationship Between Neutrosophic Possion Distribution and Neutrosophic Exponential Distribution in
Neutrosophic Random Variables

If the occurrence of events follows the Poisson distribution, the duration between the occurrence of
two events follow exponential distribution. For example, arrival of customers to a service centre follows the
Poisson distribution, the time between the arrival of a customer and the next customer follow the exponential
distribution. Thus, when the parameter λM and indeterminacy I are inaccurately de�ned, we are dealing
with the neutrosophic exponential distribution and the neutrosophic Poisson distribution in neutrosophic
random variables and we write,

If an event is repeated in time according to the neutrosophic Poisson distribution in neutrosophic random
variables,

NPN (x) = e−λN
(λN )(x−I)

(x− I)!
.

Then, the time between two events follows the neutrosophic exponential distribution in neutrosophic
random variables,

fX(t− I) = λMe−(t−I)λM ; t ≥ I.

Example 2.3. Consider that we have a machine in a factory. The rate of machine breakdowns is [1, 2] per
week, let us calculate the possibility of no breakdowns per week, and calculate the possibility that at least two
weeks pass before the appearance of the following breakdowns with with indeterminacy I ∈ [0, 1].

Solution

Consider that x is a variable that is subject to the neutrosophic Poisson distribution in neutrosophic
random variables, the distribution parameter is de�ned as follows:
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NP (x = I) = e−[1,3].

Then, the possibility of no breakdowns in the week ranges between [0.0497, 0.3678]. Now, assuming y
represents the time before the appearance of the following breakdowns, we note that y is a variable following
the neutrosophic exponential distribution in neutrosophic random variables. Then, NF = NP (X ≤ x− I) =
(1− e−(x−I)λM ), thus

NP (y > 2 + I) = 1−NP (y ≤ 2 + I) = 1−NF (2 + I) = 1− (1− e−[2,3][1,3])

= e[−3,−2][1,3].

Then, we have to option, e[−3,3] or e[−2,1] i.e., [0, 04978, 20.08] or [0.1353, 2.718]. Thus, the possibility that
at least two weeks pass before the appearance of the following breakdowns, ranges between [0, 04978, 0.1353].

2.4. Neutrosophic Uniform Distribution in Neutrosophic Random Variables

Neutrosophic Uniform distribution in neutrosophic random variables of a neutrosophic continuous variable
XN is a classical Uniform distribution , but distribution parameters a or b or both are imprecise and
determinate by indeterminacy I ∈ [0, 1]. For example, a or b or both are sets with two or more elements
(may a or b or both are intervals) with a < b.

Example 2.4. Consider x is a variable represents a person's waiting time to passengers' bus (in minutes),
bus's arrival time is not speci�ed, the station o�cial said the bus arrival time is either from now to 5 minutes
[0, 5] or will arrive after 15 to 20 minutes [15, 20] with indeterminacy [0.1, 0.5], then we have two option

fXN
(x) =

1

[15, 20]− [0, 5]− [0.1, 0.5]
=

1

[14.5, 14.9]
= [0.06711, 0.06896].

and

fXN
(x) =

1

[15, 20]− [0, 5] + [0.1, 0.5]
=

1

[15.1, 15.5]
= [0.0526, 0.06451].

Thus, The solution is [0.0526, 0.06896] with the probability to moving [0, 5] and [15, 20] minutes.

Example 2.5. Assume x is a variable represents a person's waiting time to passengers' bus (in minutes),
bus's arrival time is not speci�ed, the station o�cial said the bus arrival time is 5 minutes or will arrive
after 15 to 20 minutes [15, 20] with indeterminacy [0.1, 0.5], then we have two option

fXN
(x) =

1

[15, 20]− 5− [0.1, 0.5]
=

1

[9.9, 14.5]
= [0.06896, 0.1010].

and

fXN
(x) =

1

[15, 20]− 5 + [0.1, 0.5]
=

1

[10.1, 15.5]
= [0.0990, 0.06451].

Thus, The solution is [0.06896, 0.1010] with the probability to moving 5 and [15, 20] minutes.
If we make this exercise in classical neutrosophic probability way, we obtain [0.067, 0, 1] ∈ [0.06896, 0.1010].
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2.5. Neutrosophic Gamma Distribution in Neutrosophic Random Variables

Let XN be a neutrosophic random variable which has neutrosophic gamma distribution with parameters
α > 0 and λ > 0 where α or λ or both are sets with two or more elements (may α or λ or both are intervals),
and we write XN ∼ gamma(α, λ) and its neutrosophic density function is de�ned as follows:

fX(x− I) = λe−λ(x−I) (λ(x− I))α−1

Γ(α)
,

if x ≥ I.
We shall recall that Γ(α + 1) = αΓ(α) and Γ(α + 1) = α! if α ∈ Z+ i.e. positive integers. It is easy to

check that E(XN ) = α
λ + I.

By using the software project for statistical computing R we can obtain the values of the function γ(x−I)
using the gamma(x) command. The values of the density function fX(x− I) are obtained as follows

# dgamma(x , shape=\alpha , r a t e=\lambda ) Evaluate f ( x ) in the d i s t r i b u t i o n
# gamma(\ alpha , \ lambda )
> dgamma(2 . 5 , shape=7, ra t e=3)
[ 1 ] 0 .4101547
> dgamma(1 . 5 , shape=7, ra t e=3)
[ 2 ] 0 .00032107

where x = 2.5 and I = [0, 1], we had the following probability [0.00032107, 0.4101547].

Example 2.6. Suppose that experience shows that the time (in minutes) required to perform periodic main-
tenance a dictaphone is followed by a gamma distribution with α = [1, 2.1] and λ = 2. It takes a new
maintenance technician 22.5 minutes check the machine with indeterminacy time period 0.1. Does this time
used in the keeping the dictaphone with the previous period?

Solution

We can see that E(XN ) = α
λ + I = [1,2.1]

2 + 0.1 = [0.6, 1.15] and V ar(XN ) = V ar(X) = [0.25, 0.525].
So, we have that σ = [0.5, 0.7245] (σ means typical deviation). Since x = 22.5 > E(XN ) by [21.35, 21.9]
minutes . Therefore, applying neutrosophic gamma distribution, we have probabilities are [0.0466, 0.05624]
and [0.9430, 0.9634]. Therefore, if we take P (XN ≥ 22.5) is [0.0466, 0.05624] and it is small, hence we should
conclude that our new maintenance technician randomly generated a period long-term maintenance, which
has a low probability to occur, or that is slower than the previous ones.

If we make this exercise in classical way, we will obtain P (X ≥ 22.5) = 0.04998 ∈ [0.0466, 0.05624] =
P (XN ≥ 22.5).

Proposition 2.7. Let XNn with n = 1, 2, 3, ... be independence neutrosophic random variables, for each
neutrosophic random variable with has neutrosophic exponential distribution. Then, XNn ∼ gamm(n, λ).

Theorem 2.8. Let XN be a neutrosophic random variable with neutrosophic gamma distributuon and let
c > 0 ∈ R, then cXN ∼ gamma(α, λ/c).

Proof. For x > I,

P (cX ≤ x− I) = P (X ≤ x− I

c

=

∫ x−I
c

0

(λu)α−1

Γ(α)
λe−λudu

=

∫ x−I

0

((λ/c)v)α−1

Γ(α)
(λ/c)e−(λ/c)vdv.
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2.6. Neutrosophic Beta Distribution in Neutrosophic Random Variables

Let XN be a neutrosophic random variable which has neutrosophic beta distribution with parameters
a > 0 and b > 0 where a or b or both are sets with two or more elements (may a or b or both are intervals),
and we write XN ∼ beta(a, b) and its neutrosophic density function is de�ned as follows:

fX(x− I) =
1

B(a, b)
(x− I)a−1(1 + I − x)b−1,

if I ≤ x ≤ 1 + I.
We shall recall that B(a, b) = Γ(a)Γ(b)

Γ(a+b) . It is easy to check that E(XN ) = a
a+b + I.

By using the software project for statistical computing R we can obtain the values of the function β(x−I)
using the beta(x) command. The values of the density function fX(x− I) are obtained as follows

# dbeta (x , a , b ) Evaluate f ( x ) in the d i s t r i b u t i o n beta (a , b)
> dbeta ( 0 . 3 , 1 , 2 )
[ 1 ] 1 . 4
> dbeta ( 1 . 3 , 1 , 2 )
[ 2 ] 2 . 6

where x = 0.7 and I = [0, 1], we had the following probability [1.4, 2.6].

Example 2.9. A wholesale gasoline distributor has large-capacity storage tanks with a �xed supply, which
are �lled every Monday with indeterminacy 20%. He wants to know the percentage of gasoline sold during
the week. After several weeks of observation, the wholesaler discovers that this percentage could be described
by a neutrosophic beta distribution with a = 4 and b = 2. He wants to know the probability that sell less than
50 % of your stock in a week.

Solution To solve this exercise, we need to �nd P (XN < 0.5). Applying beta distribution,

P (XN < 0.5) = P (X < 0.5− I) = P (X < 0.5− 0.2) = 0.378.

Therefore, probability of wholesale sells less than 50 of your stock in a week is 0.378.

Proposition 2.10. Let XN and YN be two independence neutrosophic random variables with neutrosophic
distribution gamma(a, λ) and gamma(b, λ), respectively. Then,

XN

XN + YN
∼ beta(a, b).

Theorem 2.11. If XN ∼ beta(a, b), then 1−XN ∼ beta(b, a).

Proof. For any x ∈ (I, 1 + I) and making a change of variable v = 1− u,

P (1−X ≤ x+ I) = P (X ≥ 1− x− I)

=

∫ 1

1−x−I
ua−1(1− u)b−1du

=

∫ x−I

0
vb−1(1− v)a−1dv.
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3. Conclusion

The neutrosophic probability distributions only deal with the speci�ed undetermined values. In this
paper, we contributed to the study of classical distributions and classical neutrosophic probability distribution
and applied them in neutrosophic random variable an we de�ne its continuous distribution. We called these
distributions neutrosophic continuous distributions in neutrosophic random variables. On the other hand,
We conclude from this paper that the neutrosophic continuous distributions in neutrosophic random variables
gives us a more general and clarity study of the studied issue. In this paper, we presented several solved for
the problems that classic logic and classical neutrosophic probability. We look forward in the future to study
other types of neutrosophic distributions in random variables that have not yet been studied.

Funding

This research received no external funding.

Con�icts of Interest

The authors declare no con�ict of interest.

Data availability statement

This manuscript has no associated data.

Acknowledgements

The authors are very grateful to the referees for their careful reading with corrections and useful com-
ments, which improved this work very much.

References

[1] M. Abdel-Basset, N. A. Nabeeh, H. A. El-Ghareeb and A. Aboelfetouh, Utilizing Neutrosophic Theory to Solve Transition
Di�culties of IoT-Based Enterprises, Enterprise Information Systems, 14(9-10)(2019), 1304�1324.

[2] R. Alhabib, M. M. Ranna, H. Farah and A. Salama, Some Neutrosophic Probability Distributions, Neutrosophic Sets and
Systems, 22(2018), 30�38.

[3] R. Alhabib and A. A. Salama, The Neutrosophic Time Series-Study Its Models (Linear-Logarithmic) and test the Coe�-
cients Signi�cance of Its linear model, Neutrosophic Sets and Systems, 33(2020), 105�115.

[4] R. Alhabib and A. A. Salama, Using Moving Averages To Pave The Neutrosophic Time Series, International Journal of
Neutrosophic Science, 3(1)(2020), 14�20.

[5] M. Ali, F. Smarandache, M. Shabir and L. Vladareanu, Generalization of Neutrosophic Rings and Neutrosophic Fields,
Neutrosophic Sets and Systems, 5(2014), 9�14.

[6] J. Anuradha and V. S, Neutrosophic Fuzzy Hierarchical Clustering for Dengue Analysis in Sri Lanka, Neutrosophic Sets
and Systems, 31(2020), 179�199.

[7] M. Bisher and A. Hatip, Neutrosophic Random variables, Neutrosophic Sets and Systems, 39(2021), 45�52.
[8] A. Chakraborty, B. Banik, S. P. Mondal and S. Alam, Arithmetic and Geometric Operators of Pentagonal Neutrosophic

Number and its Application in Mobile Communication Service Based MCGDM Problem, Neutrosophic Sets and Systems,
32(2020), 61�79.

[9] S. Das, R. Das, C. Granados, A. Mukherjee, Pentapartitioned neutrosophic Q-ideals of Q-algebra, Neutrosophic Sets and
Systems 41(2021), 53-63.

[10] S. Das, R. Das, C. Granados, Topology on quadripartitioned neutrosophic sets, Neutrosophic Sets and Systems 45(2021),
54-61.

[11] O. A. Ejaita and P. Asagba ,An Improved Framework for Diagnosing Confusable Diseases Using Neutrosophic Based Neural
Network, Neutrosophic Sets and Systems, 16(2017), 28�34.

[12] L. Esther Valencia Cruzaty, M. Reyes Tomalá and C. Manuel Castillo Gallo, A Neutrosophic Statistic Method to Predict
Tax Time Series in Ecuador, Neutrosophic Sets and Systems, 34(2020), 33�39.

[13] C. Granados, New results on neutrosophic random variables. Neutrosophic Sets and Systems, 47(2021), 286-297.



C. Granados, A.K. Das, B. Das, Adv. Theory Nonlinear Anal. Appl. 6 (2022), 380�389. 389

[14] C. Granados and J. Sanabria, On independence neutrosophic random variables, Neutrosophic Sets and Systems, 47(2021),
541-557.

[15] C. Granados and A. Dhital, Statistical Convergence of Double Sequences in Neutrosophic Normed Spaces, Neutrosophic
Sets and Systems, 42(2021), 333�344.

[16] C. Granados, A. Dhital, New results on Pythagorean neutrosophic open sets in Pythagorean neutrosophic topological
spaces, Neutrosophic Sets and Systems 43(2021), 12-23.

[17] C. Granados, Una nueva noció de conjuntos neutrosó�cos a través de los conjuntos ∗b-abiertos en espacios topológicos
neutrosó�cos, Eco Matemático 12(2)(2021), 1-12.

[18] C. Granados, Un nuevo estudio de los conjuntos supra neutrosophic crisp, Revista Facultad de Ciencias Básicas 16(2)(2020),
65-75.

[19] K. Hamza Alhasan and F. Smarandache, Neutrosophic Weibull distribution and Neutrosophic Family Weibull Distribution,
Neutrosophic Sets and Systems, 28(2019), 191�199.

[20] H. Kamaci, Neutrosophic Cubic Hamacher Aggregation Operators and Their Applications in Decision Making, Neutro-
sophic Sets and Systems, 33(2020), 234�255.

[21] W. B. V. Kandasamy and F. Smarandache, Neutrosophic Rings, Hexis, Phoenix, Arizona: In�nite Study, 2006.
[22] M. M. Lotfy, S. ELhafeez, M. Eisa and A. A. Salama, Review of Recommender Systems Algorithms Utilized in Social

Networks based e-Learning Systems & Neutrosophic System, Neutrosophic Sets and Systems, 8(2015), 32�41.
[23] N. A. Nabeeh, M. Abdel-Basset and G. Soliman, A model for evaluating green credit rating and its impact on sustainability

performance, Journal of Cleaner Production, 280(1)(2021), 124�299.
[24] N. A. Nabeeh, F. Smarandache, M. Abdel-Basset, H. A. El-Ghareeb and . A. Aboelfetouh, An Integrated Neutrosophic-

TOPSIS Approach and its Application to Personnel Selection: A New Trend in Brain Processing and Analysis, IEEE
Access, 29734�29744, 2017.

[25] N. A. Nabeeh, M. Abdel-Basset, H. A. El-Ghareeb and A. Aboelfetouh , Neutrosophic Multi-Criteria Decision Making
Approach for IoT-Based Enterprises, IEEE Access, 2019.

[26] N. Olgun and A. Hatip, The E�ect Of The Neutrosophic Logic On The Decision Making, in Quadruple Neutrosophic
Theory And Applications, Belgium, EU, Pons Editions Brussels, 2020, 238�253.

[27] S. K. Patro and F. Smarandache, The neutrosophic statistical distribution, more problems, more solutions, Neutrosophic
Sets and Systems, 12(2016), 73�79.

[28] R. Sahin, Neutrosophic Hierarchical Clustering Algoritms, Neutrosophic Sets and Systems, 2(2014), 19�24.
[29] M. Sahin, N. Olgun, V. Uluçay, A. Karg�n and F. Smarandache, A New Similarity Measure Based on Falsity Value between

Single Valued Neutrosophic Sets Based on the Centroid Points of Transformed Single Valued Neutrosophic Numbers with
Applications to Pattern Recognition, Neutrosophic Sets and Systems, 15(2017), 31�48.

[30] A. Salama, A. Sharaf Al-Din, I. Abu Al-Qasim, R. Alhabib and M. Badran, Introduction to Decision Making for Neutro-
sophic Environment Study on the Suez Canal Port, Neutrosophic Sets and Systems, 35(2020), 22�44.

[31] Salama.A.A, Smarandache. F, Neutrosophic Crisp Set Theory. Education Publishing, Columbus, 2015.
[32] Salama. A.A, Smarandache. F, and Kroumov. V, Neutrosophic Crisp Sets & Neutrosophic Crisp Topological Spaces.

Neutrosophic Sets and Systems, Vol. 2, pp.25-30, 2014.
[33] G. Shahzadi, M. Akram and A. B. Saeid, An Application of Single-Valued Neutrosophic Sets in Medical Diagnosis, Neu-

trosophic Sets and Systems, 18(2017), 80�88.
[34] F. Smarandache, Neutrosophic Set a Generalization of the Intuitionistic Fuzzy Sets, Inter. J. Pure Appl. Math., 2005,

287�297.
[35] F. Smarandache, Introduction to Neutrosophic Statistics, USA: Sitech & Education Publishing, 2014.
[36] F. Smarandache, Introduction to Neutrosophic Measure, Neutrosophic Integral and Neutrosophic Probability, Craiova,

Romania: Sitech - Education, 2013.
[37] F. Yuhua, Neutrosophic Examples in Physics, Neutrosophic Sets and Systems, 1(2013), 26�33.
[38] M. B. Zeina, Neutrosophic Event-Based Queueing Model, International Journal of Neutrosophic Science ,6(1)(2020), 48�55.
[39] M. B. Zeina, Erlang Service Queueing Model with Neutrosophic Parameters, International Journal of Neutrosophic Science,

6(2)(2020), 106�112.


	1 Introduction and Background
	2 Main Results
	2.1 Neutrosophic Possion Distribution in Neutrosophic Random Variables
	2.2 Neutrosophic Exponential Distribution in Neutrosophic Random Variables
	2.3 Relationship Between Neutrosophic Possion Distribution and Neutrosophic Exponential Distribution in Neutrosophic Random Variables
	2.4 Neutrosophic Uniform Distribution in Neutrosophic Random Variables
	2.5 Neutrosophic Gamma Distribution in Neutrosophic Random Variables
	2.6 Neutrosophic Beta Distribution in Neutrosophic Random Variables

	3 Conclusion

