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APPROXIMATION PROPERTIES OF BERNSTEIN’S SINGULAR
INTEGRALS IN VARIABLE EXPONENT LEBESGUE SPACES
ON THE REAL AXIS
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ABSTRACT. In generalized Lebesgue spaces LP() with variable exponent p ()
defined on the real axis, we obtain several inequalities of approximation by inte-
gral functions of finite degree. Approximation properties of Bernstein singular
integrals in these spaces are obtained. Estimates of simultaneous approxima-
tion by integral functions of finite degree in LP(") are proved.

1. INTRODUCTION

In this work we consider approximation properties of Bernstein’s singular inte-
grals for functions given in the variable exponent Lebesgue spaces LP(*) (R). This
scale of function spaces were studied in detail in books Uribe-Fiorenza [15], Dien-
ing, Harjulehto, Histo, Ruzicka [17] and Sharapudinov [40]. LP(*) (R) has many
applications in several branches of mathematics such as elasticity theory [50], fluid
mechanics [38], [37], differential operators [38], [1§], nonlinear Dirichlet bound-
ary value problems [32], nonstandard growth [50] and variational calculus. Vari-
able exponent works started with W. Orlicz [35] and developed in many direc-
tions. For example, LP(*) (R) is a modular space ( [33]) and under the condition
pt = esssupyerp () < 0o, LP®) (R) becomes a particular case of the Musielak-
Orlicz spaces [33]. Starting from nineties, studies on LP(*) (R) has reached a positive
momentum: See [32], [39], [20], [16] and many others.
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In variable exponent Lebesgue spaces on [0, 27| (or [0, 1]), some fundamental re-
sults corresponding to the approximation of function have been obtained by Shara-
pudinov [41145]. Some results on approximation in LP(®) ([0, 2]) or other function
classes can be seen e.g. in [1,/316,/8}/9,19,[21-25],27130,/48].

In this work, we aim to obtain simultaneous theorems on approximation by entire
functions of finite degree in variable exponent Lebesgue spaces on the whole real
axis R.

Approximation by entire function of finite degree in the real axis started by the
works of Bernstein [11|12], N. Wiener and R. Paley [36], N. I. Ahiezer [2], S. M.
Nikolskii [34]. Note that an entire function of finite exponential type is merely
an entire function of order 1 and finite type that in approximation theory, these
often play an important role similar to trigonometric polynomials in the case of
approximation of periodic functions.

Note that, some results on approximation by entire integral functions of finite de-
gree were obtained by Ibragimov [26] and Taberski [4647] in the classical Lebesgue
spaces LP (R).

We can give some required definitions. We denote by P the class of exponents
p(z) : R — [1, 00) such that p(x) is a measurable function and p(z) satisfy conditions

1 <p_ 1= essinfocap(s), p* = esssupecap () < 0. 1)
We define LP() := LP()(R) as the set of all functions f : R — C such that
(v)
f @
R

for some A > 0. The set of functions LP(), with norm

1) = in {n S0: 1 (j;) < 1}

p(z)
p(z)—1

is a Banach space.

For p € P we define its conjugate p'(z) := for p(z) > 1 and p/(z) := oo

for p(x) = 1.

For i € N, all constants ¢; (or ¢) will be some positive numbers such that ¢; will
depend on main parameters of the problem. In some cases we will use temporaryly
some generic constans C,c¢ > 0 for clarity (for example in statements of some
theorems). We will give explicit constants in the proofs but these constants are not
best constants.

Throughout this paper symbol 2 < B will mean that there exists a constant C
depending only on unimportant parameters in question such that inequality A <CB
holds.

Definition 1. Let PL°9 be a subclass ( [17]) of P such that there exist constants
ci, ¢ > 0, c3 € R with properties

Ip(z) —p(y)|In(e+1/[z —y|) <c1 < oo, Vr,y€R, (3)
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Ip(x) — es|In(e+ [z]) < ez <oo, VreR. (4)

2. TRANSFERENCE RESULT

Let Cg° be class of infinitely times continuously differentiable functions ¢ with
compact support spt¢ := {x € R: ¢ (z) # 0}. Let C(A) be the class of continuous
functions defined on A. Define || f|[q (4 := sup{|f (z)| : z € A} for f € C(A).

For given f € LP) we can define an auxiliary function as follows: Define

Fy(u)=Ff g (u /f (u+2) |G (x)|de, ueR, (5)
where G € L7 ) 0 C$° and G,y < 1. Also we set co:=||G|| ¢ g)-
Theorem 1. Let p € PL%9 and f,g € LPV). If

||Ff7G||c(R) § ||F ,GHc(R) )

with an absolute positive constant, then, we have following norm inequality

||f||p(.) S ||9||p()

with a positive constant depending only on p.

3. MOLLIFIERS AND FORWARD STEKLOV MEANS IN LP(")

Definition 2. Suppose that 0 < § < oo and 7 € R. We define ( [44)]) family of
translated Steklov operators {Ss .}, by

x+7+5/2
Ss.rf() 5/ Vdt, zeR (6)
+7—6/2

for locally integrable function f defined on R.

Let f and g be two real-valued measurable functions on R. We define the con-
volution f x g of f and g by setting (f x fR —y)dy for z € R for
which the integral exists in R.

The following result on mollifiers in variable exponent Lebesgue spaces is ob-
tained by D. Cruz-Uribe and A. Fiorenza (sce [14]).

Definition 3. Let ¢ € L' (R) and [, ¢ (t)dt = 1. For each t > 0 we define
o, (x) = %d) (%) Such sequence {¢,} will be called approxzimate identity. A function

¢ (z)= sup |¢(y)l

ly|=]z|

will be called radial majorant of ¢. If ¢ € L' (R), then, sequence {p,} will be called
potential-type approximate identity.
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Theorem 2. ( [14]) Suppose p € PL°9, f € LPU), ¢ is a potential-type approzimate
identity. Then, for any t > 0,

1 @ellpy S NN
and
}i_{% 1 ¢y — f||p(.) =0
hold with a positive constant depend on p.

As a corollary of Theorem [I| we have

Theorem 3. Suppose that p € PL°9, 0 < § < 0o and 7 € R. Then, the family
of operators {S5 - f}, defined by @, is uniformly bounded (in & and T) in LPC),
namely, for any 0 < 6 < oo and 7 € R norm inequality

1501y S 11
holds with a positive constant depend on p.

As a corollary of Theorem [3] we get
Corollary 1. Let p € P9, 0 < § < oo, f € LPV). If 7 = §/2 then,

1 1
Tof (@) = Ssopaf (@)= 5 [ Flasoyae
and

IT5f 10y < 1150
holds with a positive constant depend on p.

4. MODULUS OF SMOOTHNESS AND K-FUNCTIONAL
If fe LPO) and 0 <6 < oo, r € N, then
Q. (f, 5)p(.) = ||(I - T5)" f||p(‘) S ||f||p(.) : (7)

Here I is the identity operator. In what follows W/ (')7 r € N, will be the class of
functions f € LP() such that f("~1 is absolutely continuous and (" e LP().

Remark 1. Forpe P9 f ge LP0) and 0 < § < oo, the modulus of smoothness
Q. (f, 6)p(,), has the following usual properties:

(i) Q. (f, 5)p(,) is non-negative; non-decreasing function of 6 > 0;

(ZZ) Q. (f +9, )p() <Q, (fa .)p(') + Q, (g, )p();

(iti) lims o+ Qy (f,0),,) = 0;

(i) Q@ (f,0),0) S| f O,y forr €N, fe WP and § > 0.

Indeed: (ii) follows from definition. (iii) is follow from (7), (3.4) and Theorem
3.1 of [7]. (iv) follows from Lemma 3.2 of [7]. (i) follows from Lemmal[l] given below.
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Definition 4. Define, for f € LPO), p € PL°9 and § > 0,

2 % (1 ("
@) ()i=3 [ (5 [ e+vde)an
§/2 0
Remark 2. Note that, for 0 < § < 0o, p € PL°9 we know from Corollary that
1R f 10y < M50
and, hence, f —Rsf € LPO) for f € LPO),
We set R5f = (Rsf)" .
Lemma 1. Let 0 < h < § < o0, p € P9 and f € LP(). Then
I =Th) fllcy S N =T5) fll,, (8)
holds with a positive constant depend on p.
Lemma 2. Let 0 < § < 0o, p € PL%9 and f € LPO). Then
(T =Rs) Fllpy S NI =T5) flle.y
holds with a positive constant depend on p.

Remark 3. The function Rsf is absolutely continuous and differentiable a.e. (al-
most everywhere) on R (see [43, (5.2) of Theorem 4J).

The following lemma is obvious from definitions.

Lemma 3. Let 0 < § < oo, p € P9 and f € Wf('). Then

d d d d
%méf = m(;%f and £T§f = Té@f (9)

a.e. on R.

Lemma 4. Let 0 < § < 0o, p € PL°9 and f € LPV) be given. Then

d
—Rsf|| SN =Ts) flly (10)
dr () p(+)

holds with a positive constant depend on p.

|

The following lemma can be proved using induction on 7.

Lemma 5. Let 0 < § < oo, 7 —1 €N, p € PL9, and f € LP") be given. Then

dr , d dr—l
dx” of = %9‘{5 dxm—1

Modulus of smoothness ||(I — Ts)" fllp(.) and the K-functional

RS

g™

.7, pC) eC) — _ r
K (1500 wr0) e int {17 =l 40

p(')}

are equivalent:
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Theorem 4. Ifr e N, p e P9, f e LPO) and § > 0, then
I = T5)" fll,
K, (f,8: 100, wP0)

~1 (11)
p(+)
holds for some positive constants depend on p,r.

5. RESULTS ON SIMULTANEOUS APPROXIMATION

Let G, (X) be the subclass of entire integral functions f(z) of exponential type
< o that belonging to X and

Ao (fx = mi{[[f —gllx - g € G5 (X))}

Let C be the class of bounded uniformly continuous functions defined on R. We set
Goo0 = Go (C) and Gy () 1= Go (LPV)).
Remark 4. ( [10, definition given in (5.8)]) Let 0 >0, 1 <p < oo, f € L? (R),

9 (z) = 2sin (z/2) sgin(?)x/g)

™ x
and
J(f,0) :a/ f(x—u)d(ou)du
R

be the dela Valée Poussin operator ( [10, definition given in (5.3)]). It is known
(see (5.4)-(5.5) of [10]) that, if f € LP (R), 1 < p < oo, then,

(i) J (f,0) € Gag (L (R)),

(1) J (95,0) = go for any go € G, (LP (R)),

(i) | J (f,0) llr@) < 51 f Loy,

(i) (J (f,o) ™ = J (f),0) for any r € N and f € WP (R),

(v) ||J(f, %) — fllzrr) — 0 (as 0 — 00) and hence

| (J (f,%))(k) *f(k)HLp(R) — 0 as 0 — o0,

for fe WP (R) and 1 <k <r, i
(i) | =T (£, 5) || oy < F 57 1F O NlLowy for € WE(R).

Theorem 5. Let p € P9, ¢ >0, reN and f € W,?('). Then
1
A, < —A, (7 12
(ar < e (7)) (12)

holds with a positive constant depend on p,r.

Theorem 6. Letpc P9, 0 >0, k€N, r € {0}UN and f € WP Then

A0 () S S0 (f‘”, i) R (13)
"

0—”’
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with positive constants depend on p, k, 7.

Theorem 7. Let p € P9, ¢ >0 and g, € Gop()- Then, Bernstein’s inequality

1 (90) ™ oy S 0" 196l

holds with a positive constant depend on p,r.

Definition 5. [{7, p.161] For r,k € N, ¢ > 0, we define

k
G(o,rk,C) = Z kvv<i>g(0r5)

Forr > 1 (k+2) we set
27
1 t
Yro ::/ ( sin U) dt.
’ R t 2r

Let us introduce the Bernstein’s singular integral ( [47, p.161])

k+1
D, i f(2) /f G(o,r kyu—x)dt (14)

forr,k € N, 0 > 0, and measurable complex valued f satisfying fR lj_:_(sz)l du < co.

Remark 5. It is well known that, if .k € N, o € (0,00), r > % (k+2), then
Do rf € G (L7 (R)) forp > 1.( [{7 p.161))

Lemma 6. Ifr € N, o € (0,00), then,

(i) we have
g?r—1 / (sinv)%'d
= v
,y"',o' (2r)2T—1 R v
(i) (see, e.g. [13, (5)])
sinw\ 2" s r— r r— T T
Je (22)" dv=1 25 {(27")2 e er -2 () @ -4t }

(#ii) and, as a result,

027“71

— b,
(270)27’71
where b, is the right hand side of equality in (ii), having v terms.

Vro =

Define [a] :=min{n € N:n >a} and |¢| ;= max{n € Z:n < o}. We will take
r:= [ (k+2)] in the next Theorems.
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Theorem 8. Let p € P9 ke N, o0 >0, f € W,f('), then

1
bt ] .
17 = Dol S 2 £ (15)
holds with a positive constant depend on p, k.
Theorem 9. Let p € P9, ke N, 0 > 0. If f € LPU), then
Do ke f Il S NNy

holds with a positive constant depend on p, k.

Theorem 10. Let p € P*9 ke N, 0 >0, f € LP0), then

1
I = Dasdlyy S0 (17)
p(-)

holds with a positive constant depend on p, k.

Corollary 2. By Theorem@ ifr,keN, o€ (0,00), 7> %(k +2), then Dy f €
Gop() forp € PLog gnd f e LPO).

Theorem 11. Letr € N, p € P9 o > 0 and f € Wf(‘). Then for all k =
0,1,...,r, there exist positive constants depending only on k,r and p (-) such that

1
(k) _ (g <k>H < A, (£
Hf @)™ ) S o (f )p(_)

holds for any g5 € Gy p() satisfying Aq (f),y = I = 9511,

Theorem 12. Let r,s € N, p € PL°9 qnd f € Wf('). Then there exists a ® €
Gao p(-) such that for all k = 0,1,...,r inequalities

Hfac) _ (I)(k)H < L g <f<r>, 1)
p() T om R 77 ()
are hold with a positive constant depending only on k,r and p (-).

Definition 6. Set o,n >0, f € L* (R), O, f (z,y) := f(z +ny) and

Bof(w.t)i= [ O3 f (e h(unt)do

Remark 6. The following theorem was poved in [31|] for o = 2 with three minor
mistypes. For the sake of completeness here we will prove it when o > 0.

Theorem 13. Suppose that h(y,t), y,t € R, is positive measurable function with
respect to y and

Ah(y,t>dy51, /Ryyh;,(y,t)!dysl
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with constants independent of t. If o >0 and f € L' (R), then
sup [Bo f (-, t)| S Mf ()
>0
fort >0 and a.e. on R where M f is the Hardy-Littlewood mazimal function of f.

6. PROOF OF THE RESULTS

Let C'(A) be the class of continuous functions defined on A. For r € N, we define
C" (A) consisting of every member f € C(A) such that the derivative f*) exists and
is continuous on A for k =1,...,r. We set C® (A) := {f € C" (A) for any r € N}.
We denote by C. (A), the collection of real valued continuous functions on A and
support of f is compact set in A. We define C7 (A) := C" (A) N C. (A) for r € N
and C° (A) := C>® (A)NC. (A). Let LP (4), 1 < p < oo be the classical Lebesgue
space of functions on A.

Definition 7. ( [17]) Let N: ={1,2,3,- -} be natural numbers and Ny := NU {0}.
(a) A family Q of measurable sets E C R is called locally N-finite (N € N) if

Z xg (@) <N
EecQ

almost everywhere in R where xi; is the characteristic function of the set U.

(b) A family Q of open bounded sets U C R is locally 1-finite if and only if the
sets U € Q are pairwise disjoint.

(¢c) Let U C R be a measurable set and

1
Auf = U/ (0] de.

(d) For a family Q of open sets U C R we define averaging operator by
TQ : Llloc 4) LO?
TQf Z XU AUf7 T e Rv
veQ
where LY is the set of measurable functions on R.

(e) For a measurable set A C R, symbol |A| will represent the Lebesgue measure

of A.

Theorem 14. ( [17]) Suppose that p € P9, and f € LPY). If Q is 1-finite
family of open bounded subsets of R having Lebesgue measure 1, then, the averaging
operator Tg is uniformly bounded in LPO) | namely,

1TQflpy < callfllpe
holds with a positive constant cq4 depending only on p.

We define (f, g) fR x)dx when integral exists. We will need the follow-
ing Propositions.
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Proposition 1. ( [17]) Let p € PL°9. Then

1
= Il < sup (£ gl < 201111
12¢4 PO T e pronceeligl, <1 7t

holds for all f € LP().

Proposition 2. (a) C.(R) and C* (R) are dense subsets of L¥ (R), 1 < p <
0o.(Theorems 17.10 and 23.59 of [49, p. 415 and p. 575]).

(b) C.(R) contained L™ (R) but not dense (Remark 17.11 of [49, p.416]) in
L™ (R).

Theorem 15. Let p € P9, In this case,
a) i e LPO) | then, the function Fy := Fr ¢ defined in is a bounded,
f 1
uniformly continuous function on R,
(b)ifreN, and f € Wf('), then, % (Fy) exists and
k
i (Fr) = Fpo

forke{l,..,r}.

Proof. (a) Since C§° is a dense subset of LP(), we consider functions f € C§° and
its corresponding F ¢ given in . For any & > 0, there exists § := 0 (¢) > 0 so

that
€

< —

1+ |sptG]
for any ui,us € R with |u; — ua| < 0, where sptG is the support of the function
GelLlOn C§°. Then, there holds inequality

|Ftc (u1) = Fiq (u2)] S/le(x+ul)—f(x+U2)||G(ff)\dff

[f (4 u1) = f (2 +u)

= [ ) - @) (G @) ds

< sup  |f(z+w) — f(z+w)l |Gl o
T,u1,us €EsptG

13
<—— (1 tG) |G,y <
< Ty (U 1P1GD 1G] < &

for any uy,us € R with |u; — us| < §. Thus conclusion of Theorem [15| follows. For
the general case f € LP() there exists an g € C§° so that

&
17 =9l < TTT sptc oo
for any £ > 0. Therefore

|Frc(u1) = Fra (u2)| = |Frg (u1) = Fya (ur)| + |Fy e (u1) — Fy e (u2)| +

3
+Fyc (u2) = Fra (u2)| = |Fr-g.c (w)| + 5 + |Fy—y.c (u2)]
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< 2(1+ [sptGl) o |lf = glly.0 + g <&

As a result Fy ¢ is uniformly continuous on R.
(b) is follow from definitions. O

Proof of Theorem[1l Let 0 < f,g € LP(). In this case there exists a constant
C > 0 such that

1P Gl < CI1Fye )llom = OH [otu+a)6 @i

C(R)

:Csup/Rg(u—i—xHG(xﬂdx:C sup /tgg(u+x)|G(x)|dx

u€R uesptG

<C sup |lg(ut )l l|Glloe < C(1+IspLGl) co llglly -

u€spt

On the other hand, for any £ > 0 and appropriately chosen G. e LP'C) with
. 1 ~
[o@6@de= glal, - |G

(see Proposition , one can find

1
1Fr6llom = 1Fre 0)] = / £ @16 @)l dz > 5= 1l ~ =

In the last inequality we take as ¢ — 0" and obtain

<1
p'(+)

3

1

F > — .

H f,G”c(R) 12¢, Hf||p(~)
Combining these inequalities we get

11,0 < 1264 |1 Frcllom < 1264C [ Fycllo
< 12¢4C (1 + [sptGl) co 9]l -
For general case f,g € LP() we obtain
[fllpy < 24ca (1+ |sptGl) coC [|gllyy (16)

and proof is finished. a

Remark 7. Note that, in @) constant depend on |sptG| and |G|, but it is
possible to avoid dependence on |sptG| and |G| .. To do so, we can change the
definition of Fy with

Fy (0)i= [ $1,/(0)|G (@)|do, u R
R
where G € LP'0) N C3° and G,y < 1. Now, boundedness of Syuf in L) for
any u € R, and the same procedure give (@ with a constant does not depend on

|sptG| and ||G||,. Hence, constants in other results can be free of dependence on
sptG| and |GII
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Proof of Lemmal1l Let 0 < h <§ < oo, p € PL°9 and f € LPC). Then, using
(T6) we get
(= T0) fllpy < 2des[|Fumrallom < 24 72ea|Funrellom
< 1728¢4 (1+ [sptGl) o (1 = T) 0, -
O

Proof of Lemma[g If [ € LP() | then, using generalized Minkowski’s integral
inequality and Lemma |l| we obtain

) h
?/6/2 (2/0 (f(x+t)—f(x))dt> dh
2

6
5@ r )

1 =) ) =

p(-)

2 6
<= Tsf = fllyey dh
5, st = Al

p(-)
2 )

< 1728¢q (1 + [sptG|) co [|T5 f — fll, .y 5/5/ dah
2

= 1728¢4 (1 + [sptG|) co (I = T5) £l -

O
Proof of Lemma[j] Using
1 Escns oyl = |9 (Fornn )| g, = 3160 g
< <2(37+146Wn2%) [[(I - T5) (Fr.6)ll o)
= 2(37+ 146 2%) | (Fr—11.6) o)
we conclude from Transference Result that
SR f) ey < es (L= T5) fll,qy -

with ¢ 1= 24cy (1 + [sptG|) co (37 4 1461n236) . O
Proof of Theorem[J] For r =1,2,3,... we consider the operator

jom 1= (o) = 30 ()

From the identity I — R} = (I — Rs) 3-7_ R} we find

r—1

I =25 glley < [ Do | I —Rs) gl
j=0
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with cg := 24cy (1 + |sptG]) cg. Therefore
r—1 ]
I =R gl < [ 172800 (L4 IsptGlyeo S b | 10T =Tl (17)
§=0
=cr7 ||(I = Tj) 9||p(.)
when 0 < 6§ < co, p € P and g € LP0). Since ||f —.Angp(,) = ||(I—£R§)Tf||p(.),
recursive procedure gives
If=A5f =N =RG)" fllpy < -+ < ezl =T5)" fll.
On the other hand, using Lemmas [5] and

dr d _ drl
O || 5 f :5’“15"%5ng-1f
@ P(") dz= " dz P()
dr—l
§C5(5T71 (I_T‘s)drlmr 1f <... <
p(-)
r— d r— T r
<ot tonsr-my | sl - T .
p(+)
Thus
Ky (£,6170,WE0) < If = A5 Sl + 07 | A5 f ()
() ()
: r ~|(r @ =)
<cr|(I—T5)" fl N |72 f(2)
—o ! \J p(+)
r—1
r s r r r (T_j)
< I =13) Sl + 5 3 |(7)] - 7o 82
=0 \J p()
r—1 r
<S8 gy + < 3| ()] 6 1T =T fl
7=0
<cs||(I - Tp)" Fllpey
where
r—1
r .
cg 1= max < c¢l,cp () cg
8 7 5; j 6

For the reverse of the last inequality, when g € W7 © , we get
Q (f,0)0y < (L4 ¢6)" 1f = gllyi) + (9.9,

T

< (L+ee) If =gl +27egd" |19 (18)

p()’
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and taking infimum on g € W) in we obtain

(1. 0)y) < (Lt eo) K (0270, W20)

Proof of Theorem [5 The following inequality
om 4"
Ao Do <1 =7 (15) o < T 771 llew, V7O ®
Dow < | =7 (£5)] o < T oW llem, ¥ €O ®)
known (see (vi) of Remark [4). Now using TR we find
57r 4"c . .
lr=7(r3)], Sy, VF € WO, (19)

*ZJT

Let r = 1. Suppose that
Ao () = I8 = G5 iy » 95F) € Gy
and N
= “(f dt.
Flo)= [ o
Then F € G, ( |26, p.397]). Setting
e(x)=f(z)—F (x)

one has

||<P/||p(.) =|f" - Q;(f/)Hp(.) = Ao (f/)p(A) :

@
<

Thus

A (Fpiy = Ao (F = F)y( 1o7rc6l 1GF=F)1l,

1071'(36

7TC6
= 1= Fllpy =

1 = a2l

1 !
= 107TC6;A0- (f )p() .

Now, result follows from the last inequality:

1 / r (")
Ao (yy < 10mes—Aq (f1),0) < -+ < (10mes)” —4, (1 )p(.).
[l
Proof of Theorem|[6. Let p € P19 ¢ >0, ke N, r € {0}UNand f € wre),
First we consider the case r = 0. For every g € W/ ©) we find

A, (f)p(.) <A, (f - 9) ) + A, (g)p(~)

57T4 Cg

S”f—g”p(.) o k”f ||p(~)'
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Taking infimum on g in the last inequality
o7 .
A, < koK ( §; LPO) W ))
(f)p() = Ce i f’ ) ) k ()
Now using
1
Ao () < C8514k069k = .
7o 2 T/ p)
In the second stage we consider the case r € N. In this case

r 1 .
Ao (Fly() < (10mee)” — A, <f< >)p(.)

1 1
< 5meg (10)" WTCZJA?%_I;QI@ (f(”, 0)
p()
0

Proof of Theorem[7 Let p € PX9, 0 > 0 and g, € Gop()- Then, Bernstein’s
inequality

1 9)" lo@) < o"llgalle®): V9o € G
and TR gives

1(90)"™ oy < €60" 9o llpys V9o € Gopre)-
0

Proof of Theorem [8 Define for k € N the classical modulus of smoothness of
function f € C (R) of step 6 > 0 by

wi (f,8)om) = |il\l<p<s HAffHC(R)

~\k ~
where AFf (1) == (I - Th> F)yThf () :=f(-+ h)and I is the identity operator.
From , one can write

Hf - Da,kf”c(]R) =

ﬂ /]R 2::) (1) (i)f (x+vt)g(o,rt)dt

Vro

C(R)

1 (2r)? !
< W/R|’Aff($)||C(R)g(0ﬂ“at)dtS W/ka (/i) ew) g (o,r t)dt

(2r)
9 2r—1 L 1 1 k
S (Z)%wk (fa ) / (t+> g(O',’f‘,t)dt
r0 g Cc(Rr) /R o

(2r) " ok 1 5] / 1)
< — t+ — t) dt
= b.o?2r=l gk / c®) Jr +a AC
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2k
e R R R L T

1 1
[t<z [t|>1

Using r = f% (k+2)]

2 2r—1 ok 1 ¢ 2r
%/ |t\k ( sin0> dt
bTCT r [t|>1/0 t 2r
9 2r—1 2k 1 + —
< (;A)ﬁ / — sin 7 dt
ro t>1/0 \t 27
- (27”)27‘71 2k: 0_27'—k+1 / sinu 2 dt 1 22krk
= — 7.
>~ bTo.Zr—l (2r)2r—k+1 R u Uk br

On the other hand
) 2r—1 Qk 1 + 2
Lf < sin J) dt
1t]<1/c

b0 1 gF £ ™" or
- 2r
(27‘)2T 1 Qk / 1 ot
S %% [ | 7singo ) dt
- br0'2r71 O'k R t S 2
) 2r—1 b Qk
o )2 rot Tl =
bro=r= (2r) o

Thus

92k ,.k i
1 = Deaflloy < (55 +2) 72 |79,
From this and TR we get

22k k A 1
|f—DU,kf|,,<,)gc6< - +2)0k)

1
= cge (k1) — H (*)
oo~ cec ) || f

Proof of Theorem[9 Fixed o > 0, we find

1)kt
| Dok Fllery = / F)G (0,1 — ) du
77‘0 C®)
19+1 _
o ez
’Y’I"O' v
C(R)
e k
/Z k v( > (x +vt) g (o,r t)vdt
7“’ vl C(R)

k

k
= Vr,o /]R;

(i) ' I (@ +vt)llow) 9 (o, 7,1) dt

p()

O
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( )‘ . /g<a,r,t>dt§k2‘“ 1l -

Now, transference result TR gives

Dok f .y < k2 cg 11l -

([l
Proof of Theorem [10, We can write
17 = Doefllyy = || £ = ALT + A f = Do s f 4 Dos T = Do
g g v g P
<|lr-ais] AL s Dondis]| Do s -5
7 lip() 7 o lp() 7 p(*)
1 1
< ckqy, (f, ) + cge (k) — H(A’if)(’“)H ¥ k2Peq HA’if - fH
9/ () o ’ p() ’ p()
ELy 4 1
< | ek +coc(k,r)ck Z ( ) c’g_j + 2 kcgek | Qu (f, )
- J g
=0 p(*)
1
= CQQk <f7 )
T/ p()
and the result follows. O

Proof of Theorem [11] Let q € G, and A, (f(k))p(.) = Hf(k) — qu(,) . Then

|7~ (@) ot |7 (.o ® — (92)(’“)”1)()

< [#9 =0
p() + Hq -/ (f(k)’ J)

< (k) H (k) H k. k o x
<, (1) H |7 (a=1©0)| | +2teodt 19 (10) il

p(-)

< [r% -4

+ || (o) =)™

r() r()

< (14+300) Ay (10) 4 2beso® 17 (£,0) = 7 (55,0

2cg (5rar—1)" 2cg (5rar—1)"
S (1 + 306) %Ag <f(7“))p() + 30%2]{:%140 <f(7“)>p()

< (2e6 (5m4771)") (1 + Bes + c32") Ly (s (T))p@ = c100" "4, (1 (T)>p<->

0-7"
and the proof of Theorem [L1]|is completed. O
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Proof of Theorem [18 Let g; € Go, Ao (f),) = |f — g5l and © = J (f,0).
Then

1f = T (Ml < I1F =95+ 6% = T (£l
= [1f g%+ T (95:0) = T (£.0) |
< Ay (£ 306 1 = 92,0y = (14 3c6) Ax ()0

and
1f =T (f, o)) < (14 3c6) Ao (f) (.
1
< (14 3cg) Bres (10)" 77y 12271 = q, (fm, 1/0) .
g (-
Now, from
. meg (10) 77cy i1 o1
17 = a5l < TR, (0,2
p(*)
we obtain )
* C11 (r)
19 (7.0) = 5, < 20 (1 ,U>p(')
with
ci1 = meg (10)" w"ef 1227 (14 3¢6) 5+ 1).
Hence

(FASE ARSI
< ClOUkirAa (f(r)) + QkCGO—k2 s (f(r)v 1>
9/ p()

10) "
< (Cm PCy 4°cq + 2kCGC11> oF T, (f(?')’ 1/0)17(')
and the proof is completed. O
Proof of Theorem [13 Given x € R, let

Y
= [ O/ @uwdi y>0.

)
and a,b > 0. Integration by parts gives
b b

Oz f(z,y)h(y,t)dy = [ h(yt)dl (y)

—a —a

b
=T (y)hyt) |, —/ hy (y,t) T (y) dy.

—a

<[ 7~ (@)™
p()

o @@ =]

Since I' (y) < |y| M f (z) we obtain

b b
' Oz f (,y) h(y.t)dy SMf(x)</_ !yh;(y>t)!dy+h(y7t)|b_a>~

—a
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Now
b b
2> [ Wty = [ hdy=nt) = [ ot dy
gives
b
| 021 ) hw ) dy| < (er2 + 2000) M1 (2)
for any ¢ > 0. The last inequality implies the result. O
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