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Abstract
This manuscript is devoted to investigate the existence, uniqueness and stability of pantograph equations
with Hilfer generalized proportional fractional derivative. The concerned results are obtained using
standard theorems.
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1. Introduction
In the present paper, we will derive some sufficient conditions on existence and stability results for pantograph

equation involving fractional order of the form{
Dα,β,ϑ;ψh(t) = g(t, h(t), h(λt)), t ∈ J := [a, b],

I 1−ν,ϑ;ψh(t)| = h0
(1.1)

where, Dα,β,ϑ;ψ is ψ-Hilfer proportional fractional derivative of orders α ∈ (0, 1), β ∈ [0, 1] and ϑ ∈ (0, 1], I 1−ν,ϑ:ψ

is ψ-fractional integral of orders 1− ν(ν = α+ β − αβ). Let g be the continuous function from J into R×R and h is
the given function.

Fractional calculus is extension of ordinary differentiation and integration to arbitrary order (non-integer). In
recent years, fractional differential equations (FDE) arise naturally in various fields such as science and engineering.
Theory of FDE has been extensively studied by many authors, see [1–9].

It is renowned that, within the settled scenario, there’s an awfully special delay equation called the pantograph
equations. In the following years, the pantograph equation became a prime example for a delay differential equation.
The pantograph equations have been well studied over the last several decades, refer to [10–12].
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Most recently a fractional derivative with kernel of function is introduced by Vanterler Da C. Sousa and the
classical properties with transformation of existing fractional derivative is discussed in [8, 13]. Motivated by
the above mentioned work, we introduce a new generalized fractional calculus based on a special case of the
proportional derivatives discussed in [14]. There are three features for our new generalized proportional fractional
(GPF) derivative that make it different and distinctive: the kernel of the fractional operator contains exponential
function, the generated fractional integrals possess a semi-group property and the obtained operators provide
undeviating generalization to the existing Riemann-Liouville and Caputo fractional derivatives and integrals when
the order 0 tends to 1.

The paper is organized as follows. In section 2, we declare the weighted spaces, basic definitions and results
for proportional derivatives and their corresponding integral equation. In Section 3, we analyze the existence,
uniqueness and stability results for proposed problem.

2. Preliminaries
Let J(0 ≤ a ≤ b) be a finite interval. The space of continuous function h, defined by C associated with the norm

‖h‖Cν,ψ = sup {|h(t)| : t ∈ J} .

We denote the weighted spaces of all continuous functions defined by

Cν,ψ = {g : J → R : (ψ(t)− ψ(a))
ν
g(t) ∈ C} , 0 ≤ ν < 1,

with the norm
‖g‖Cν,ψ = sup

t∈J
|(ψ(t)− ψ(a))

ν
g(t)| .

The weighted space Cnν,ψ of functions g on J is defined by

Cnν,ψ =
{
g : J → R : g(t) ∈ Cn−1; g(t) ∈ Cν,ψ

}
, 0 ≤ ν < 1,

with the norm

‖g‖Cnν,ψ =

n−1∑
k=0

∥∥gk∥∥
C

+ ‖gn‖Cν,ψ .

For n = 0, we have, C0
ν = Cν .

Here, we present the following weighted space for our problem as follows

Cα,β1−ν;ψ =
{
g ∈ C1−ν;ψ,D

α,β,ϑ;ψg ∈ Cν;ψ
}
,

and
Cν1−ν;ψ =

{
g ∈ C1−ν;ψ,D

ν,ϑ;ψg ∈ C1−ν;ψ
}
.

It is obvious that
Cν1−ν;ψ ⊂ C

α,β
1−ν;ψ.

Definition 2.1. [14] If ϑ ∈ (0, 1] and α ∈ C with <(α) > 0. then the fractional integral

(
I α,ϑ;ψh

)
(t) =

∫ t

0

ψ
′
(s)e

ϑ−1
ϑ (ψ(t)−ψ(s)) (ψ(t)− ψ(s))

α−1

ϑαΓ(α)
h(s)ds. (2.1)

Definition 2.2. [14] If ϑ ∈ (0, 1] and α ∈ C with <(α) > 0 and ψ ∈ C[a, b], where ψ
′
(s) > 0, the GPF derivative of

order α of the function h with respect to another function isdefined by with ψ
′
(t) 6= 0 is describe as

(
Dα,ϑ;ψh

)
(t) =

(
1

ψ′(t)

d

dt

)n ∫ t

0

ψ
′
(s)e

ϑ−1
ϑ (ψ(t)−ψ(s)) (ψ(t)− ψ(s))

n−α−1

Γ(n− α)
h(s)ds. (2.2)

Definition 2.3. [14] If ϑ ∈ (0, 1] and α ∈ C with <(α) > 0 and ψ ∈ C[a, b], where ψ
′
(s) > 0, the GPF derivative in

Caputo sence of order α of the function h with respect to another function isdefined by with ψ
′
(t) 6= 0 is describe as(

Dα,ϑ;ψh
)

(t) = I n−α,ϑ;ψ (Dn,ϑ;ψh
)

(t). (2.3)
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Definition 2.4. The ψ-Hilfer GPF derivative of order α and type β over h with respect to another function is defined
by (

Dα,β,ϑ;ψh
)

(t) = I β(1−α),ϑ;ψ (D1,ϑ;ψ
)
I (1−β)(1−α),ϑ;ψh(t). (2.4)

Next, we shall give the definitions and the criteria of generalized Ulam-Hyers-Rassias(UHR) stability. Let ε > 0
be a positive real number and ϕ : J → R+ be a continuous function. We consider the following inequalities:∣∣Dα,β;ψv(t)− g (t, v(t), v(t))

∣∣ ≤ ϕ(t). (2.5)

Definition 2.5. Eq. (1.1) is generalized UHR stable with respect to ϕ ∈ C1−ν,ψ if there exists a real number Cg,ϕ > 0
such that for each solution v ∈ C1−ν,ψ of the inequality (2.5) there exists a solution h ∈ C1−ν,ψ of Eq. (1.1) with

|v(t)− h(t)| ≤ Cg,ϕϕ(t).

Lemma 2.1. Let α, β > 0, then we have the following semigroup property

(I α,ϑ;ψI β,ϑ;ψg)(t) = (I α+β,ϑ;ψg)(t),

and
(Dα,ϑ;ψI α,ϑ;ψg)(t) = g(t).

Lemma 2.2. Let n− 1 < α < n where n ∈ N,ϑ ∈ (0, 1], 0 ≤ β ≤ 1, with ν = α+ β(n− α), such that n− 1 < ν < n. If
g ∈ Cν and In−ν,ϑ;ψg ∈ Cnν , then

(I α,ϑ;ψI α,β,ϑ;ψg)(t) = g(t)−
n∑
k=1

e
ϑ−1
ϑ (ψ(t)−ψ(s))(ψ(t)− ψ(s))ν−k

ϑν−kΓν − k + 1
I k−ν,ϑ;ψ(a),

Lemma 2.3. (Grönwall’s Lemma [13]) Let α > 0, a(t) > 0 is locally integrable function on J and if g(t) be a increasing and
nonnegative continuous function on J , such that |g(t)| ≤ K for some constant K. Moreover if h(t) be a nonnegative locally
integrable function on J with

h(t) ≤ a(t) + g(t)

∫ t

0

ψ
′
(s) (ψ(t)− ψ(s))

α−1
h(s)ds, (t) ∈ J,

with some α > 0. Then

h(t) ≤ a(t) +

∫ t

0

[ ∞∑
n=1

(g(t)Γ(α))n

Γ(nα)
ψ
′
(s) (ψ(t)− ψ(s))

nα−1

]
a(s)ds, (t) ∈ J.

Theorem 2.1. (Schauder fixed point theorem, [15]) Let B be closed, convex and nonempty subset of a Banach space C. Let
T : B → B be a continuous mapping such that T (B) is a relatively compact subset of C. Then T has at least one fixed point
in B.

Lemma 2.4. A function h is the solution of (1.1), if and only if h satisfies the random integral equation

h(t) =
h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds. (2.6)

3. Main results
Utilizing the concept of Theorem 2.1, we obtain the following results for the proposed problem (1.1). First, we

declare the hypotheses used to obtain the result:

(H1) There exists a constant `, such that

|g(·, h1(·), h2(·))− g(·, y1(·), y2(·))| ≤ ` (|h1 − y1|+ |h2 − y2|) .
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(H2) There exists an increasing function ϕ ∈ C1−ν,ψ and there exists λϕ > 0 such that for any t ∈ J

Iα;ψϕ(t) ≤ λϕϕ(t).

Theorem 3.1. Assume that hypothesis (H1) is satisfied. Then, Eq.(1.1) has at least one solution.

Proof. Consider the operator T : C1−ν,ψ → C1−ν,ψ. Hence h is a solution for the problem (1.1) if and only if
h(t) = (T h) (t), where the equivalent integral Eq. (2.6) which can be written in the operator form

(T h) (t) =
h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds. (3.1)

Clearly, the fixed points of the operator T is solution of the problem (1.1). Set g̃ = g(s, 0, 0). For any h, we have∣∣∣(T h) (t) (ψ(t)− ψ(a))
1−ν
∣∣∣

≤ h0
ϑν−1Γ(ν)

+
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |g(s, h(s), h(λs))| ds

≤ h0
ϑν−1Γ(ν)

+
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |g(s, h(s), h(λs))− g(s, 0, 0) + g(s, 0, 0)| ds

≤ h0
ϑν−1Γ(ν)

+
2` (ψ(t)− ψ(a))

1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖h‖C1−ν,ψ

+
(ψ(t)− ψ(a))

1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖g̃‖C1−ν,ψ

≤ h0
ϑν−1Γ(ν)

+
`

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖h‖C1−ν,ψ

+
B(ν, α)

ϑαΓ(α)
(ψ(b)− ψ(a))α ‖g̃‖C1−ν,ψ

This proves that T transforms the ball Br =
{
h ∈ C1−ν,ψ : ‖h‖C1−ν,ψ

≤ r
}

, into itself. We shall show that the
operator T : Br → Br satisfies all the conditions of Theorem 2.1. The proof will be given in the following steps.
Step 1: T is continuous.

Let hn be a sequence such that hn → h in C1−ν,ψ . Then, for each t ∈ J ,∣∣∣((T hn) (t)− (T h) (t)) (ψ(t)− ψ(a))
1−ν
∣∣∣

≤ (ψ(t)− ψ(a))
1−ν

ϑαΓ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |g(s, hn(s), hn(λs))− g(s, h(s), h(λs))| ds

≤ (ψ(t)− ψ(a))
1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(s))α+ν−1 ‖g(·, hn(·), hn(·))− g(·, h(·), h(·))‖C1−ν,ψ

≤ 1

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖g(·, hn(·), hn(·))− g(·, h(·), h(·))‖C1−ν,ψ

.

Due to continuity of g, we have
‖T hn −T h‖C1−ν,ψ

→ 0 as n→∞.

Step 2: T (Br) is uniformly bounded.
This is clear since T (Br) ⊂ Br is bounded.
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Step 3: We show that T (Br) is equi-continuous.
Let t1 > t2 ∈ J with Br be a bounded set of C1−ν,ψ as in Step 2, and h ∈ Br. Then∣∣∣∣(ψ(t1)− ψ(a))1−ν (T h) (t1)− (ψ(t2)− ψ(a))1−ν (T h) (t2)

∣∣∣∣
≤
∣∣∣∣ (ψ(t1)− ψ(a))1−ν

ϑαΓ(α)

∫ t1

a

e
ϑ−1
ϑ (ψ(t1)−ψ(a))ψ

′
(s)(ψ(t1)− ψ(s))α−1g(s, h(s), h(λs))ds

− (ψ(t2)− ψ(a))1−ν

ϑαΓ(α)

∫ t2

a

e
ϑ−1
ϑ (ψ(t2)−ψ(a))ψ

′
(s)(ψ(t2)− ψ(s))α−1g(s, h(s), h(λs))ds

∣∣∣∣
≤ 1

ϑαΓ(α)

∫ τ1

a

[
(ψ(τ1)− ψ(a))

1−ν
(ψ(τ1)− ψ(s))

α−1
(ψ(τ2)− ψ(a))

1−ν
(ψ(τ2)− ψ(s))

α−1
]

× ψ
′
(s) |g(s, h(s), h(λs))| ds

+
1

ϑαΓ(α)

∫ τ1

τ2

(ψ(τ2)− ψ(a))
1−ν

(ψ(τ2)− ψ(s))
α−1

ψ
′
(s) |g(s, h(s), h(λs))| ds

right hand side of the inequality approaches to zero, as t1 → t2. Therefore by Steps 1-3 together with the Arzela-
Ascoli theorem, we say that T is continuous and compact. Hence by Theorem 2.1, the operator T has a fixed point
which is a solution of the problem (1.1).

Lemma 3.1. Assume that the hypothesis (H1) is satisfied. If

2`

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α < 1.

Then, problem (1.1) has a unique fixed point.

Proof. Consider the operator T : C1−ν,ψ → C1−ν,ψ defined by

(T h) (t) =
h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds.

Clearly the operator T is well defined. Now for any h1, h2 ∈ C1−ν , we attain∣∣∣((T h1) (t)− (T h2) (t)) (ψ(t)− ψ(a))
1−ν
∣∣∣

≤ (ψ(t)− ψ(a))
1−ν

ϑαΓ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |g(s, h1(s), h1(λs))− g(s, h2(s), h2(λs))| ds

≤ 2` (ψ(t)− ψ(a))
1−ν

ϑαΓ(α)
B(ν, α)(ψ(t)− ψ(a))α+ν−1 ‖h1 − h2‖C1−ν,ψ

≤ 2`

ϑαΓ(α)
B(ν, α)(ψ(b)− ψ(a))α ‖h1 − h2‖C1−ν,ψ

.

It follows that T has a contraction map, there exists a unique solution of problem (1.1).

Theorem 3.2. The hypotheses (H1) and (H2) are satisfied. Then Eq. (1.1) is g-UHR stable.

Proof. Let v be solution of inequality (2.5) and by Theorem 3.1, h is a unique solution of Eq. (1.1) is as follows

h(t) =
h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

+
1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds.
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By inequality (2.5), we obtain∣∣∣∣v(t)− h0
ϑν−1Γ(ν)

e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

− 1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, v(s), v(λs))ds

∣∣∣∣ ≤ λϕϕ(t).

Hence for every t ∈ J , we have

|v(t)− h(t)|

≤
∣∣∣∣v(t)− h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

− 1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, h(s), h(λs))ds

∣∣∣∣
≤
∣∣∣∣v(t)− h0

ϑν−1Γ(ν)
e
ϑ−1
ϑ (ψ(t)−ψ(a))(ψ(t)− ψ(a))ν−1

− 1

ϑαΓ(α)

∫ t

a

e
ϑ−1
ϑ (ψ(t)−ψ(s))ψ

′
(s)(ψ(t)− ψ(s))α−1g(s, v(s), v(λs))ds

∣∣∣∣
+

1

ϑαΓ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |g(s, v(s), v(λs))− g(s, h(s), h(λs))| ds

≤ λϕϕ(t) +
2`

Γ(α)

∫ t

a

ψ
′
(s)(ψ(t)− ψ(s))α−1 |v(s)− h(s)| ds.

By Lemma 2.3, there exists a constant c > 0 such that

|v(t)− h(t)| ≤ Cg,ϕλϕϕ(t).

Hence, Eq. (1.1) is g-UHR stable.

4. Conclusion
We have studied a nonlinear fractional differential equation with unknown function together with its lower-

order fractional derivative. Several existence and uniqueness results have been derived by applying different tools
of the fixed point theory. Our results are quite general and give rise to many new cases by assigning different values
to the parameters involved in the problem.
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