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Abstract. In this paper, we show that if M is a non-zero Artinian R-module

and x := x1, . . . , xn is an M -coregular sequence, then x1, . . . , xn is a D(H
x
n(M))-

coregular sequence. Moreover, if R is complete with respect to I-adic topology

and d = NdimM , then dimHI
d (M) ≤ d and depthHd

I (M) ≥ min{2, d} when-

ever HI
d (M) 6= 0.
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1. Introduction

In this paper, R is a Noetherian commutative ring with identity, I is an ideal of

R and M is an R-module. The theory of local homology was initiated by Matlis

[10] in 1974. This theory was studied and improved by Simon [15], Greenlees and

May [8], Tarŕıo, López and Lipman [17]. In [4], Cuong and Nam defined the local

homology modules HI
i (M) of M with respect to I by

HI
i (M) = lim←−

t

TorRi (R/It,M).

This concept in some sense is dual to Grothendiecks definition of local cohomol-

ogy modules. Also, this definition of local homology modules coincides with the

definition of Greenlees and May [8] when M is an Artinian R-module.

The aim of this paper is to provide some properties of coregular sequences which

are used in investigation top local homology modules. This work is inspired by some

results in [2]. We see in Theorem 3.7 that if M is a non-zero Artinian R-module

and x := x1, . . . , xn is an M -coregular sequence, then x1, . . . , xn is a D(H
x
n(M))-

coregular sequence. Let M be an Artinian R-module of Noetherian dimension n and

I an ideal of R, the top local homology module HI
n(M) is not finitely generated

in general. Under condition R is complete with respect to I-adic topology, we

shall prove in Theorem 3.12 that dimHI
n(M) ≤ n and depthHn

I (M) ≥ min{2, n}
whenever HI

n(M) 6= 0.
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Throughout, for any ideal I of R, the set {m ∈ M | Im = 0} is denoted by

0 :M I. For each R-module M, we denote by CoassRM the set of all coassociated

prime ideals of M (see [18]). Also, we say that R is complete with respect to I-

adic topology if R ∼= HI
0 (R). If (R,m) is a local ring and M is an R-module, then

the Matlis duality of M is denoted by D(M). The projective dimension and flat

dimension of R-module M are denoted by pdR M and fdRM, respectively. Many

basic properties of local homology modules can be found in [4].

2. Preliminaries

First, we recall the definition of an M -coregular sequence. The concept of coreg-

ular sequence was introduced by Matlis [10] as a natural dual of the concept regular

sequence.

Definition 2.1. ([10]) Let M be an R-module. An element x ∈ R is called coregular

for M (or M -coregular) if M = xM.

A sequence x1, x2, . . . , xn ∈ R is called M -coregular sequence if

(i) xi is 0 :M (x1, x2, . . . xi−1)-coregular for all i = 1, 2, . . . , n;

(ii) 0 :M (x1, x2, . . . xn) 6= 0.

We denote by WidthI(M) the supremum of the lengths of all maximal M -

coregular sequences in I. If M is an Artinian R-module such that 0 :M I 6= 0,

then we see in [13] that

WidthI(M) = inf{i | TorRi (R/I,M) 6= 0} <∞.

Moreover, it follows from [6] that

WidthI(M) = inf{i | HI
i (M) 6= 0}.

We now recall the concept of Noetherian dimension NdimM of an R-module

which was introduced by Roberts [14] with the terminology Krull dimension. Kirby

[9] changed the terminology of Roberts and referred to Noetherian dimension to

avoid confusion with the well-known Krull dimension for finitely generated modules.

Definition 2.2. ([14]) The Noetherian dimension of M, denoted by NdimM, is

defined inductively as follows.

When M = 0 we define NdimM = −1. Then by induction, for any integer r ≥ 0,

we define NdimM = r when

(i) NdimM < r is false, and

(ii) for every ascending chain M1 ⊆M2 ⊆ . . . of submodules of M there exists

an integer n0 such that Ndim(Mn+1/Mn) < r for all n ≥ n0.
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Thus M is non-zero and finitely generated if and only if NdimM = 0. If M is

Artinian module, then NdimM <∞ (see [14]). Also, if M is an Artinian R-module

with NdimM = d > 0 and x ∈ R is an M -coregular element, then Ndim(0 :M x) =

d − 1 (see [7]). Cuong and Nam [4] showed that if M is an Artinian R-module,

then HI
i (M) = 0 for all i > NdimM. Moreover, if (R,m) is a local ring and M is

non-zero, then Hm
NdimM (M) 6= 0.

In [16], the authors introduced the concept of Co-Cohen-Macaulay modules by

comparing the Noetherian dimension and width for Artinian modules over a local

ring.

Definition 2.3. Let (R,m) be a local ring. An Artinian module M is called Co-

Cohen-Macaulay if NdimM = Widthm(M).

It is clear that if M is a non-zero Co-Cohen-Macaulay R-module, then Hm
i (M) =

0 for all i 6= NdimM.

3. Results

First, we will study the coregular sequences in connection with local homology

modules and homological functor.

Proposition 3.1. Let M be a non-zero Artinian R-module and x := x1, . . . , xn a

maximal M -coregular sequence. Then

TorRi (R/x,Hx
n(M)) ∼= TorRn+i(R/x,M)

for all i ≥ 0.

Proof. It follows from [12, Lemma 3.1(i)] that there is a Grothendieck spectral

sequence

E2
p,q = TorRp (R/x,Hx

q (M))⇒
p

TorRp+q(R/x,M).

Let i ≥ 0 an integer, there exists a filtration Φ of submodules of Hn+i = TorRn+i(R/x,M)

0 = Φ−1Hn+i ⊆ . . . ⊆ Φn+i−1Hn ⊆ Φn+iHn+i = Hn+i

such that

E∞j,n+i−j
∼= ΦjHn+i/Φj−1Hn+i

for all 0 ≤ j ≤ n + i. It should be aware that H
x
i (M) = 0 for all i 6= n. This

indicates E∞p,q = 0 for all p ≥ 0, q 6= n and E2
i,n = E∞i,n for all i ≥ 0. Consequently,

one gets that

Φi−1Hn+i = . . . = Φ0Hn+i = Φ−1Hn+i = 0
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and

ΦiHn+i = . . . = Φi+nHn+i = Hn+i.

Thus, there is an isomorphism TorRi (R/x,H
x
n(M)) ∼= TorRn+i(R/x,M), as required.

�

In [18], a prime ideal p is called coassociated to a non-zero R-module M if there

is an Artinian homomorphic image T of M with p = AnnT. The set of coassociated

primes of M is denoted by CoassRM.

Corollary 3.2. Let M be a non-zero Artinian R-module and x := x1, . . . , xn a

maximal M -coregular sequence. Then CoassRH
x
n(M) is a finite set.

Proof. Proposition 3.1 shows that

TorR0 (R/x,Hx
n(M)) ∼= TorRn (R/x,M).

Combining [5, Theorem 4.2(i)] with [5, Corollary 3.4], we realize that CoassRH
x
n(M) ⊆

V (x). By [18, Theorem 1.21],

CoassR(TorR0 (R/x,Hx
n(M))) = V (x) ∩ CoassRH

x
n(M)

= CoassRH
x
n(M).

Since M is an Artinian R-module, the set CoassRTorRn (R/x,M) is finite. Thus,

the assertion follows from the above isomorphism. �

If M is a finitely generated module over a local ring (R,m), then we know that

pdRM = sup{i | TorRi (R/m,M) 6= 0}.

In the case where M is an Artinian R-module, the flat dimension of M is defined

as (see [1])

fdRM = sup{i | TorRi (R/m,M) 6= 0}.

By using two above results, we have the following consequence.

Proposition 3.3. Let (R,m) be a complete local ring with respect to m-adic topol-

ogy, M a non-zero Artinian R-module. Assume that x1, . . . , xn is a maximal M -

coregular sequence such that m = (x1, . . . , xn). Then the following statements hold:

(i) pdRH
m
n (M) is finite if and only if fdRM is finite.

(ii) If fdRM <∞, then pdR Hm
n (M) + n = fdRM.
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Proof. It follows from [4, Proposition 4.6] that Hm
n (M) is a finitely generated R-

module. Combining the hypothesis with the isomorphism in Proposition 3.1, one

obtains that

TorRi (R/m, Hm
n (M)) ∼= TorRn+i(R/m,M).

Consequently, the assertions follow from the above facts. �

Before, stating and proving the first main result of this paper, we need some

lemmas which provide us many properties of coregular sequences.

Lemma 3.4. Let x := x1, . . . , xn ∈ R be an A-coregular sequence and 0 → A
f→

B
g→ C

h→ D an exact sequence. Then there is an exact sequence

0→ 0 :A x→ 0 :B x→ 0 :C x→ 0 :D x.

Proof. We need only consider the case where x is an A-coregular element. Consider

the chain of homomorphisms

0→ 0 :A x
f→ 0 :B x

g→ 0 :C x
h→ 0 :D x,

where f, g, h are restrictions of f, g, h respectively. It remains to prove that the

chain of homomorphisms is exact at 0 :C x. Let c ∈ Kerh, then 0 = h(c) = h(c).

There exists an element b ∈ B such that g(b) = c and xg(b) = xc = 0. Therefore,

we have a ∈ A satisfying f(a) = xb. Since x is an A-coregular element, one gets

a′ ∈ A such that a = xa′. This implies that b− f(a′) ∈ 0 :B x and g(b− f(a′)) = c.

Consequently, we have c ∈ Im g, and the proof is complete. �

It should be pointed out that 0 :A x ∼= Hom(R/x,M). Therefore, we immediately

have a consequence.

Corollary 3.5. Let x := x1, . . . , xn ∈ R be an M -coregular sequence. Then

Ext1R(R/x,M) = 0.

Combining [11, Proposition 1.1.7] with [5, Proposition 4.1], there is a Mayer-

Vietoris sequence.

Lemma 3.6. Let I, J be two ideals of R and M an Artinian R-module. Then there

is an exact sequence

. . .→ HI∩J
i (M)→ HI

i (M)⊕HJ
i (M)→ HI+J

i (M)→ HI∩J
i−1 (M)→ · · · .

Now, the first main result relates to the Matlis duality of top local homology

modules and coregular sequences.
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Theorem 3.7. Let M be a non-zero Artinian R-module. Assume that x :=

x1, . . . , xn is an M -coregular sequence. Then x1, . . . , xn is a D(H
x
n(M))-coregular

sequence.

Proof. The proof is by induction on n. Let n = 1, the short exact sequence

0→ 0 :M x1 →M
x1→M → 0

induces the following exact sequence

0→ H
(x1)
1 (0 :M x1)→ H

(x1)
1 (M)

x1→ H
(x1)
1 (M)→ H

(x1)
0 (0 :M x1)→ 0.

It is clear that H
(x1)
0 (0 :M x1) ∼= 0 :M x1 and H

(x1)
1 (0 :M x1) = 0. Hence, there is a

short exact sequence

0→ H
(x1)
1 (M)

x1→ H
(x1)
1 (M)→ 0 :M x1 → 0

which yields the following exact sequence

0→ D(0 :M x1)→ D(H
(x1)
1 (M))

x1→ D(H
(x1)
1 (M))→ 0.

Since x1 is an M -coregular sequence, if follows that D(0 :M x1) 6= 0. Thus, x1 is a

D(H
(x1)
1 (M))-coregular sequence.

Now, assume that n > 1 and the claim is true for the cases are less than n. The

short exact sequence

0→ 0 :M x1 →M
x1→M → 0

leads the long exact sequence

0→ Hx
n(0 :M x1)→ Hx

n(M)
x1→ Hx

n(M)→ H
x
n−1(0 :M x1)→ 0.

Lemma 3.6 gives us a long exact sequence

. . . HI
n(0 :M x1)⊕HJ

n (0 :M x1)→ HI+J
n (0 :M x1)→ HI∩J

n−1(0 :M x1)→ · · · ,

where I = (x1) and J = (x2, . . . , xn). It is clear that HI
i (0 :M x1) = 0 for all i > 1.

By [6, Theorem 3.8], we see that HI∩J
i (0 :M x1) = 0 for all i > 0. Hence, there is

an isomorphism

H
(x2,...,xn)
i (0 :M x1) ∼= H

(x1,...,xn)
i (0 :M x1)

for all i ≥ 2. This implies that

H(x1,...,xn)
n (0 :M x1) ∼= H(x2,...,xn)

n (0 :M x1) = 0.

Consequenlty, there is a short exact sequence

0→ Hx
n(M)

x1→ Hx
n(M)→ H

x
n−1(0 :M x1)→ 0
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which induces another exact sequence

0→ D(H
x
n−1(0 :M x1))→ D(Hx

n(M))
x1→ D(Hx

n(M))→ 0.

The inductive hypothesis shows that x2, . . . , xn is a D(H
x
n−1(0 :M x1))-coregular

sequence. Hence, x2, . . . , xn is a (0 :D(H
x
n(M)) x1)-coregular sequence and the as-

sertion follows. �

The following result is a property of coregular sequences.

Corollary 3.8. Let M be a non-zero Artinian R-module. Let x := x1, . . . , xn be

an M -coregular sequence. Then

TorRn+1(R/x,M) = 0.

Proof. By Proposition 3.1, there is an isomorphism

TorRn+1(R/x,M) ∼= TorR1 (R/x,Hx
n(M))

which induces

D(TorRn+1(R/x,M)) ∼= Ext1R(R/x,D(Hx
n(M))).

Combining Corollary 3.5 with Theorem 3.7, we get

D(TorRn+1(R/x,M)) = 0,

and which completes the proof. �

Theorem 3.9. Let (R,m) be a local ring and M a non-zero Co-Cohen-Macaulay R-

module with NdimM = d > 0. Assume that x := x1, . . . , xn ∈ m is an M -coregular

sequence. Then x1, . . . , xn is a Hm
d (M)-regular sequence.

Proof. The proof is by induction on n. Let n = 1, the short exact sequence

0→ 0 :M x1 →M
x1→M → 0

yields the long exact sequence

0→ Hm
d (0 :M x1)→ Hm

d (M)
x1→ Hm

d (M)→ Hm
d−1(0 :M x1)→ 0.

By [16, Lemma 2.2 (ii)], we see that Ndim(0 :M x1) = d − 1 and then Hm
d (0 :M

x1) = 0 by [4, Proposition 4.8]. It follows from [4, Proposition 4.10] that Hm
d−1(0 :M

x1) 6= 0. This means that x1 is a Hm
d (M)-regular sequence.

Now, assume that n > 1. The short exact sequence

0→ 0 :M x1 →M
x1→M → 0
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yields the long exact sequence

0→ Hm
d (M)

x1→ Hm
d (M)→ Hm

d−1(0 :M x1)→ 0.

It should be mentioned that 0 :M x1 is a Co-Cohen-Macaulay R-module with

Ndim(0 :M x1) = d − 1. Note that x2, . . . , xn is 0 :M x1-coregular sequence. By

the inductive hypothesis, it is a Hm
d−1(0 :M x1)-regular sequence and the claim

follows. �

Proposition 3.10. Let (R,m) be a local ring, M a non-zero Co-Cohen-Macaulay

R-module with NdimM = d. Assume that R is complete with respect to m-adic

topology. Then depthHm
d (M) = d.

Proof. We prove by induction on d. If d = 0, then M has finite length. It is clear

that Hm
0 (M) ∼= M and depthHm

0 (M) = 0.

Assume that d > 0 and x1, . . . , xd is a maximal M -coregular sequence in m. By

the similar method in the proof of Theorem 3.7, one has

depthHm
d (M)/x1H

m
d (M) = depthHm

d−1(0 :M x1) = d− 1.

Combining the assumption with [4, Proposition 4.6], we see that Hm
d (M) is finitely

generated R-module. Hence, [3, Proposition 1.2.10 (d)] shows that

depthHm
d (M)/x1H

m
d (M) = depthHm

d (M)− 1,

and which completes the proof. �

Corollary 3.11. Let (R,m) be a local ring, M a non-zero Co-Cohen-Macaulay

R-module with NdimM = d. Assume that R is complete with respect to m-adic

topology and x1, . . . , xd ∈ m is an M -coregular sequence such that m = (x1, . . . , xd).

Then fdRM = depthR.

Proof. Using Auslander-Buchsbaum formula, Proposition 3.3 (ii) and Proposition

3.10, we get the claim. �

Theorem 3.12. Let (R,m) be a local ring and M a non-zero Artinian R-module

with NdimM = d. Assume that R is complete with respect to I-adic topology. Then

the following statements hold:

(i) dimHI
d (M) ≤ d;

(ii) If HI
d (M) 6= 0, then depthHI

d (M) ≥ min{2, d}.

Proof. We use induction on d. Let d = 0, then M has finite length and HI
0 (M) ∼=

M. Consequently, one gets dimHI
0 (M) = 0 and depthHI

0 (M) = 0.
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Let d > 0. By [4, Proposition 4.4 and Corollary 4.5], we may assume that there

exists x ∈ m which is an M -coregular element. It was shown in [16, Lemma 2.2]

that Ndim(0 :M x) = d− 1. The short exact sequence

0→ 0 :M x→M
x→M → 0

induces a long exact sequence

0→ HI
d (M)

x→ HI
d (M)→ HI

d−1(0 :M x)→ · · · .

Since HI
d (M)/xHI

d (M) is isomorphic to a submodule of HI
d−1(0 :M x), it follows

from the hypothesis that

dimHI
d (M)/xHI

d (M) ≤ d− 1.

In view of [6, Theorem 5.3] and the hypothesis, we can conclude that HI
d (M) is a

finitely generated R-module. This implies that

dimHI
d (M)/xHI

d (M) = dimHI
d (M)− 1

and then dimHI
d (M) ≤ d.

It induces from the Nakayama’s Lemma and the assumption that

HI
d (M)/xHI

d (M) 6= 0. This indicates that HI
d−1(0 :M x) 6= 0. Consequently, if

d = 1, then we see that depthHI
1 (M) = 1. We consider the cases where d ≥ 2. By

the inductive hypothesis, one can claim that depthHI
d−1(0 :M x) ≥ 1. Let y be a

HI
d−1(0 :M x)-regular element. It is easy to check that y is a HI

d (M)/xHI
d (M)-

regular element. Thus, we can assert that depthHI
d (M) ≥ min{2, d}. �

Corollary 3.13. Let (R,m) be a local ring, M a non-zero Co-Cohen-Macaulay

R-module with NdimM = d. Assume that R is complete with respect to m-adic

topology. Then Hm
d (M) is a Cohen-Macaulay R-module of dimension d.

Proof. Combining Proposition 3.10 with Theorem 3.12, the assertion follows. �

Corollary 3.14. Let (R,m) be a local ring, M a non-zero Artinian R-module with

NdimM = d ≤ 2. Assume that R is complete with respect to I-adic topology and

HI
d (M) 6= 0. Then HI

d (M) is Cohen-Macaulay.
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