INTERNATIONAL
ELECTRONC JOURNAL OF
ALGEBRA

INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA
VOLUME 31 (2022) 74-89
DOI: 10.24330/ieja.1058417

ON S-PRIMARY SUBMODULES

H. Ansari-Toroghy and S. S. Pourmortazavi

Received: 16 October 2020; Revised: 4 May 2021; Accepted: 5 May 2021
Communicated by Abdullah Harmanci

ABSTRACT. Let R be a commutative ring with identity, S a multiplicatively
closed subset of R, and M be an R-module. In this paper, we study and in-
vestigate some properties of S-primary submodules of M. Among the other
results, it is shown that this class of modules contains the family of primary

(resp. S-prime) submodules properly.
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1. Introduction

Throughout this article, all rings are commutative with identity elements and
all modules are unital modules. N, Z, and Q will denote respectively the natural
numbers, the ring of integers and the field of quotients of Z.

Consider a non-empty subset S of R. We call S a multiplicatively closed subset
of Rif (i) 0 ¢ S, (ii) 1 € S, and (iii) ss’ € S for all s,s" € S [12]. Note that
S = R — p is a multiplicatively closed subset of R for every prime ideal p of R. Let
N and K be two submodules of an R-module M and J an ideal of R. Then the
residual N by K and J is defined as follows:

(N:g K)={reR|rK CN},
(Nipypy J)={meM|JmC N}.

Particularly, we use Anngr(M) instead of (0 :p M) and (N :ps s) instead of
(N :p Rs), where Rs is the principal ideal generated by an element s € R. The
sets of prime ideals and maximal ideals of R are denoted by Spec(R) and Max(R),
respectively.

A submodule P of M is called prime if P # M and whenever r € R and e € M
satisfy re € P, then r € (P :g M) or e € P. The set of all prime submodules of M
is denoted by Spec(M) [3,7].

In [11], the authors introduced the concept of S-prime submodules and investi-

gated some properties of this class of modules. Let S be a multiplicatively closed
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subset of R and P be a submodule of M with (P :g M)NS = 0. Then P is said to
be an S-prime submodule if there exists s € S such that whenever rm € P, where
r € Rand m € M, then sr € (P :g M) or sm € P. Particularly, an ideal I of R is
said to be an S-prime ideal if I is an S-prime submodule of the R-module R.

The notion of S-primary submodule was introduced in [5]. Let S be a multiplica-
tively closed subset of R and P be a submodule of M with (P :g M)NS = ). Then
P is said to be an S-primary submodule if there exists s € S such that whenever
rm € P, where r € R and m € M, then sr € \/(P :g M) or sm € P.

In this paper, we will study the family of S-primary submodules extensively and
investigate some of their properties. In fact, this family of modules is a generaliza-
tion of primary (resp. S-prime) submodules.

Among the other results, we provide some notions that each one is equivalent
to S-primary (Theorem 2.2). Examples 2.4 and 2.5 show that these new modules
contain the family of primary and S-prime submodules properly. Further it is
proved that if P is an S-primary submodule of M, then S~ P is also an S-primary
submodule of S™1M (Proposition 2.7). Example 2.8 shows that the converse is not
true in general. Also we show that S-primary submodules has a good behavior with
Cartesian products (Theorems 2.20 and 2.21). Moreover, we provide some useful

characterization concerning S-primary submodules (Theorems 2.17, 2.24 and 2.25).

2. Main results

Definition 2.1. Let S be a multiplicatively closed subset of R and P be a sub-
module of M with (P :g M)NS = 0. Then P is said to be an S-primary submodule
of M if there exists s € S such that whenever rm € P, where m € M and r € R,
then sr € \/(P :gr M) or sm € P [5, Definition 2.27]. In particular, we say that an
ideal I of R is an S-primary ideal if I is an S-primary submodule of R-module R.

Theorem 2.2. Let S be a multiplicatively closed subset of R. For a submodule P
of an R-module M with (P :r M) NS =0, the following are equivalent:

(a) P is an S-primary submodule of M ;

(b) There exists s € S such that for every r € R, the endomorphism
r: s(M/P) — s(M/P) given by sm = sm + P +— rsm = rsm + P is
ingective or (rs)(M/P) = (0) for some t € N;

(¢) There exists s € S such that whenever rN C P, where N is a submodule of
M and r € R, then sr € /(P :g M) or sN C P;

(d) There exists s € S such that whenever JN C P, where N is a submodule
of M and J is an ideal of R, then sJ C /(P :g M) or sN C P.
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Proof. (a)=(b) By hypothesis, there exists s € S such that for every r € R and
m € M if rm € P, then we have sm € P or sr € \/m Now for each
r € R, we define the endomorphism r : s(M/P) — s(M/P) by sm+ P — rsm+ P.
We show that this endomorphism is injective or rs € \/m . Assume rs ¢
\/m. Then we show the other part holds. To see let 7sm =rsm+P = P =
0. So we have (rs)m € P. So by hypothesis, sm € P or s(rs) = rs?> € \/(P :gp M).
We conclude sr € /(P :g M), which is a contradiction. Hence sm € P, as required.

(b)=(a) It is clear.

(a)=(c) It is clear.

(¢)=(d) Let JN C P, where J is an ideal of R and N is a submodule of M. We
will show that there exists s € S such that sN C P or sJ C \/m Clearly,
we have rN C P for every » € J. So by part (c), there exists s € S such that
sN C Porsre \/m for every r € J, as desired.

(d)=(a) Take r € R and m € M with rm € P. Now, put J = Rr and N = Rm.
Then we can conclude that JN = Rrm C P. By assumption, there is an s € S so

that sJ = Rrs C \/(P :g M) or sN = Rsm C P and so either sr € /(P :r M) or

sm € P, as required. O

Lemma 2.3. Let M be an R-module and S a multiplicatively closed subset of R.
Then we have the following.
(a) If P is a primary submodule of M such that (P :g M)NS =0, then P is
an S-primary submodule of M.
(b) If P is an S-primary submodule of M and S C u(R), where u(R) denotes
the set of units in R, then P is a primary submodule of M.

Proof. This is clear. O

By setting S = {1}, we conclude that every primary submodule is an S-primary
submodule by Lemma 2.3. The following example shows that the converse is not

true in general.

Example 2.4. Consider the Z-module M = Q& (D], Z,,), where p; are distinct
positive prime integers. Take the submodule P = (0) and the multiplicatively

closed subset
S =A{Lp"py?..opm |Vie{1,2,...n}, m; e NU{0}}.

First note that (P :z M) = (0) and pips2...p»(0,1,1,...,1) = (0,0,0,...,0) € P.
Since p1pa...pn & /(P :z M) and (0,1,1,...,1) ¢ P, P is not a primary submodule
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of M. Put s = py1ps...p, and let
ka — .
k(%:ﬁ@ o T) = (?“,kxl,k@, ..kz,) € P,
where k € Z and (%,71,73,...,%,) € M. Then ka = 0. This yields that & = 0
or a = 0. If £ = 0, there is nothing to prove. Thus assume that ¢ = 0. Then

s(%,71, %2, ..., Tp) € P. Therefore, P is an S-primary submodule of M.

We recall that a submodule P of an R-module M is S-prime if there exists
s € S such that whenever rm € P, where r € R and m € M, then sr € (P :g M)
or sm € P [11]. Clearly, every S-prime submodule is S-primary. The following

example shows that the converse is not true in general.

Example 2.5. Consider M = Z,4 as a Z-module. Set S = Z\2Z and P = (0). Thus
we have (P :z M) = 4Z and 2.2 € (0). Since for every s € S, 2s ¢ (P :z M) and
5.2 ¢ P, P is not an S-prime submodule of M. Put s =1 and let ka = 0. If a = 0,
there is nothing to prove. Thus assume that @ # 0. Then k = 2k’ for some k' € Z.
This implies that k € \/(P:Z—M) . Therefore, P is an S-primary submodule of M.

Remark 2.6. Let S be a multiplicatively closed subset of R. Recall that the

saturation S* of S is defined as
S*={reR| % is a unit of ST R}.
It is obvious that S* is a multiplicatively closed subset of R containing S [6].

Proposition 2.7. Let S be a multiplicatively closed subset of R and M be an
R-module. Then we have the following.

(a) If S1 C Sy are multiplicatively closed subsets of R and P is an Sy-primary
submodule of M, then P is an Ss-primary submodule of M in case
(P:g M)N Sy = 0.

(b) P is an S-primary submodule of M if and only if P is an S*-primary
submodule of M.

(c) If P is an S-primary submodule of M, then S™1P is a primary submodule
of ST*R-module S~*M.

Proof. (a) It is clear.
(b) Assume that P is an S-primary submodule of M. We need to prove that
(P :r M) and S* are disjoint. Suppose there exists x € (P :g M)NS*. As
z € S*, ¥isaunit of ST'R and so (%)(%) =1 for some a € Rand s € S.
This yields that us = uza for some v € S. Now we have that us = uza €

(P :gr M)NS, a contradiction. Thus (P :g M)NS* = (). Now as S C S*, by



78 H. ANSARI-TOROGHY AND S. S. POURMORTAZAVI

part (a), P is an S*-primary submodule of M. Conversely, assume that P
is an S*-primary submodule of M. Let rm € P, where r € R and m € M.
Then there exists z € S* such that zr € \/(P:g M) or am € P. As £ is

1
a unit of ST'R, there exist u,s € S and a € R such that us = uza. Put
us = s’ € S. Then note that s'r = (us)r = uazr € \/(P :g M) or s'm € P.
Therefore, P is an S-primary submodule of M.
(c) Let (£)(%) € S7'P, where £ € ST'R and 2 € S™'M. Then urm € P

S
for some u € S. Since P is an S-primary submodule of M, there is an
s € S so that s'ur € \/(P:g M) or s'm € P. This yields that © = i:Z: €

S™U/(P:r M) C /(S TP g1z STIM) or ™ = £m ¢ §~1P. Hence,
S~1P is a primary submodule of S™'M. U

The following example shows that the converse of part (c) of Proposition 2.7 is

not true in general.

Example 2.8. Consider the Z-module M = Q. Take the submodule N = Z and
the multiplicatively closed subset S = Z — {0} of Z. Then (N :z M) = (0). Let s
be an arbitrary element of S. Choose a prime number p with ged(p, s) = 1. Then
note that p%} =1€N. But sp ¢ \/(N:zM)and 2 ¢ N, it follows that N is
not an S-primary submodule of M. Since S™'Z = Q is a field, S~(Q) is a vector

space. Therefore the proper submodule S™!N is a primary submodule of S~!Q.

Proposition 2.9. Suppose f: M — M’ is an R-homomorphism. Then we have
the following.
(a) If P" is an S-primary submodule of M’ provided that (f~1(P') :p M)NS =
0, then f=1(P'") is an S-primary submodule of M.
(b) If f is an epimorphism and P is an S-primary submodule of M with
ker(f) C P, then f(P) is an S-primary submodule of M.

Proof. (a) Let rm € f~1(P’) for some r € R and m € M. This yields
that f(rm) = rf(m) € P’. Since P’ is an S-primary submodule of M’,
there is an s € S so that sr € \/(P':g M’) or sf(m) € P'. Now we
will show that (P' :p M’) C (f~Y(P') :r M). Take z € (P' :p M').
Then we have xM’ C P’. Since f(M) C M’, we conclude that f(zxM) =
xf(M) C M’ C P'. This implies that zM C f~Y(f(M)) C f=X(p)
and thus € (f~Y(P’) :g M). Hence we have sr € \/(f~1(P") :r M) or
sm € f~Y(P'). Tt follows that f~!(P’) is an S-primary submodule of M.

(b) First note that (f(P) :g M') NS = 0. Otherwise there would be an
s € (f(P) :g M')N S. Since s € (f(P) :g M), sM' C f(P), but then
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f(sM) = sf(M) = sM’ C f(P). By taking their inverse images under f,

we have
sM C sM + ker(f) C f~Y(f(P)) = P + ker(f) = P.

That means s € (P :p M), which is a contradiction. Now take r € R
and m’ € M’ with rm’ € f(P). As f is an epimorphism, there is an
m € M such that m' = f(m). Then rm’ = rf(m) = f(rm) € f(P). Since
Ker(f) is a subset of P, we get rm € P. As P is an S-primary submodule
of M, there is an s € S so that sr € /(P :g M) or sm € P. Since
V(P :ir M) C\/(f(P):g M"), we have sr € \/(f(P) :g M’) or f(sm) =
sf(m) = sm’ € f(P). Accordingly, f(P) is an S-primary submodule of
M. (Il

Corollary 2.10. Let S be a multiplicatively closed subset of R and take a submodule
L of M. Then we have the following.

(a)

(b)

Proof.

If P’ is an S-primary submodule of M with (P’ :r L)NS =0, then LN P’
is an S-primary submodule of L.

Suppose that P is a submodule of M with L C P. Then P is an S-primary
submodule of M if and only if P/L is an S-primary submodule of M/ L.

(a) Consider the injection i : L — M defined by i(m) = m for all
m € L. Then note that i ~*(P") = LNP’. Now we will show that (i=*(P’) :5
L)yNnS = (. Assume that s € (i71(P’) :g L) N S. Then we have sL C
i~1(P') = LNP’' C P'. This implies that s € (P’ :p L)NS, a contradiction.
The rest follows from Proposition 2.9 (a).
Assume that P is an S-primary submodule of M. Then consider the canoni-
cal homomorphism 7 : M — M/L defined by w(m) = m+ L for all m € M.
By Proposition 2.9 (b), P/L is an S-primary submodule of M/L. Con-
versely, assume that P/L is an S-primary submodule of M/L. Let rm € P
for some r € R and m € M. This yields that r(m + L) =rm+ L € P/L.
As P/L is an S-primary submodule of M/L, there is an s € S so that
st € \/(P/L:g M/L) = /(P :g M) or s(m+L)=sm+L € P/L. There-
fore, we have sr € \/m or sm € P. Hence, P is an S-primary
submodule of M. O

An R-module M is said to be a multiplication module if for every submodule N
of M there exists an ideal I of R such that N = IM [4].

Proposition 2.11. Let M be an R-module and S be a multiplicatively closed subset
of R. The following statements hold.
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(a)

(b)

Proof.
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If P is an S-primary submodule of M, then (P :g M) is an S-primary ideal
of R.

If M is a multiplication module and (P :g M) is an S-primary ideal of R,
then P is an S-primary submodule of M.

(a) Let 2y € (P :g M) for some z,y € R. Then xym € P for all
m € M. As P is an S-primary submodule, there exists s € S such that
sz € \/(P:g M) or sym € P for all m € M. If sz € \/(P :r M), there is
nothing to prove. Suppose that sz ¢ \/m . Then sym € P for all
m € M so that sy € (P :r M). Therefore, (P :gp M) is an S-primary ideal
of R.
Let J be an ideal of R and N a submodule of M with JN C P. Then we
can conclude that J(N :g M) C (JN :g M) C (P:g M). As (P :p M) is
an S-primary ideal of R, there is an s € S so that s(N :g M) C (P :g M)
or sJ C \/m Thus, we can conclude that sN = s(N :g M)M C
(P :r M)M = P or sJ C /(P :g M). Therefore, by Theorem 2.2 (d), P
is an S-primary submodule of M. O

Remark 2.12. (a) Assume that M is a multiplication R-module and K, L are

(b)

two submodules of M. The product of K and L is defined as KL = (K :g
M)(L :g M)M [1].
Let M be an R-module and N a submodule of M. The radical of IV, denoted

by rad(N), is the intersection of all prime submodules of M containing N
that is, rad(N) = ({P | N C P, P € Spec(M)} [8].

As an immediate consequence of the Proposition 2.11 and Theorem 2.2 (d), we

have the following explicit result.

Corollary 2.13. Suppose that M is a multiplication R-module and P a submodule
of M provided that (P :r M)NS = 0, where S is a multiplicatively closed subset of

R. Then the following are equivalent:

(a)
(b)

P is an S-primary submodule of M ;
There exists s € S such that whenever LN C P, where L and N are
submodules of M, then s(L :p M) C /(P :r M) or sN C P.

Corollary 2.14. Suppose that M is a finitely generated multiplication R-module
and P is a submodule of M provided that (P :g M) NS = (), where S is a multi-

plicatively closed subset of R. Then the following are equivalent:

(a)

P is an S-primary submodule of M ;
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(b) There exists s € S such that whenever LN C P, where L and N are
submodules of M, then sL C rad(P) or sN C P.

Proof. (a)=(b) Assume that LN C P, where L and N are submodules of M.
By Remark 2.12 (a), LN = (L :g M)N C P. Then there exists s € S so that
s(L:g M) C \/(P:gr M)orsN C Pby Theorem 2.2 (d). Since M is multiplication,
by [4, Theorem 2.12], we have s(L :g M)M = sL C /(P :g M)M = rad(P) or
sN C P.

(b)=(a) Assume that JN C P, where N is a submodule of M and J is an ideal
of R. Set K := JM. As M is a multiplication module, Then we have

KN = (K :g M)(N :g M)M = J(N :z M)M = JN C P.

By assumption, there exists s € S so that sK C rad(P) or sN C P. As M is
finitely generated, by [9, Thoerem 4.4], sK C rad(P) implies that

sJ C(sK :g M) C (rad(P) :g M) =+/(P:g M).
Therefore P is an S-primary submodule of M by Corollary 2.13. (]

Remark 2.15. (a) Let M be an R-module and p be a maximal ideal of R.
In [4], T,(M) is defined as follows

Tp(M)={me M| (1 —-r)m =0 for some r € p}.

Clearly T),(M) is a submodule of M. An R-module M is said to be p-cyclic
provided there exist ¢ € p and m € M such that (1 —q)M C Rm [4].

(b) Let M be an R-module. Then M is a multiplication R-module if and only
if for every maximal ideal p of R either M = T,(M) or M is p-cyclic [4,
Theorem 1.2].

Lemma 2.16. Let S be a multiplicatively closed subset of R, p be an S-primary
(resp. S-prime) ideal of R and M be a faithful multiplication R-module. Then
there exists an s € S such that whenever am € pM, where a € R and m € M, then

sa € \/p (resp. sa € p) or sm € pM.

Proof. It is enough to prove it for S-primary submodules. The technique is similar
for S-prime. As pis an S-primary ideal, there exists s € S, whenever rr’ € p, where
r, 7" € R, then sr € \/porsr’ € p. Let a € Rand m € M satisfy am € pM. Suppose
sa ¢ \/p. Set K := (pM :g sm). Assume that K # R. Then there exists a maximal
ideal @ of R so that K C Q. m ¢ To(M), since otherwise, there exists ¢ € @ such
that (1 — ¢)m = 0 and so (1 — ¢)sm = 0. This implies that (1 —¢) € K C @, a
contradiction. Since M is Q-cyclic, by [4, Theorem 1.2], there exist m’ € M and
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q € @ such that (1—¢)M C Rm/. In particular, (1—¢)m = s'm/, (1—q)am = p'm’
for some s’ € R and p’ € p. Thus (as’ —p")m’ = 0. Now (1 — q)(Anng(m’))M C
(Anng(m'))Rm’ = 0 implies (1 — ¢)Anng(m) C Anng(M) = 0, because M is
faithful, and hence (1 — ¢q)as’ = (1 — ¢)p’ € p. As p is an S-primary ideal, ss’ € p
or sa € \/p or s(1 —¢q)" € p for some n € N. But p C K C @ so that in each case,
we have a contradiction. It follows that K = R and sm € pM, as required. (Il

In the following, the Theorem 2.11 in [11] will be extended by removing the

condition “finitely generated”.

Theorem 2.17. Let M be a multiplication R-module and P a submodule of M
provided that (P :rg M)NS = 0, where S is a multiplicatively closed subset of R.
Then the following are equivalent:
(a) P is an S-primary (resp. S-prime) submodule of M.
(b) (P:r M) is an S-primary (resp. S-prime) ideal of R.
(¢) P=1IM for some S-primary (resp. S-prime) ideal I of R with Ann(M) C
1.

Proof. (a)=(b) It is clear from Proposition 2.11 (a).

(b)=(c) It is clear.

(c)=(a) As M is a faithful multiplication R/Anng(M)-module, by Corollary
2.10 (b), I/Anngr(M) is an S-primary (resp. S-prime) ideal of R/Anng(M). Hence
P = IM is an S-primary (resp. S-prime) submodule of R/Anng(M)-module M by
Lemma 2.16. Therefore, P is an S-primary (resp. S-prime) submodule of R-module

M, as required. [

Proposition 2.18. Let P be an S-primary submodule of multiplication R-module
M. Suppose that NN L C P for some submodules N and L of M. Then sN C P
or sL C rad(P) for some s € S.

Proof. Since P is an S-primary submodule, there exists s € S such that for every
r € Rand m € M, if rm € P, then sr € \/(P:g M) or sm € P. Let sN ¢ P.
Then sm’ ¢ P for some m’ € N. Take an element a € (L :p M). This yields that
am’ € (L :g M)N C LNN C P. As P is an S-primary submodule of M and
sm/ ¢ P, we can conclude that sa € /(P :gr M) so that s(L :g M) C /(P :g M).
As M is a multiplication module, by [4, Theorem 2.12], we have

sL=s(L:g M)M C /(P :g M)M = rad(P). O

Lemma 2.19. Let R = Ry X Ry and S = S1 X Sy where S; is a multiplicatively
closed subset of R;. Suppose p = p1 X pa is an ideal of R. Then the following are

equivalent:
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(a) p is an S-primary ideal of R.
(b) p1 is an Si-primary ideal of Ry and pa N Ss # O or py is an Sy-primary
ideal of Ry and py N S, # 0.

Proof. (a)=(b) Since (1,0)(0,1) = (0,0) € p, there exists s = (s1,s2) € S so that
5(1,0) = (s1,0) € \/p or s(0,1) = (0,s2) € p. Thus p; NSy # 0 or p NSy # 0. We
may assume that py NSy # 0. As PN S =0, we have po N Sy = 0. Let zy € py
for some x,y € Ry. Since (0,2)(0,y) € p and p is an S-primary ideal of R. We get
either s(0,z) = (0,s22) € /p or 5(0,y) = (0,s2y) € p and this yields spx € |/p2
or soy € po. Therefore, ps is an S-primary ideal of Rs. In the other case, one can
easily show that p; is an S-primary ideal of R;.

(b)=(a) Assume that p; NSy # 0 and py is an S-primary ideal of Ry. Then
there exists s; € p;1 N.Sy. Let (a,b)(c,d) = (ac,bd) € p for some a,c € Ry and
b,d € Ry. This yields that bd € pa and thus there exists sz € Sa so that sqb € (/p2
or sod € pa. Put s = (s1,52) € S. Then note that s(a,b) = (s1a,s2b) € /p or
s(c,d) € p. Therefore, p is an S-primary ideal of R. In other case, one can similarly

prove that p is an S-primary ideal of R. O

Theorem 2.20. Suppose that M = M; x My and R = R; X Rs-module and
S = 51 X Sy is a multiplicatively closed subset of R, where M; is a R;-module and
S; is a multiplicatively closed subset of R; for each i = 1,2. Assume P = P; X P,

is a submodule of M. Then the following are equivalent:

(a) P is an S-primary submodule of M.
(b) Py is an Si-primary submodule of My and (P :p, M2) NSy # () or P is
an Sa-primary submodule of My and (Py :r, M) NSy # 0.

Proof. (a)=(b) By Proposition 2.11, (P :g M) = (Py :gr, M1) X (Py :g, M2) is
an S-primary ideal of R and so by Lemma 2.19, either (P, :p, M1) NSy # 0 or
(P :r, M) N Sy # (). We may assume that (P, :gr, M1) NSy # 0. Now we will
show that P, is an Sa-primary submodule of M. Let rm € P, for some r € Ry
and m € My. Then (1,7)(0,m) = (0,rm) € P. As P is an S-primary, there is an
s = (s1,82) € S so that s(1,7) = (s1,821) € \/(P :r M) or s(0 :g m) = (0,s9m) €
P. This implies that sor € \/(Ps :r, M2) or som € Py. Therefore, Py is an Sy is
an Se-primary submodule of Ms. In the other case, it can be similarly show that
P, is an Si-primary submodule of M;.

(b)=>(a) Assume that (P; :g, M1)NS; # 0 and P; is an So-primary submodule of
Ms. Then there exists s1 € (Py :g, M1)NS1. Let (r1,72)(m1, ma) = (rimq, ramsz) €
P for some r; € R; and m; € M;, where i = 1,2. Then roms € P,. As P is an
So-primary submodule of My, there is an sy € S so that sory € \/m or
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somg € Py. Now put s = (s1,82) € S. Then note that s(ry,rs) = (s17r1,82r2) €

(P:r M) or s(mi,mg) = (symq,s9me) € Py x Py = P. Therefore, P is an
S-primary submodule of M. Similarly, one can show that if P; is an Sj-primary
submodule of M; and (P, :g, Ms) NSy # @, then P is an S-primary submodule of
M. U

Theorem 2.21. Let M = My X My x---x M, and R = Ry X Ry X -+ X R,,-module
and S = S1 X So X -+ x Sy, is a multiplicatively closed subset of R, where M; is an
R;-module and S; is a multiplicatively closed subset of R; for each i = 1,2,...,n.
Assume P = Py X Py X -+ X P, is a submodule of M. Then the following are
equivalent:

(a) P is an S-primary submodule of M.

(b) P; is an S;-primary submodule of M; for somei € {1,2,...,n} and (P; :r

M;)NS; #0 forall j € {1,2,...,n} — {i}.

J

Proof. We apply induction on n. For n = 1, the result is true. If n = 2, then
(a)<(b) follows from Theorem 2.20. Assume that (a) and (b) are equivalent when
k < n. Now, we shall prove (a)<(b) when k =n. Let P =P, x P, x --- x P,,. Put
PP=P xPyx---xP, 1and 8’ =851 xSy x---xS,_1. Then by Theorem 2.20,
the necessary and sufficient condition for P = P’ x P, is an S-primary submodule
of M is that P’ is an S-primary submodule of M’ and (P, :g, M,) NS, # 0
or P, is an S-primary submodule of M,, and (P’ :pr M’') N S’ # 0, where M’ =
My x Myx---xM,_1and R\ = Ry Xx Ry X --- x R,_1. The rest follows from the
induction hypothesis. O

Lemma 2.22. Suppose that P is an S-primary submodule of M. Then the following
statements hold for some s € S.

(a) (P:p8")C(P:ys) foralls €8.

(b) (P:rM):gs')C((P:rM):gs) foralls € S.

Proof. (a) Take an element m’ € (P :j; s’), where s’ € S. Then s'm’ € P.

Since P is an S-primary submodule of M, there exists s € S such that

ss' € \/(P:rg M) or sm" € P. As (P :g M)NS = 0, we get sm’ € P,
namely m’ € (P ).

(b) Follows from part (a). U

Proposition 2.23. Suppose that M is a finitely generated R-module, S is a multi-

plicatively closed subset of R, and P is a submodule of M satisfying (P :gr M)NS =

(). Then the following are equivalent:

(a) P is an S-primary submodule of M.
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(b) S7LP is a primary submodule of ST*M and there is an s € S satisfying
(P ') C(P:prs) foralls' €8.

Proof. (a)=(b) It is clear from Proposition 2.7 (¢) and Lemma 2.22.

(b)=(a) Take a € R and m € M with am € P. Then .2 € S~*P. Since S™'P
is a primary submodule of S™'M and M is finitely generated, we can conclude
that ¢ € \/(S1P:g-1g STIM) = /S~ (P:g M) or 2 € S™'P. Then ua €
\/m or u'm € P for some u,u’ € S. By assumption, there is an s € S so
that (P :g s') C (P :g s) for all ' € S. If ua € \/(P :g M), then a"M C (P
u™) C (P :g s) for some n € N and thus sa € \/(P:g M). If W'm € P, a similar

argument shows that sm € P. Therefore, P is an S-primary submodule of M. O

Theorem 2.24. Suppose that P is a submodule of M provided (P :g M) NS = .
Then P is an S-primary submodule of M if and only if (P :p 8) is a primary
submodule of M for some s € S.

Proof. Assume (P :j; s) is a primary submodule of M for some s € S. Let am € P,
where a € Rand m € M. Asam € (P :p s), wegeta € /((P :a 8) :r M) orm €
(P :pr s). This yields that as € /(P :g M) or sm € P. Conversely, assume that
P is an S-primary submodule of M. Then there exists s € S such that whenever
am € P, where a € R and m € M, then sa € /(P :g M) or sm € P. Now we
prove that (P :ps s) is primary. Take r € R and m € M with rm € (P :p; s). Then
srm € P. As P is S-primary, we get s?r € \/(P:g M) or sm € P. If sm € P,
then there is nothing to show. Assume that sm ¢ P. Then s%r € \/m and
hence sr € /(P :g M). Thus 7" € ((P:g M) :p s") C (P :g M) :g s) for some
n € N, by Lemma 2.22. Thus, we can conclude that r™ € ((P :ps $) :g M), namely

r€+/((P:p8):r M). Hence (P :ps s) is a prime submodule of M. O

Theorem 2.25. Suppose that P is a submodule of M provided (P :r M) C Jac(R),
where Jac(R) is the Jacobson radical of R. Then the following statements are

equivalent:

(a) P is a primary submodule of M.
(b) (P:r M) is a primary ideal of R and P is an (R — m)-primary submodule
of M for each m € Max(R).

Proof. (a)=(b) Since (P :g M) C Jac(R), (P :r M) C m for each m € Maz(R)
and hence (P :g M) N (R —m) = (). The rest follows from Lemma 2.3 (a).
(b)=(a) Let am € P with a ¢ (P :g M) for some a € R and m € M. Let
m € Max(R). As P is an (R — m)-primary submodule of M, there exists sy, ¢ m
such that asy, € \/m or sym € P. As (P :g M) is a primary ideal of R and
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sm & /(P :g M), we have asy ¢ (P :g M) and so sym € P. Now consider the
set Q@ = {sm|Im € Mazx(R), sm ¢ m and sym € P}. Then note that () = R.
To see this, take any maximal ideal m’ containing Q. Then the definition of Q
requires that there exists sy € Q and sy € M. As Q C m’, we have s, € Q C m/,
a contradiction. Thus () = R and this yields 1 = r18m, + 728my + -+ + "nSm,,
for some r; € R and Sy, ¢ m; with su,m € P, where m; € Maz(R) for each
1 = 1,2,...,n. This yields that m = ri8m,m + r2s5m,m + -+ + TnSm,m € P.

Therefore, P is a primary submodule of M. (]

Now we determine all primary submodules of a module over a quasi-local ring

in terms of S-primary submodules.

Corollary 2.26. Suppose M is a module over a quasi-local ring (R, m). Then the
following statements are equivalent:
(a) P is a primary submodule of M.
(b) (P :g M) is a primary ideal of R and P is an (R —m)-primary submodule
of M for each m € Max(R).

Proof. This is clear from Theorem 2.25. |

Remark 2.27. (a) Suppose that M is an R-module. The idealization R(+)M
= {(a,m) |a € R, m € M} of M is a commutative ring whose addition
is component-wise and whose multiplication is defined as (a,m)(b,m’) =
(ab,am’ + bm) for each a, b € R and m, m’ € M. If S is a multiplicatively
closed subset of R and P is a submodule of M, then S(+)P = {(s,p)|s €
S, p € P} is a multiplicatively closed subset of R(+)M [2,10].

(b) Radical ideals of R(+)M have the form I(+)M, where I is a radical ideal
of R. Tf J is an ideal of R(+)M, then v/J = V/I(+)M. In particular, if I
is an ideal of R and N is a submodule of M, then \/I(+)N = VI(+)M [2,
Theorem 3.2 (3)].

Proposition 2.28. Let M be an R-module and p be an ideal of R such that p C
Ann(M). Then the following are equivalent:

(a) p is a primary ideal of R.
(b) p(+)M is a primary ideal of R(+)M.
Proof. This is straightforward. (I

Theorem 2.29. Let S be a multiplicatively closed subset of R, p be an ideal of R
provided pN S =0 and M be an R-module. Then the following are equivalent:

(a) p is an S-primary ideal of R.
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(b) p(+)M is an S(+)0-primary ideal of R(+)M.
(¢) p(+)M is an S(+)M-primary ideal of R(+)M.

Proof. (a)=(b) Let (z,m)(y,m') = (zy,zm’ + ym) € p(+)M, where z,y € R
and m,m’ € M. Then we get zy € p. As p is S-primary, there exists s € S
such that sz € /p or sy € p. Now put s' = (5,0) € S(+)0. Then we have
s'(z,m) = (sz,sm) € /p(+)M = \/p(+)M or s'(y,m’) = (sy,sm’) € p(+)M.
Therefore, p(+)M is an S(+)0-primary ideal of R(+)M.

(b)=(c) It is clear from Proposition 2.7.

(c)=(a) Let zy € p for some z,y € R. Then (z,0)(y,0) € p(+)M. Since
p(+)M is S(+)M-primary, there exists s = (s1,m1) € S(+)M such that s(z,0) =
(s12,2my) € \/p(+)M = VP(H+)M or s(y,0) = (s1y,ym1) € p(+)M and hence we
get s12 € \/p or s1y € p. Therefore p is an S-primary ideal of R. (I

Remark 2.30. Let M be an R-module and let S be a multiplicatively closed subset
of R such that Anng(M) NS = 0. We say that M is an S-torsion-free module in
the case that there is an s € S such that if rm = 0, where r € R and m € M, then
sm =0 or sr =0 [11, Definition 2.23].

Proposition 2.31. Let M be an R-module. Assume that P is a submodule of M
and S is a multiplicatively closed subset of R such that Anng(M)NS = 0. Then P
is an S-primary submodule of M if and only if the factor module M/P is a w(S)-
torsion-free R/\/m-module, where m: R — R/\/m 1s the canonical

homomorphism.

Proof. Suppose that P is an S-primary submodule of M. Let am = 0p;,p, where
a=a++/(P:g M)and m =m+ P for some a € R and m € M. This yields that
am € P. As P is S-primary, there exists s € S such that sa € /(P :g M) or sm €
P. Then we can conclude that 7(s)a = OR/\/W or w(s)m = 0p7/p. Therefore,
M/ P isamx(S)-torsion-free R/+/(P :g M)-module. For the other direction, suppose
that M/P is a 7(S)-torsion-free R/+/(P :r M)-module. Let am € P,where a € R
and m € M. Puta = a++/(P :g M) and m = m+ P. Then note that am = 05;/p.
As M/P is a w(S)-torsion-free R/\/(P :r M)-module, there exists s € S such that
m(s)a = OR/\/W or m(s)m = O0pr/p. This yields that sa € /(P :g M) or

sm € P. Accordingly, P is an S-primary submodule of M. g

Definition 2.32. Let M be an R-module and let S be a multiplicatively closed
subset of R such that Anng(M) NS = 0. We say that M is a quasi S-torsion-free
module, if there exists s € S such that whenever rm = 0, where r € R and m € M,

then sm = 0 or (sr)" =0 for some t € N.
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According to Definition 2.32, Proposition 2.31 can be expressed as follows.

Proposition 2.33. Let M be an R-module. Assume that P is a submodule of M
and S is a multiplicatively closed subset of R such that Anng(M)NS = (. Then
P is an S-primary submodule of M if and only if the factor module M/P is a
quasi 7' (S)-torsion-free R/(P :gp M)-module, where ©’ : R — R/(P :r M) is the

canonical homomorphism.

Theorem 2.34. Let M be a module over an integral domain R. The following are

equivalent:

(a) M is a torsion-free module;
(b) M is a quasi (R — p)-torsion-free module for each p € Spec(R);
(¢) M is a quasi (R — m)-torsion-free module for each m € Maz(R).

Proof. (a)=(b) It is clear.

(b)=(c) It is clear.

(c)=(a) Assume that a # 0. Take m € Maxz(R). As M is quasi (R —m)-torsion-
free, there exists s, # m so that s,,m = 0 or (s,a)! = 0 for some t € N. As R
is an integral domain, (s;,a)t # 0. Now, put Q = {s,, € R|3Im € Max(R), s, ¢
m and s,,m = 0}. A similar argument in the proof of Theorem 2.25 shows that
1 = R. Then we have (sp,) + (Smy) + -+ + (Sm,,) = R for some (sy,,) € Q. This
implies that Rm = Y7 (sm,)m = (0) and hence m = 0. This means M is a

torsion-free module. O
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