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Abstract  Keywords 

Examining the flight quality of an aircraft to ensure the stability of the aircraft, 
increase maneuverability, and make the aircraft easier to control by the pilot 
necessitates an examination of the natural stability of the system. Within the 
scope of the paper, the frequency domain response of the F-16 aircraft 
dynamics is analyzed using Simulink models considering two different flight 
regimes because the frequency-domain methods have many distinct and 
important advantages over time-domain methods. Aerodynamic, propulsive, 
and atmospheric databases are used to create the nonlinear model. The trim 
analysis for cruise flights is carried out to obtain trim parameters. The aircraft 
is numerically linearized using the small perturbation theory. The linearized 
dynamics for each trim condition are used to create transfer functions for 
each input. The linear model is subsequently examined in the frequency 
domain to obtain information about the dynamic behavior of the aircraft, and 
flight quality analysis was examined by considering the lateral and longitudinal 
modes of the aircraft by international standards. It has been clearly 
understood the stability augmentation system design has critical importance 
for the modes with unstable or long steady-state duration. 
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1. Introduction 

Stability analysis is a critical phenomenon that needs to 
be addressed for achieving the targeted mission 
according to the aircraft type. Passenger comfort, the 
pilot’s ability to control the aircraft, the calculation of 
flight performance, how accurately the sensors will 
work, and many other criteria (Hess, 2007) can be 
revealed by analyzing the natural stability of the aircraft. 
Especially with the developing technology, enhancing 
technical capacities and travel time maneuverability, and 
increasing time-varying data such as ammunition and 
fuel necessitates performance and efficiency 
calculations and high-accuracy tests (Dündar et al., 
2020). These tests are carried out using the aerodynamic 

efficiency data arising from the design of the aircraft, the 
equations of motion calculated from the aerodynamic 
coefficients and the effectiveness of the control 
surfaces, flight performance calculations, etc. 

Frequency domain analysis is useful for dynamic 
analysis, robust controller design (Hess, 2007) and 
verification, guidance and trajectory studies, air combat 
research, and many other missions (Garza and Morelli, 
2003). It indicates how well the aircraft responds to a 
range of input frequencies. Changes in amplitude and 
phase fit into a specific pattern that depends on the 
aircraft’s design, from which information about the 
system is revealed. Also, the higher bandwidth means the 
faster-commanded speed or position adjustment time 
(Wescott, 2006). The bode is an analysis plot for a linear 
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time-invariant system in the frequency domain that 
includes a magnitude and a phase plot (Atangana and 
Akgül, 2020). 

Morelli et al. mentioned that (Morelli and Grauer, 2020; 
Morelli and Jared, 2015) frequency-domain studies for F-
16 fighter aircraft have crucial advantages over time-
domain studies due to the reasons such as noise 
rejection, accurate modeling, the modeling of 
parametric uncertainty, enabling simple and effective 
approach, data extraction, and validation, real-time 
modeling, flying qualities modeling, and computational 
efficiency. Along with these advantages, a disadvantage 
of frequency-domain estimation is associated with the 
practical limitation of identification techniques to linear 
dynamical systems only (Klein, 1978 and 1980). Fu stated 
(Fu, 1990) that the frequency response of the transfer 
function facilitates the enhancement of uncertain 
transfer matrices for multi-input, multi-output systems 
(MIMO). Meanwhile, these results are utilized to 
determine the H∞ norm, gain margin, and phase margin 
and to improve the diagonal dominance of the MIMO 
indeterminate system. A frequency-domain study is also 
used to determine the stability parameters of the aircraft 
(Morelli, 2000, Millidere, 2021, Shukla et al., 2017). The 
short-period characteristic evaluated in the longitudinal 
motion was obtained by driving the elevator input at 
different frequencies. With some estimated 
aerodynamic derivatives of the system, the second order 
transfer function and accordingly the damping ratio and 
natural frequency data can be obtained (Milliken, 1947, 
Greenberg, 1951). 

In this paper, the frequency domain response of the F-16 
fighter airplane dynamics is analyzed with performed 
Simulink models considering altitude of 3000 feet (914.4 
m) and 30000 feet (9144 m) trimming conditions. To 
acquire comprehensive nonlinear dynamics, the plant 
model of the F-16 fighter airplane is established by 
modeling aerodynamic, gyroscopic, gravitational, and 
propulsive force and moments concerning atmospheric 
effects. The modeling part comprises various data such 
as the geometric configuration of fighter airplanes, 
aircraft wind tunnel test aerodynamic and propulsion 
data, given inertia-mass parameters, and engine angular 
momentum.  

In kinematic calculations, Euler angular representation 
is chosen to obtain transfer functions and state-space 
representations to make the final results 
understandable. The most important advantage of 
quaternion is that it eliminates the singularity problem. 
However, it is more difficult to interpret quaternion than 
Euler angles. Since there is no singularity at the points 
where linearization is made, it does not affect the 
analysis made in the frequency domain, and in order to 
make the final results understandable, both transfer 
functions and state-space representations are made 

according to Euler angles.  

The aircraft operation intervals, which also define where 
the trim conditions are, should be specified prior to 
linearization. The intervals can be defined for take-off, 
cruise, or another mode. The states and required control 
inputs can then be derived by trim analysis of these 
operating points. Once the trim variables are obtained, 
the nonlinear dynamics of the aircraft can be linearized 
to obtain the state-space equations. In this paper, 
reappraisal is carried out in this study by looking at the 
dynamics in the frequency domain. In the end, the 
aircraft dynamics are also investigated purpose whether 
they are appropriate for human and aircraft dynamic 
response interfaces, as successful maneuvering, 
approaching, and tracking missions are all dependent on 
them. As a result, for the given criteria, this analysis 
should also be carried out in terms of the damping ratio, 
time constant, and natural frequency of lateral and 
longitudinal modes. 

This paper is organized as follows. The nonlinear 
equation of the system dynamics is addressed in the 
second chapter. Then, the trim conditions for cruise 
flight and linearization process of the nonlinear model 
are expressed to obtain transfer functions and break 
frequencies which constitutive they are tabulated. Also, 
the state-space model of the F-16 aircraft is composed. 
In the third chapter, Bode diagrams and pole maps are 
demonstrated. Finally, obtained results and their effects 
on stability modes are analyzed and interpreted. 

2. Equation of Motion 

 

Fig. 1. Earth-fixed and body-fixed reference frames 
(Stevens and Lewis, 1992) 

Considering the equation of motion of an aircraft, 
various assumptions are made in order to simplify the 
equations. First, the airframe is assumed to be a rigid 
body, so the center of gravity of the aircraft won’t have a 
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relative velocity for the Body-fixed reference frame. 
Second, the mass of aircraft is assumed to be constant, 
and finally, mass distribution remains constant during 
the flight, resulting in a constant inertia tensor. The 
equation of motion of an aircraft is mainly obtained on 
Earth-fixed and Body-fixed reference frames. These 
reference frames are represented in Fig. 1. 

Six nonlinear equations of motion were utilized to model 
nonlinear aircraft dynamics for translational and 
rotational motion (Stevens and Lewis, 1992). These 
equations are shown in (1-4). 

u̇ =
∑Fx

m
− qw + rv (1) 

v̇ =
∑Fy

m
− ur + pw (2) 

ẇ =
∑Fz

m
− pv + qu (3) 

External forces acting on the aircraft in a body-fixed 
reference frame, such as aerodynamic, gravitational, and 
propulsive forces, are represented by 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧. 
Sometimes, these equations are used by transforming 
them into earth-fixed or wind axes reference frames. For 
the earth-fixed frame, transformation can be done by 
using the relation below. 

(
𝑥̇
𝑦̇
𝑧̇

) = (

cos𝜓𝑐𝑜𝑠𝜃 cos𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 − 𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜙 cos𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 + 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙
𝑠𝑖𝑛𝜓𝑐𝑜𝑠𝜃 sin𝜓𝑠𝑖𝑛𝜃𝑠𝑖𝑛𝜙 + 𝑐𝑜𝑠𝜓𝑐𝑜𝑠𝜙 sin𝜓𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜙 − 𝑠𝑖𝑛𝜓𝑠𝑖𝑛𝜙

−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜃𝑐𝑜𝑠𝜙
)(

𝑢
𝑣
𝑤

)

 (4) 

Where ϕ, θ, and ψ are the Euler angles that correspond 
to orientation in the earth-fixed frame and the 
transformation matrix 𝑇𝐸

𝐵, provides a transformation 
from body-fixed frame to earth-fixed frame. The other 
transformation to wind axes can be done using the (5).  

(
V̇T

β̇
α̇

) =

(

 
 

cosα cosβ  sinβ sinα cosβ

−
1

VT
cosα sinβ

1

VT
cosβ −

1

VT
sinα sinβ

−
sinα

VTcosβ
0

cosα

VTcosβ )

 
 

 (
u
v
w

) (5) 

On the other hand, rotational equation of motion can be 
found using Newton’s second law, 

∑Mext =
dH

dt
= Ḣ + ω × H (6) 

Hence, angular velocity rates can be found as  

ṗ =
∑L+Ixy(q̇−pr)+Ixz(ṙ+pq)−(Izz−Iyy)qr−Iyz(r

2−q2)

Ixx
 (7) 

q̇ =
∑M+Iyz(ṙ−pq)+Ixy(ṗ+qr)−(Ixx−Izz)pr−Ixz(p

2−r2)

Iyy
 (8) 

ṙ =
∑N+Ixz(ṗ−qr)+Iyz(q̇+pr)−(Iyy−Ixx)pq−Ixy(q2−p2)

Izz
 (9) 

In general applications, regarding aircraft geometry, 
some product inertia terms that are 𝐼𝑥𝑦 and 𝐼𝑦𝑧 may be 
neglected. Another transformation can be performed for 
rotational kinematics, which incorporates angular body 

rates and Euler angle rates,  

(
ϕ̇

θ̇
Ψ̇

) = (

1 tanθsinϕ cosϕtanθ
0 cosϕ −sinϕ
0 secθsinϕ secθcosϕ

)(
p
q
r
) (10) 

3. Modeling 

During the flight, some external forces and moments are 
acting on the aircraft. There are variety of factors that 
cause these forces and moments. These variables and 
model types will be discussed in this section. 
Aerodynamic, propulsion, atmospheric, gyroscopic, and 
gravitational models are all covered in this article.  

For aerodynamic modeling, Nguyen et al. (1979) provided 
extensive data about the fighter aircraft F-16, and the 
data that is used in this paper is obtained from that 
article by Nguyen (1979). This data consists of two main 
parts, which are breakpoints and data. The data part is 
based on the data which is obtained from wind-tunnel 
testing of F-16 (Nguyen, 1979). On the other hand, 
breakpoints store the angle of attack, slip angle, or 
surface deflection data in which wind-tunnel testing is 
conducted.  

F(X,Y,Z)aerodynamic
= Cx,y,z × q̅  × S (11) 

M(L,M,N)aerodynamic
= Cl,m,n × q̅ × S × b (12) 

Where the dynamic pressure is q ̅, the wing reference 
area is S, the span length is b, and the aerodynamic chord 
length is C. 

For propulsion modeling, In F-16 aircraft, propulsion is 
provided by a turbofan jet engine. The engine data is 
given in reference to Nguyen (1979) for F-16 aircraft, and 
it is used to calculate thrust force 𝐹𝑇. Regarding provided 
data, thrust force depends on Mach number, altitude of 
the aircraft, and throttle settings of idle, mil, and max. 
Thrust value is calculated by interpolating provided data 
with input variables. An interpolation must be done 
considering power percentage to find thrust value 
within these points. If the throttle level is within the 50-
0 percent, 

T = Tidle + (Tmil − Tidle)(
ts

0.77
) (13) 

where ts is the percent throttle setting within 0-1, and if 
the throttle level is within 50-100, thrust becomes, 

T = Tmil + (Tmax − Tmil)(ts − 0.77)/0.77 (14) 

propulsive forces can be defined as, 

𝐹𝑃 = (

𝐹𝑇𝑐𝑜𝑠𝜃𝑝𝑐𝑜𝑠𝜓𝑝

𝐹𝑇𝑐𝑜𝑠𝜃𝑝𝑠𝑖𝑛𝜓𝑝

−𝐹𝑇𝑠𝑖𝑛𝜃𝑝

) (15) 

the moment can be calculated using relation below, 
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MP = (

−(FTcosθpsinψp)rP,z − (FTsinθp)rP,y

(FTcosθpcosψp)rP,z + (FTsinθp)rP,x

−(FTcosθpcosψp)rP,y + (FTsinθpsinψp)rP,x

) (16) 

𝜓𝑝 represents the angle between the z-axis of reference 
frames and 𝜃𝑝 represents the angle between the y-axis 
of propulsion and body reference frame. 𝒓𝑃/𝑐𝑔 are 
assumed to be zero, which makes the propulsive force 
vector 𝑭𝑃 has an only component in the x-axis of the 
body frame. 

Rotating rigid bodies have angular momentum. Suppose 
that an external moment acts on the rigid body that 
generates angular velocity. In that case, gyroscopic 
moments are generated to conserve previous angular 
momentum by producing the counter moment called the 
gyroscopic precession effect. According to the reference 
Nguyen (1979), the angular momentum of the aircraft is 
considered as 216.9 kg.m2/sec in the x-direction of the 
propulsion system reference frame. Therefore, in this 
system, gyroscopic moments can be found as, 

∑MGy = −(

0
rHP,xjB

−qHP,xkB

)  (17) 

Due to gravitation, there is always applied gravitation 
force on aircraft. As the attitude of the aircraft changes, 
the gravitational vector in the body axis changes. This 
can be modeled by using the earth-to-body reference 
frame transformation matrix 𝑇𝐸

𝐵 and gravity vector in the 
earth-fixed reference frame. Force components can be 
found as 

FG = (

−mg sinθ
mg cosθ sinϕ
mg cosθ cosϕ

)  (18) 

For actuator modeling, some time lag can be observed 
when a command was given to an actuator. As a result, 
these actuator dynamics are also incorporated into the 
simulation system to make it more realistic. The actuator 
models are considered first order system. Rate and 
position limiters are also added to the model. 
Additionally, the references of actuator models can be 
given as Nguyen, 1979 and Sonneveldt 2006. 

 

Fig. 2. General Simulink model of the F-16 aircraft before trimming phase 

4. Trim Conditions and Linearization 

Linearization of equations of motion and decomposition 
of linearized equations into two sets, longitudinal and 
lateral, are studied in this section. The operational points 
that determine the numerical outcome of the trim 

conditions must be determined before linearization. 
Trim conditions will be found by finding the point where 
the forces and moments acting on aircraft body are zero 
using the optimization algorithm. The cost function to 
be minimized is specified in (19). The constraint 
equations that will set the limits of optimization are 
translational dynamics, rotational dynamics, 
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translational kinematics, rotational kinematic, and some 
additional physical definitions for specific of the trim 
conditions. Translational dynamics are introduced in (1-
3), translational kinematics are introduced in (4), 
rotational dynamics are introduced in (7-9), and 
rotational kinematics are introduced in (10). 

𝐽 = 𝑓𝑇𝐷1
2 + 𝑓𝑇𝐷2

2 + 𝑓𝑇𝐷3
2 + 𝑓𝑅𝐷1

2 + 𝑓𝑅𝐷2
2 + 𝑓𝑅𝐷3

2 + 𝑓𝑅𝐾1
2 +

𝑓𝑅𝐾2
2 + 𝑓𝑅𝐾3

2 + 𝑓𝑇𝐾2
2 + 𝑓𝑇𝐾3

2  (19) 

States are VT, β, α, (u, v, w), p, q, r, φ, θ, ψ, h, γ and control 
Inputs are δe, δa, δr, δT . Four states are defined in question 
VT (velocity), h (altitude), γ (gamma angle), and φ angle. 
The trim is mostly searched for the defined condition. 
ζspecified = [ VT, h, γ, φ]T, VT = constant, h = constant, γ = 
constant, φ = 0,  ζunknown=[ β, α, p, q, r, θ, ψ, δe, δa, δr, δT]T. 
Thus, the cost function J(ζspecified, ζunknown) for the general 
straight flight can be solved with 11 unknowns for 11 
equations. The constraint equations are translational 
dynamics, rotational dynamics, translational kinematics, 
rotational kinematic, and some additional physical 
definitions for specific trim conditions. Simulation of F-
16 fighter aircraft is performed regarding these trim 
analyses. The states and control inputs are initialized 
considering findings in trim analysis, and the dynamics 
of the aircraft are analyzed.  

Optimization algorithms make minimization according 
to the targeted subject. According to the selected 
optimization algorithm, local minimum or global 
minimum can be found. The cost function is primarily 
used to evaluate the current performance of the model 
by comparing the predicted results. For the J cost 
function to be equal to zero, all the functions that make 
it up must be zero. While the selected optimization 
algorithm solves this, it tries to bring the cost function 
closer to zero. Scatter-Search-Based global optimization 
was used in MATLAB Global Search Method to find 
trimmed states and inputs. A Global Search object 
presents a solver that attempts to locate the solution 
with the lowest objective function value. Global Search 
solver first generates trial points employing a Scatter 
Search method. These trial points are then filtered and 
fmincon is started from each of the filtered points. For 

case 1, the fmincon function converges to 1.535628e-11; 
furthermore, the Global Search algorithm converges to 
5.6463e-14, corresponding to the least minimum value. 
For case 2, fmincon function converges to 0.00602 
where corresponds to the local minimum. Since the 
value found with fmincon is not the global minimum, a 
different algorithm has been tried. The minimum cost 
function 3.5680e-13 was found via the Global Search 
algorithm. The selected algorithm cannot converge any 
further. While searching the global minimum, the 
following constraints and initial values were referred. 

Table 2. Trimmed state derivatives (𝑥̇) of Case 1 

𝐕̇𝐓𝟏 𝛂̇𝟏 𝐪̇𝟏 𝛉̇𝟏 𝛃̇𝟏 𝐩̇𝟏 𝐫̇𝟏 𝛟̇𝟏 
0 0 0 0 0 0 0 0 

Table 4. Trimmed Inputs (u) for Case 1 

𝛅𝐓𝟏 [% ratio] 𝛅𝐡𝐭𝟏 [deg] 𝛅𝐚𝟏 [deg] 𝛅𝐫𝟏 [deg] 
0.1485 -0.5708 0 0 

Table 5. Trimmed state derivatives (𝑥̇) of Case 2 

𝐕̇𝐓𝟐 𝛂̇𝟐 𝐪̇𝟐 𝛉̇𝟐 𝛃̇𝟐 𝐩̇𝟐 𝐫̇𝟐 𝛟̇𝟐 
0 0 0 0 0 0 0 0 

Table 7. Trimmed Inputs (u) for Case 2 

𝛅𝐓𝟏 [% 𝐫𝐚𝐭𝐢𝐨] 𝛅𝐡𝐭𝟏 [deg] 𝛅𝐚𝟏 [deg] 𝛅𝐫𝟏 [deg] 
0.4221 -0.5134 0 0 

The six nonlinear differential equations that govern 
aircraft motion are nonlinear differential equations. That 
can be solved with a variety of numerical integration 
techniques. However, it is practically difficult to obtain 
closed solutions (equations for each variable). Closed 
solutions to the dynamic behavior of the aircraft can 
provide helpful information (linear models). Hence, 
alternative strategies such as obtaining partial 
derivatives of the equation of motion or small 
perturbation approaches (Jafarov and Tasaltm, 1999) are 
used to linearize the aircraft’s equations of motion. By 
applying the conditions in Table 2 and Table 3, the  
 

Table 1. Constraints and initial values of Case-1 and Case-2 

 β [rad] α [rad] p 
[rad/s] 

q 
[rad/s] r [rad/s]  [rad]  [rad] 𝛅𝐡𝐭 [°] 𝛅𝐚 [°] 𝛅𝐫 [°] 𝛅𝐓 [%] 

Case 1: M=0.45, h=3000 ft (914.4 m), γ=0°, ϕ =0° 

Initial 0.0017 0.0175 1 1 1 pi/12 pi/9 0.1 0.1 0.1 0.8 
Lower -pi/6 -pi/2 -inf -inf -inf -pi/2 -pi -25 -21.5 -30 0 
Upper pi/6 pi/2 inf inf inf pi/2 pi 25 21.5 30 1 

Case 2: M=0.45, h=30000 ft (9144 m), γ =0°, ϕ =0° 
Initial 0.0017 -0.0175 -0.1 -0.1 -0.1 -pi/12 -pi/9 -0.1 0.1 0.1 0.3 

Lower -pi/6 -pi/2 -1 -1 -1 -pi/2 -pi -25 -21.5 -30 0 

Upper pi/6 pi/2 1 1 1 pi/2 pi 25 21.5 30 1 
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Table 3. Trimmed States (x) of Case 1 

𝐕𝐓𝟏 [m/s] 𝛂𝟏[rad - deg] 𝐪𝟏 [rad/s] 𝛉𝟏 [rad - deg] 𝛃𝟏 [rad] 𝐩𝟏 [rad/s] 𝐫𝟏 [rad/s] 𝛟𝟏 [rad] 
151.5302 0.0446 2.5581 0 0.0446 2.5581 0 0 0 0 

Table 6. Trimmed States (x) of Case 2 

𝐕𝐓𝟐 [m/s] 𝛂𝟐[rad - deg] 𝐪𝟐 [rad/s] 𝛉𝟐 [rad - deg] 𝛃𝟐 [rad] 𝐩𝟐 [rad/s] 𝐫𝟐 [rad/s] 𝛟𝟐 [rad] 
136.4314 0.1728 9.8989 0 0.1728 9.8989 0 0 0 0 

Linear state-space model of longitudinal dynamics for case 1 in (20) 

[

ΔV̇T

Δα̇
Δq̇

Δθ̇

]= [

-0.0182 1.1250 -0.2336 -9.8043
-0.0009 -0.9145 0.9118 0
0.0004 0.6531 -0.9798 0

0 0 1 0

] [

ΔVT

Δα
Δq
Δθ

]+ [

7.3609 0.0306
-0.0022 -0.0022

0 -0.1663
0 0

] [
ΔδT1

Δδht1
]    (20) 

Linear state-space model of lateral dynamics for case 1 in (21). 

[
 
 
 
𝛥𝛽̇
𝛥𝑝̇
𝛥𝑟̇
𝛥𝜑̇]

 
 
 
= [

-0.2730 0.0444 -0.9919 0.0646
-27.4910 -3.2705 0.6278 0
6.4680 -0.0318 -0.4349 0

0 1 0 0

] [

𝛥𝛽
𝛥𝑝
𝛥𝑟
𝛥𝜑

] + [

0.0003 0.0007
-0.6636 0.1148
-0.0279 -0.0560

0 0

] [
𝛥𝛿𝑎1

𝛥𝛿𝑟1
]    (21) 

Linear state-space model of longitudinal dynamics for case 2 in (22). 

[

𝛥𝑉̇𝑇

𝛥𝛼̇
𝛥𝑞̇

𝛥𝜃̇

] = [

-0.0189 -2.2246 -0.5453 -9.7786
-0.0010 -0.3908 0.9630 0
0.0002 -0.1414 -0.4208 0

0 0 1 0

] [

𝛥𝑉𝑇

𝛥𝛼
𝛥𝑞
𝛥𝜃

] + [

2.2820 -0.0105
-0.0029 -0.0009

0 -0.0540
0 0

] [
𝛥𝛿𝑇2

𝛥𝛿ℎ𝑡2
]    (22) 

Linear state-space model of lateral dynamics for case 2 in (23). 

[
 
 
 
𝛥𝛽̇
𝛥𝑝̇
𝛥𝑟̇
𝛥𝜑̇]

 
 
 
= [

-0.0996 0.1727 -0.9821 0.0706
-13.0351 -1.0935 0.5716 0
2.1056 -0.0224 -0.1499 0

0 1 0 0

] [

𝛥𝛽
𝛥𝑝
𝛥𝑟
𝛥𝜑

] + [

0.0001 0.0003
-0.2011 0.0364
-0.0079 -0.0183

0 0

] [
𝛥𝛿𝑎2

𝛥𝛿𝑟2
]    (23) 

Table 8. Transfer functions of trimmed points 

 Case 1: M=0.45, ℎ=3000 ft (914.4 m), γ =0°, ϕ =0° Case 2: M=0.45, ℎ=30000 ft (9144 m), γ =0°, ϕ =0° 

𝑽𝑻(𝒔)

𝜹𝒉𝒕(𝒔)
 

0.030595 (𝑠 + 1.047) (𝑠2  +  2.037𝑠 +  46.98)

(𝑠 + 1.721) (𝑠 − 0.05708) (𝑠2  +  0.2486𝑠 +  0.02056)
 

−0.01047 (𝑠 − 9.21) (𝑠 + 6.689) (𝑠 + 0.3182)

(𝑠2  +  0.004027𝑠 +  0.006845) (𝑠2  +  0.8265𝑠 +  0.3036)
 

𝜶(𝒔)

𝜹𝒉𝒕(𝒔)
 

−0.002168 (𝑠 + 70.94) (𝑠2  +  0.01839𝑠 +  0.009173)

(𝑠 + 1.721) (𝑠 − 0.05708) (𝑠2  +  0.2486𝑠 +  0.02056)
 

−0.00094077 (𝑠 + 55.73) (𝑠2  +  0.01924𝑠 +  0.0104)

(𝑠2  +  0.004027𝑠 +  0.006845) (𝑠2  +  0.8265𝑠 +  0.3036)
 

𝒒(𝒔)

𝜹𝒉𝒕(𝒔)
 

−0.16632 𝑠 (𝑠 + 0.01933) (𝑠 + 0.9218)

(𝑠 + 1.721) (𝑠 − 0.05708) (𝑠2  +  0.2486𝑠 +  0.02056)
 

−0.054045 𝑠 (𝑠 + 0.01289) (𝑠 + 0.3944)

(𝑠2  +  0.004027𝑠 +  0.006845) (𝑠2  +  0.8265𝑠 +  0.3036)
 

𝜽(𝒔)

𝜹𝒉𝒕(𝒔)
 

−0.16632 (𝑠 + 0.01933) (𝑠 + 0.9218)

(𝑠 + 1.721) (𝑠 − 0.05708) (𝑠2  +  0.2486𝑠 +  0.02056)
 

−0.054045 (𝑠 + 0.01289) (𝑠 + 0.3944)

(𝑠2  +  0.004027𝑠 +  0.006845) (𝑠2  +  0.8265𝑠 +  0.3036)
 

𝜷(𝒔)

𝜹𝒂(𝒔)
 

0.00025585 (𝑠 − 1.578) (𝑠2  −  1.79𝑠 +  49.52)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

9.4388𝑒 − 05 (𝑠 − 284.9) (𝑠2  +  0.6015𝑠 +  0.093)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝒑(𝒔)

𝜹𝒂(𝒔)
 

−0.66361 (𝑠 − 0.002859) (𝑠2  +  0.7477𝑠 +  7.693)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

−0.20115 (𝑠 − 0.01245) (𝑠2  +  0.2906𝑠 +  2.594)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝒓(𝒔)

𝜹𝒂(𝒔)
 

−0.02791 (𝑠 + 1.721) (𝑠2  +  1.007𝑠 +  6.808)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

−0.0079385 (𝑠 + 0.4108) (𝑠2  +  0.1908𝑠 +  11.41)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝝋(𝒔)

𝜹𝒂(𝒔)
 

−0.66485 (𝑠2  +  0.7486𝑠 +  7.693)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

−0.20253 (𝑠2  +  0.2804𝑠 +  2.652)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
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𝜷(𝒔)

𝜹𝒓(𝒔)
 

0.00071153 (𝑠 + 85.76) (𝑠 + 3.181) (𝑠 + 0.002136)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

0.00025073 (𝑠 + 96.9) (𝑠 + 0.9297) (𝑠 − 0.0269)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝒑(𝒔)

𝜹𝒓(𝒔)
 

0.11476 (𝑠 + 2.747) (𝑠 − 2.513) (𝑠 − 0.002903)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

0.036392 (𝑠 − 2.149) (𝑠 + 2.035) (𝑠 − 0.01249)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝒓(𝒔)

𝜹𝒓(𝒔)
 

−0.056005 (𝑠 + 3.223) (𝑠2  +  0.3034𝑠 +  0.2855)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

−0.018252 (𝑠 + 0.4992) (𝑠2  +  0.7096𝑠 +  1.25)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

𝝋(𝒔)

𝜹𝒓(𝒔)
 

0.11226 (𝑠 + 2.742) (𝑠 − 2.584)

(𝑠 + 3.193) (𝑠 + 0.01849) (𝑠2  +  0.767𝑠 +  7.569)
 

0.033207 (𝑠 + 2.1) (𝑠 − 2.355)

(𝑠 + 0.8485) (𝑠 + 0.005894) (𝑠2  +  0.4885𝑠 +  4.198)
 

Table 9. Break frequencies of transfer functions 

Break Frequencies 

𝐕𝐓(𝐬)

𝛅𝐡𝐭(𝐬)
 

Case-1 Kvt1 = 0.030595,
1

Tvt1

= 1.047, n1 = 6.854 , 
n1

= 0.148,
1

τ1ph1

= 0.05708,
1

τ1ph2

= 1.721, nsp1
= 0.1433, 

sp1
= 0.866 

Case-2 Kvt2 = −0.01047,
1

Tvt2

= 9.21, n2 = 1.458 , 
n2

= 2.4, nph2
=   0.0827, 

ph2
= 0.0243, nsp2

=   0.55,
sp2

=   0.75 

𝛂(𝐬)

𝛅𝐡𝐭(𝐬)
 

Case-1 Ka1 = −0.002168,
1

Ta1

= 70.94, n1 = 0.0957 , 
n1

= 0.096,
1

τ1ph1

= 0.05708,
1

τ1ph2

= 1.721,  nsp1
=   0.1433, 

sp1 
= 0.86 

Case-2 Ka2 = −0.00094077,
1

Ta2

= 55.73, n2 = 0.1019, 
n2

= 0.094,  nph2
= 0.08273, 

ph2
= 0.0243, nsp2

= 0.55, 
sp2 

= 0.75 

𝛉(𝐬)

𝛅𝐡𝐭(𝐬)
 

Case-1 Kθ = −0.002168,
1

Tθ11

= 0.01933,
1

Tθ12

= 0.9218,
1

τ1ph1

= 0.05708,
1

τ1ph2

= 1.721,  nsp1
=   0.1433, 

sp1 
= 0.86 

Case-2 Kθ = −0.054045,
1

Tθ21

= 0.01289,
1

Tθ22

= 0.3944, nph2
=   0.08273, 

 ph2
= 0.0243,  nsp2

=  0.55, 
sp2 

= 0.75 

𝛃(𝐬)

𝛅𝐚(𝐬)
 

Case-1 Kβ1 = 0.00025585,   
1

τs1

= 3.193 ,
1

τr1

= 0.01849     ndr1 =   2.751    
ndr1

= 0.139 

Case-2 Kβ2 = 9.4388e − 05 ,    
1

τs2

= 0.8485 ,
1

τr2

= 0.005894     ndr2 =   2.048    
ndr2

= 0.119 

𝛗(𝐬)

𝛅𝐚(𝐬)
 

Case-1 Kφ1 = −0.66485  ,  nφ1 = 2.773,  
nφ1

= 0.1349 
1

τr1

= 3.193 ,
1

τs1

= 0.01849,  ndr1 =   2.751    
ndr1

= 0.139 

Case-2 Kφ2 = −0.20253 ,  nφ2 = 1.628,  
nφ2

= 0.086 
1

τr2

= 0.8485 ,
1

τs2

= 0.005894,  ndr2 =   2.048    
ndr2

= 0.119 

𝐩(𝐬)

𝛅𝐫(𝐬)
 

Case-1 Kp1 = 0.11476,
1

τ1φ1

= 0.002903,
1

τ1φ2

= 2.513,
1

τ1φ3

= 2.747,
1

τr1

= 3.193,
1

τs1

= 0.01849, ndr1 = 2.751, 
ndr1

= 0.139 

Case-2 Kp2 = 0.036392 
1

τ2φ1

= 0.01249
1

τ2φ2

= 2.035,
1

τ2φ3

= 2.149,
1

τr2

= 0.8485 ,
1

τs2

= 0.005894,ndr2 = 2.048 
ndr2

= 0.119 

𝐫(𝐬)

𝛅𝐫(𝐬)
 

Case-1 Kr1 = −0.056005,
1

Tψ1

= 3.223, nψ1 = 0.534 ,
ψ1

= 0.2839 
1

τs1

= 3.193,
1

τr1

= 0.01849,  ndr1
=   2.751, 

dr1
=   0.139 

Case-2 Kr2 = −0.018252 ,
1

Tψ2

= 0.4992, nψ2 = 1.118, 
ψ2

= 0.317,
1

τs2

= 0.8485,
1

τr2

= 0.005894,  ndr2 = 2.048, 
ndr2

= 0.119 

linearization process is completed, and these equations 
of motion are mathematically separated into two sets as 
longitudinal and lateral motion. After linearization, the 
equations of motion are divided into longitudinal 
motion, including variables 𝑉𝑡, 𝛼, 𝑞, 𝜃, and lateral motion, 
including states 𝛽, 𝜙, 𝜓, 𝑝, 𝑟. With thanks to the 
perturbed linearization algorithm, state-space models of 
Case-1 and Case-2 were generated with 211 and 210 

precision, respectively. The relevant models can be 
expressed as follows. 

The known flight conditions were chosen with respect 
to constant altitude and wings level as α= , β= -, and 
angular position rates p = q = r = 0.  Trimmed states and 
inputs are calculated in Table 2 and Table 3. 

Frequency domain analysis is done using Bode diagram 
for single input single output systems. For this reason, 

longitudinal and latitudinal dynamics expressed in state-
space form should be converted into transfer functions. 
Table 4 shows the F-16 aircraft’s transfer functions. Table 
5 also shows the break frequencies of transfer functions. 

5. Frequency Domain and Flying Qualities 

Analysis 

Transfer functions and root locus plots are provided for 
various modes. The outcomes of the open-loop study 
may be classified to represent various aspects of flight 
handling performance. Two flight conditions will be 
examined based on their behavior in different modes. 
Stability augmentation system and control 
augmentation system designs are required based on the 
data inspected from the frequency domain response. 
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The design is expected to meet the desired dynamics, 
and these dynamics are determined by both military and 
civil aviation standards. All these design and 
performance requirements are specified in MIL-F-8785C 
(Flying Qualities of Piloted Airplanes), which contains 
these military standards (MIL-F-8785C, 1980).  
The criteria in the standards have varying constraints 
depending on the aircraft’s class, flight phase, and flying 
quality. Therefore, it is necessary to determine the class 
of the F-16 fighter aircraft. F-16 aircraft can be classified 
as Class IV, Category A, or Level 1 according to MIL-F-
8785C specifications. The limits that the aircraft 

dynamics are determined by looking at this classification 
(Atak, 2020). The damping ratio of the F-16 should be 
between 0.35< ζ𝑠𝑝<1.30, and its natural frequency should 
be between 0.28 < 𝜔𝑛𝑠𝑝

< 3.6. The damping ratio of the 
short-term mode should be as great as possible. If there 
is insufficient damping, serious problems may emerge. 
For the phugoid mode, the damping ratio ζ𝑝ℎ ≥ 0.04 and 
log𝑒 2 /(−ζ𝜔𝑛𝑝ℎ

) ≥ 55  requirements are specified in the 
MIL-F-8785C standards. The frequency domain and 
flight quality analyses are shown in the bode diagrams 
below for the two situations studied. 

 

Fig.3.  VT(s)

δht(s)
 Bode diagrams for Case-1 and Case-2. 

 

 

Fig. 4.  𝑎(𝑠)

𝛿ℎ𝑡(𝑠)
Bode diagrams for Case-1 and Case-2. 
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The frequency response of wind velocity VT to horizontal 
tail input for case-1 and case-2 is shown. There is a pole 
for case-1 and zero for case-2 on the right side of the 
imaginary axis. Such systems are known as non-
minimum phase systems. While the system in case-1 is 
unstable, the system in case-2 is stable. For both 
systems, at low frequencies, the gain margin value and 
phase shift remain constant. In case 2, a small peak in 
gain is observed when the input frequency crosses the 
short period break frequency, and the gain continues to 
decrease gradually at higher frequencies. At higher 
frequencies, the phase lag related to the short period 
mode results in a constant total phase lag of -180 
degrees. The response steadily decreases as the control 
input frequency is raised, with an increasing phase lag. 
In particular, the dominant effect of Case-2 belongs to 
the phugoid mode, where the gain peaks because of the 
low damping ratio. It is explicitly located inside the 
observable bandwidth. 

The frequency responses of the angle of attack 𝑎 to 
horizontal tail input δht for case-1 and case-2 are shown. 
The system in case-1 is unstable because of its positive 
pole. 1

𝑇𝑎
 can not be seen because of the workspace of the 

figure. Because of the positive pole, case-1 is an unstable 
and nonminimum phase system, whereas case-2 is a 
stable and minimum phase system. The gain margin 
value is constant for both cases at extremely low 
frequencies. When the input frequency reaches the 
phugoid break frequency, the case-2 gain plot shows a 
peak that implies a small damping ratio, and the gain 
continues to decrease slowly at higher frequencies. 
There is significant phase lag induced by phugoid and 
phase lead caused by na between the frequencies of 
0.07 and 0.2. As the control input frequency is increased, 
the response diminishes steadily with increasing phase 
lag. In both cases, the system parameters are derived 
using the transfer function for pitch angle, where the 
input is a horizontal tail.  

 

Fig. 5.  θ (s)

δht(s)
 Bode diagrams for Case-1 and Case-2. 

 

Fig. 6. β (s)

δa(s)
 Bode diagrams for Case-1 and Case-2. 
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The frequency response of side pitch angle θ, to 
horizontal tail input δht for case-1 and case-2 are shown. 
For case-1, one pole is placed on the right side of the 
imaginary axis. Thus, this system is an unstable and 
nonminimum phase system. For case-2, there is not any 
zero or pole on the right side of the imaginary axis. Thus, 
this system is a stable and minimum phase system. The 
gain margin value remains constant at very low 
frequencies. As the control input frequency is increased, 
the attitude response decreases continuously with 
increasing phase lag after break frequency 1

𝑇𝜃1
 which 

caused a small peak on the gain margin. The case-1 
results of these 3 transfer functions show that the 
longitudinal motion of the F 16 aircraft is unstable. But 
the longitudinal motion of the F 16 aircraft is stable for 
case-2. 

The frequency response of sideslip angle 𝛽, to aileron 

input δa for case-1 and case-2 are shown. There is no 
pole on the right half side of the root locus diagram. But 
it has three positive zeros. Thus, this system is a 
nonminimum phase system. The right half plane zero has 
gained similar to that of the left half plane zero, but its 
phase nature is like a pole i.e., it adds adds negative 
phase to the system. Instead, the phase increases from 0 
to 90 degrees, its phase increases from 0 to -90 degrees. 
This causes a delay in a system response which can lead 
to instability if not addressed. There is a peak at the 
dutch-roll frequency. But the gain is reduced by around 
−5 dB, which means that the pilot would see no 
significant oscillatory sideslip behavior. For case 2, there 
is no pole on the right half side of the root locus diagram. 
But it has three positive zeros. Thus, this system is a 
nonminimum phase system. Complex zeros at 0.30 
rad/s frequency contribute approximately 15 dB into 
gain margin. 

 

Fig. 7. 𝜑 (𝑠)

𝛿𝑎(𝑠)
 Bode diagrams for case-1 and case-2. 

 

Fig. 8. 𝑝 (𝑠)

𝛿𝑎(𝑠)
 Bode Diagrams for Case-1 and Case-2. 
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The frequency response of roll rate p, to rudder input δ𝑟 
for case-1 and case-2, are shown. Two systems are 
nonminimum phase systems because of positive zero 
values. Despite these zero values, systems are stable. The 
dutch-roll resonant peak in gain and subsequent roll-off 
in both gain and phase in case-1 are both standard and 
readily explained. If the effects at extremely low 
frequencies are neglected, it is not unrealistic to suggest 
that the usable bandwidth is a bit greater than the 
dutch-roll mode frequency. For case-2, increasing input 
frequency is affected obviously at dutch-roll break 
frequency. Dutch-roll frequency also adds around 10 dB 
to the system. In comparison between case-1 and case-
2, case-1 has a less dominant spiral mode pole than case-
2. As a result, the gain of case-1 ramps up till the spiral 
mode frequency, while the other’s gain ramps down.  

The frequency response of yaw rate r, to rudder input δ𝑟 

for case-1 and case-2 are shown. These 2 systems are 
minimum phase systems because there is not any 
positive value on the right side of the imaginary axis. In 
case 1, the phase lag increases in spiral mode dynamics 
at extremely low input frequencies until the effect of the 
second order numerator becomes apparent. The gain 
plot shows a steady but significant decrease with 
increasing frequency to reach a minimum of −50 dB at 
𝜔n𝜓, the resonant frequency of the second order 
numerator factor. The gain rises rapidly with a further 
increase in frequency to reach a maximum of -25 dB at 
the dutch-roll frequency. For case-2, the gain plot shows 
a steady but significant decrease with increasing 
frequency to reach a minimum of −50 dB at 1/Tr roll 
mode break frequency. The gain rises rapidly with a 
further increase in frequency to reach a maximum of -
31.2 dB at the dutch-roll frequency. C-1 and C-2 refer to 
Case-1 and Case-2 in Table 10. 

Fig. 9. 𝑟 (𝑠)

𝛿𝑎(𝑠)
Bode Diagrams for Case-1 and Case-2. 

Table 10. All frequency domain values of longitudinal and lateral dynamics of F16 aircraft 

 Longitudional Dynamics Lateral Dynamics 

 
𝑉𝑇(𝑠)

𝛿𝑒(𝑠)
 

𝑎(𝑠)

𝛿𝑒(𝑠)
 

(𝑠)

𝛿𝑒(𝑠)
 

𝛽(𝑠)

𝛿𝑎(𝑠)
 

(𝑠)

𝛿𝑎(𝑠)
 

𝑝(𝑠)

𝛿𝑟(𝑠)
 

𝑟(𝑠)

𝛿𝑟(𝑠)
 

 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case-2 Case-1 Case
-2 

Bandwidth 
(dB) 0.048 0.131 0.036 0.094 0.2729 0.7426 0.0184 0.0059 0.0184 0.0059 31.772 0.008 0.0184 

0.00
6 

Resonant 
Peak (dB) 57.44 66.41 -3.12 6.088 9.744 25.091 -26.99 -18.48 21.161 28.157 -14.58 -16.9 -18.77 -5.31 

Resonant 
Freq. 

(rad/s) 
0,001 0.083 1E-3 0.0827 0.0724 0.0827 1E-3 1E-4 1E-3 1E-4 2.6971 2.0195 1E-3 1E-4 

Resonant 
Freq. 

(rad/s) 
-50.5 -24.4 inf 11.6 inf 17.6 27 18.5 -21.2 -28.5 29.6 27 18.8 5.31 

Phase 
Margin 

(deg) 
-63 -49.3 inf -16.6 -137 72.8 inf inf -88.8 -97.7 inf inf inf inf 
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Mode analysis can be used to examine the aircraft’s 
longitudinal and lateral transfer functions in addition to 
the frequency response of the systems. The derived 
transfer functions explain how the system responds to 
control input or disturbances, and the characteristic 
equation of transfer functions defines the 
characteristics of the system. These characteristic 
equations are fourth-order polynomial equations that 
each root corresponds to a different mode in aircraft 
analysis. 

The transfer function poles correspond to phugoid or 
short period dynamic stability modes in longitudinal 
dynamics. The short term dynamic mode is a damped 
oscillation about y-axis on the body-fixed reference 
frame. The modes have a relatively high damping ratio 
and damped frequency compared to phugoid mode. 
Changes in velocity in the x-direction on a Body-fixed 
reference frame are not greatly affected since it is 
described as an oscillation in the y-axis. However, 
primary characteristics that are affected dominantly by 
the short-period mode are body angular rate in x 
direction, pitch angle and the velocity in the z-axis on 
body-fixed reference frame. The phugoid mode, on the 
other hand, may be represented as an oscillation in 
velocity u. The mode has a low damping ratio as well as 
a low damped frequency. So that, compared to the 
short-period mode, its poles are closer to the imaginary 
axis, and it has a slower response. Additionally, in this 
mode, velocity changes are coupled with pitch angle and 
altitude changes. Furthermore, with small fluctuations, 
the angle of attack tends to remain consistent. On the x-
axis, the phugoid mode dominates the states, pitch 
angle, and velocity.  

Roll mode, spiral mode, and dutch-roll mode are the 
three dynamic stability modes in lateral dynamics. Roll 
mode or subsidence roll can be defined as rolling 
dynamics around the x- axis in the body reference frame. 
The roll mode is a non-oscillatory mode that has a single 
pole in the real axis on a complex plane. It also affects 
the roll angle and roll rate. Another dynamic mode is 
spiral mode, also defined as non-oscillatory dynamics in 
lateral direction. When the sideslip angle disturbance 
excites the aircraft, the aircraft fin affects the roll angle, 
and dihedral effect influences the roll angle. It can be 
affected by disturbances on the sideslip angle. 
Therefore, regarding this, it can be stated that is a 
coupled motion (Bajodah at al., 2018) in yaw, sideslip, and 
roll. On longitudinal dynamics, the dutch-roll mode is 
identical to the short-period mode, but it occurs in the 
z-axis on the body-fixed reference frame. It usually has 
complex conjugate poles on the complex plane. This 
dynamics couples with the roll angle and the sideslip 
angle. 

The poles in the longitudinal study are -0.124±0.0715j, -
1.72, and 0.0571. Real poles belong to the phugoid mode. 

One of the poles is positive, which means it is unstable. 
Because there is instability, in this case, the case does 
not meet any criteria. For the second case, the poles of 
phugoid mode are at -0.00201±0.0827j with 0.0243 
damping ratio and 0.0827 rad/s natural frequency. The 
damping ratio is less than 0.04; therefore, Level 1 criteria 
are not met. However, the criteria for Level 2 is a 
damping ratio greater than 0; therefore, it is satisfied. 
This means although the response is relatively slow, the 
oscillatory response in phugoid mode eventually 
stabilizes. 

The poles for the short period mode in the first flight 
condition are -0.124±0.0715j for short period frequency 
and dampening. The short period mode has a damping 
ratio of 0.867 and a natural frequency of 0.143 rad/s. The 
natural frequency of 0.143 does not meet any Level 1, 2, 
or 3 criteria for category A flights. However, it satisfies 
the requirements for some factor sensitivity parameters 
in category B. The damping ratio satisfies the criteria of 
being at least 0.05 for flight phase category B. The short-
period modes for the second flight condition are in the -
0.413±0.364j, with a damping ratio of 0.75 and a natural 
frequency of 0.551 rad/s. The damping ratio is sufficient 
once more, and the natural frequency is greater than in 
the previous case. The behavior satisfies the 
requirements of flight phase category B for all aircraft 
classes and C for aircraft class II-L and III for level 2 
regarding standard MIL-STD-1797A. However, it does 
not fit categorie A and C for aircraft I, II-C, and IV for 
level 2.  

For spiral mode, minimum time to double amplitude 
condition of lateral mode, the pole for the spiral mode is 
located in -0.0185, which is very close to the imaginary 
axis that makes this mode very slow to develop in the real 
case. Any real value that is smaller than 0.693 / T2min is in 
compliance with spiral mode requirements. Where T2min 
is the minimum time to double amplitude. Since the pole 
here is negative, it is guaranteed to be smaller than the 
required value. For the second flight condition, the 
scenario is similar. Although the pole magnitude is 
smaller, -0.006, it still lies on the left-hand side of the 
required value. This means that all the levels of spiral 
mode handling are achieved. 

For maximum roll mode time constant, the pole of the 
roll mode is -3.19 for the first flight condition. The 
compliance region for roll mode root is −1/Trmax. The 
Trmax takes the values of 1.0, 1.4, 3.0, and 10 for different 
handling quality levels, yet -3.19 remains on the 
compliance region for any of them, so the behavior 
meets all the level’s criteria. However, the second flight 
condition’s roll mode pole is -0.848, which means while 
still meeting most of the requirement Trmax values, it does 
not satisfy the requirements when the Trmax is 1.0. Since 
the root would lie in the right-hand side of this value, 
outside of the compliance region. Therefore, in this 
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condition, the handling qualities meet the criteria for 
Level 2 and Level 3. However, there are some shortfalls 
for Level 1. 

For the minimum dutch-roll frequency and damping, the 
complex conjugate poles of dutch-roll modes are located 
in −0.384 ± 2.72𝑗 with 0.139 damping ratio and 2.75 rad/s 
natural frequency. The damping ratio falls within 
satisfactory region for the Level 3 and Level 2 qualities; 
however, it only meets the requirement for B and C flight 
categories for Level 1. The minimum natural frequency is 
quite enough for each level, but the damping ratio is the 
limiting factor here. For the second condition, the 
complex conjugate poles of the dutch-roll mode are 
−0.244 ± 2.03𝑗. The damping ratio of the dutch-roll 
mode is 0.119, and the natural frequency is 2.05 rad/s. 
Again, the natural frequency is quite enough, while the 
damping ratio still falls short of meeting the Level 1 
category A criteria. Handling qualities are classified as 
the same for both conditions. 

6. Conclusions 

A Simulink model is developed in this paper to simulate 
F-16 dynamics. The aircraft’s equation of motion is also 
simulated. Some properties like Mach number, altitude 
change with aircraft dynamics, and aircraft’s actuator 
dynamics are also included in the system designed to 
make it more realistic. Then, the nonlinear aircraft 
dynamics are linearized around the trim conditions. The 
trim conditions of the aircraft are tried to be found as 
much as accurately using global search algorithms. 
Because it is also important for the accuracy of the 
linearized model. After finding the linearized model, the 
transfer functions are analyzed for frequency response 
and flying quality criteria. Along with the analysis in the 
frequency domain, mode analysis has a vital role, 
especially for flight performance. The phugoid, short 
period, roll mode, spiral mode, and dutch-roll modes 
were investigated longitudinally and latitudinally, 
respectively. It has been seen that the stability 
augmentation system and control augmentation system 
design has a critical importance for the modes with 
unstable or long steady-state duration. In order to make 
these designs, classification, level, and category of the 
aircraft must be determined in accordance with MIL-
STD-1797A standards. For case 1, it is found that the 
longitudinal transfer function is unstable, which is 
caused by aircraft parameters coupling with different 
atmospheric conditions. On the other hand, for the 
second case, both lateral and longitudinal linearized 
dynamics are found as stable condition.  

The results obtained for the flight at these two different 
altitudes reveal the effect of altitude on flight 
performance. It is also used as performance evaluation 
criteria in analyzes such as fuel consumption, controller 

performance, and actuator saturation of the change in 
flight performance. The stability augmentation system 
and autopilot design for F-16 aircraft will be the topic of 
further research after this study. 
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Nomenclature 

MIMO : multi-input multi-output  
MIL : military  
dB : decibel  
V̇T : wind velocity rate (𝑚/𝑠2)  
𝛽̇ : sideslip velocity rate (𝑚/𝑠2)  
𝑎̇ : angle of attack velocity rate (m⁄𝑠2)  
𝑝̇ : roll velocity rate (𝑟𝑎𝑑/𝑠2)  
𝑞̇ : pitch velocity rate (𝑟𝑎𝑑/𝑠2)  
𝑟̇ : yaw velocity rate (𝑟𝑎𝑑/𝑠2)  
𝑥̇ : forward velocity (m⁄s)  
𝑦̇ : horizontal velocity (m⁄s)  
𝑧̇ : vertical velocity (m⁄s)  
Φ : roll angle (rad)  
Θ : pitch angle (rad)  
Ψ : yaw angle (rad)  
𝑢̇ : forward velocity rate (𝑟𝑎𝑑/𝑠2)  
𝑣̇ : horizontal velocity rate (𝑟𝑎𝑑/𝑠2)  
𝑤̇ : vertical velocity rate (𝑟𝑎𝑑/𝑠2)  
H : angular momentum (Nm/ 𝑠2)  
𝑀𝑒𝑥𝑡 : external momentum (Nm/s)  
𝑇𝑖𝑑𝑙𝑒 : thrust of idle condition  
𝑇𝑚𝑖𝑙 : thrust of military condition  
𝑓𝑇𝐷 : function of translational dynamics  
𝑓𝑅𝐷 : function of rotational dynamics  
𝑓𝑇𝐾 : function of translational kinematics  
𝑓𝑅𝐾 : function of rotational kinematics 
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