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Abstract

This manuscript is devoted to the investigation of the existence results of fractional Cauchy problem for
some nonlinear ψ−Caputo fractional di�erential equations with non local conditions. By applying �xed
point theorems, some results of topological degree theory for condensing maps and some fractional analysis
techniques, we establish some new existence theorems. As application, a nontrivial example is given to
illustrate our theoretical results.
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1. Introduction

The subject of fractional calculus has recently evolved as an interesting and popular tool in the modelling
of many phenomena in various �elds of engineering, physics and economics. Indeed, fractional-order models
have been found to be more adequate than integer order models for some real world problems as fractional
derivatives provide an excellent tool for the description of memory and hereditary properties of various
materials and processes. This theory plays a very considerable role both in mathematics and in applications as
material theory, transport processes, earthquakes, electrochemical processes, wave propagation, signal theory,
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biology, electromagnetic theory, �uid �ow phenomena, thermodynamics, mechanics, geology, astrophysics,
economics and control theory(see[1, 9, 14, 19, 25, 27]); this is the main advantage of fractional di�erential
equations in comparison with classical integer-order models. Fractional di�erential equations have been of
great interest recently such as boundary value problems for nonlinear fractional di�erential equations which
can be employed in modeling and describing non-homogeneous physical phenomena that take place in their
form. Almeida et al. [5] investigated the existence and uniqueness results of nonlinear fractional di�erential
equations involving a Caputo-type fractional derivative with respect to another function by using �xed
point theorems and Picard iteration metho. Zhang in [31] proved the existence and uniqueness results for
nonlinear fractional boundary value problem involving Caputo type fractional derivatives by using some �xed
point theorems. Many researchers have obtained some interesting results on the existence and uniqueness
of solutions of boundary value problems for fractional di�erential equations involving di�erent fractional
derivatives such as Riemann-Liouville [22], Caputo [3], Hilfer [23], Erdelyi-Kober [24] and Hadamard [2]. For
more details, the reader may also consult [6, 7, 10, 13, 17, 18, 26, 30, 32] and the references therein.
Motivated by the above works, we investigate and we generalize the results obtained in [29] involving ψ-
Caputo type fractional derivatives of order 1 < α < 2. To be more precise, we establish the existence of
solutions for the following nonlocal fractional Cauchy problem:

CDα,ψ
0+

x(t) = f(t, x(t)), t ∈ ∆ = [0, T ],

x(0) + ϕ(x) = x0, x′(0) = 0.

(1)

Where CDα,ψ
0+

is the ψ−Caputo fractional derivative, T > 0, f ∈ C(∆× R,R) and x0 ∈ R.
The nonlocal term ϕ is the de�ned by

ϕ : C(∆,R) −→ R,

x 7−→ ϕ(x).

Our paper is organized as follows: In Section 2, we give some basic de�nitions and properties of ψ−fractional
integral and ψ−Caputo fractional derivative which will be used in the rest of this paper. In Section 3,
we establish the existence of solutions for ψ−Caputo type fractional problem (1) by using some results of
topological degree theory for condensing maps. As application, an illustrative example is presented in Section
4 followed by conclusion in Section 5.

2. Preliminaries

In this section, we give some notations, de�nitions and results on ψ-fractional derivatives and ψ-fractional
integrals, for more details we refer the reader to [4, 8, 21].

Notations

• We denote by X a Banach space and by BX the family of all non-empty and bounded subsets of X.
• We denote by C(∆,R) the space of continuous real-valued functions de�ned on ∆ provided with the
topology of the supremum norm

‖ x ‖= sup
t∈∆
| x(t) | .

• We denote by Bη the closed ball centered at 0 with radius η > 0.
• We denote by L1(∆,R) the space of Lebesgue integrable real-valued functions on ∆ equipped with the
norm

‖ x ‖L1=

∫
∆
| x(t) | dt.
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De�nition 2.1. [5] Let q > 0, g ∈ L1([∆,R) and ψ ∈ Cn(∆,R) such that ψ′(t) > 0 for all t ∈ ∆.
The ψ-Riemann-Liouville fractional integral at order q of the function g is given by

Iq,ψ
0+
g(t) =

1

Γ(q)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))q−1g(s)ds.

De�nition 2.2. [5] Let q > 0, g ∈ Cn−1(∆,R) and ψ ∈ Cn(∆,R) such that ψ′(t) > 0 for all t ∈ ∆.
The ψ−Caputo fractional derivative at order q of the function g is given by

CDq,ψ
0+
g(t) =

1

Γ(n− q)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))n−q−1g

[n]
ψ (s)ds.

Where

g
[n]
ψ (s) =

(
1

ψ′(s)

d

ds

)n
g(s) and n = [q] + 1.

And [q] denotes the integer part of the real number q.

Remark 2.3. In particular, if q ∈]0, 1[, then we have

CDq,ψ
0+
g(t) =

1

Γ(q)

∫ t

0
(ψ(t)− ψ(s))q−1g′(s)ds.

And
CDq,ψ

0+
g(t) = I1−q,ψ

0+

(
g′(t)

ψ′(t)

)
.

Proposition 2.4. [5] Let q > 0, if g ∈ Cn−1(∆,R), then we have

1) CDq,ψ
0+
Iq,ψ

0+
g(t) = g(t).

2) Iq,ψ
0+

CDq,ψ
0+
g(t) = g(t)−

n−1∑
k=0

g
[k]
ψ (0)

k!
(ψ(t)− ψ(0))k.

3) Iq,ψ
a+

is linear and bounded from C(∆,R) to C(∆,R).

Proposition 2.5. [5] Let t > 0 and α, β ≥ 0, then we have

1) Iq,ψ
0+

(ψ(t)− ψ(0))β−1 =
Γ(β)

Γ(β + α)
(ψ(t)− ψ(0))α+β−1.

2) Dq,ψ
0+

(ψ(t)− ψ(0))β−1 =
Γ(β)

Γ(β − α)
(ψ(t)− ψ(0))α−β−1.

3) Dq,ψ
0+

(ψ(t)− ψ(0))n = 0, for all n ∈ N.

De�nition 2.6. [15] The Kuratowski measure of non-compactness is the mapping µ : BX → R+ de�ned by

µ(B) = inf{ r > 0: B admits a �nite cover by sets of diameter ≤ r}.

Proposition 2.7. [15] The Kuratowski measure of noncompactness µ satis�es the following assertions.

1. µ(B) = 0 if and only if B is retativety compact.

2. µ(λB) = |λ|µ(B), λ ∈ R .

3. µ(B1 +B2) ≤ µ(B1) + µ(B2).

4. If B1 ⊂ B2 then µ(B1) ≤ µ(B2).

5. µ(B1 ∪B2) = max{µ(B1), µ(B2)}.
6. µ(B) = µ(B) = µ(convB) where B and convB denote the closure and the convex hull of B respectively.
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De�nition 2.8. [15] Let and Φ : Ω ⊂ X → X be a continuous bounded map. We say that Φ is µ-Lipschitz
if there exists k ≥ 0 such that

µ(Φ(B)) ≤ kµ(B), for every B ⊂ Ω.

Moreover, if k < 1 then we say that Φ is a strict µ-contraction.

De�nition 2.9. [15] We say that the function Φ is µ-condensing if

µ(Φ(B)) < µ(B),

for every bounded subset B of Ω with µ(B) > 0.
In other words,

µ(Φ(B)) ≥ µ(B)⇒ µ(B) = 0.

De�nition 2.10. [15] We say that the function Φ : Ω→ X is Lipschitz if there exists k > 0 such that

‖ Φ(x)− Φ(y) ‖≤ k ‖ x− y ‖, for all x, y ∈ Ω.

Moreover, if k < 1 then we say that Φ is a strict contraction.

Lemma 2.11. [15] If T, S : Ω → X are µ-Lipschitz mappings with constants k1 respectively k2, then the
mapping T + S : Ω→ X is µ- Lipschitz with constants k1 + k2.

Lemma 2.12. [15] If Φ : Ω→ X is compact, then Φ is µ− Lipschitz with constant k = 0.

Lemma 2.13. [15] If Φ : Ω→ X is Lipschitz with constant k, then Φ is µ−Lipschitz with the same constant
k.

Theorem 2.14. (See Isaia [20]). Let Λ : X → X be µ-condensing and

Sκ = {x ∈ X : x = κΛx for some 0 ≤ κ ≤ 1}.

If Sκ is a bounded set in X, then there exists r > 0 such that Sκ ⊂ Br and we have

deg(I − δΛ, Br, 0) = 1, ∀δ ∈ [0, 1].

Consequentty, the operator Λ has at least one �xed point and the set of the �xed points of Λ lies in Br .

3. Main results

In this section, before we give the main result of our paper, �rst of all we should de�ne what we mean
by a solution for the problem (1) and prove the fundamental Lemma 3.2. For this purpose, we assume the
following assumptions throughout the rest of our paper.

(A1) There exists a constant Lϕ > 0 such that

|ϕ(x)− ϕ(y)| ≤ Lϕ | x− y |, for each x, y ∈ C(∆, R).

(A2) There exist two constants Kϕ,Mϕ > 0 and q ∈ (0, 1) such that

|ϕ(x)| ≤ Kϕ | x |q +Mϕ for each x ∈ C(∆, R).

(A3) There exist two constants Kf ,Mf > 0 and p ∈ (0, 1) such that

|f(t, x)| ≤ Kf | x |p +Mf for each x ∈ C(∆, R).
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De�nition 3.1. A function x ∈ C(∆,R) such that its α−derivative existing on ∆ is said te be a solution

of the problem (1) if x satis�es the equation CDα,ψ
0+

x(t) = f(t, x(t)) on ∆ and the condition x(0) + ϕ(x) =
x0, x

′(0) = 0.

Lemma 3.2. A function x(t) ∈ C(∆,R) is a solution of the fractional di�erential equation (1) if and only
if x satis�es the following fractional integral equation

x(t) = x0 − ϕ(x) +
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(s))ds. (2)

Proof. Let x be a solution of the problem (1), then we apply the ψ−fractional integral Iα,ψ
0+

on both sides of
(1) we get

Iα,ψ
0+

CDα,ψ
0+

x(t) = Iα,ψ
0+

f(t, x(t)),

and by using Proposition 2.4 we obtain

x(t) = c0 + (ψ(t)− ψ(0))c1 + Iα,ψ
0+

f(t, x(t)),

where c0, c1 ∈ R.
It follows that

x′(t) = c1ψ
′(t) +

1

Γ(α)

∫ t

0

(
ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(s))

)′
ds.

Since x(0) + ϕ(x) = x0 and x′(0) = 0, then c0 = x0 − ϕ(x) and c1 = 0.
Hence the integral equation (2) holds.
Conversely, by direct computation, it is clear that if x satis�es the integral equation (2), then the equation
(1) holds which completes the proof.

To show that the fractional integral equation (2) has at least one solution x ∈ C(∆,R), we consider two
operators L,F : C(∆,R)→ C(∆, R) de�ned as follow:

Fx(t) = x0 − ϕ(x), t ∈ ∆. (3)

And

Lx(t) =
1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1f(s, x(s))ds, t ∈ ∆. (4)

Then, the fractional integral equation (2) can be written as follow:

T x(t) = Fx(t) + Lx(t), t ∈ ∆. (5)

Theorem 3.3. Assume that the hypotheses (A1) − (A3) hold, then the nonlocal fractional Cauchy problem
(1) has at least one solution x ∈ C(∆,R). In addition, the set of the solutions of (1) is bounded in C(∆,R) .

In order to prove the Theorem 3.3, we will need to show some lemmas and preliminary results.

Lemma 3.4. The operator F is µ- Lipschitz with the constant Lϕ. Moreover, F satis�es the following
inequality:

‖Fx‖C ≤ |x0|+Kϕ‖x‖q +Mϕ, for every x ∈ C(J, R). (6)

Proof. To prove that the operator F is Lipschitz with constant Lϕ.
Let x, y ∈ C(∆,R), then we have

|Fx(t)−Fy(t)| ≤ |ϕ(x)− ϕ(y)|,
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by using the hypothesis (A1) we get

|Fx(t)−Fy(t)| ≤ Lϕ‖x− y‖,

taking supremum over t, we obtain

‖Fx−Fy‖ ≤ Lϕ‖x− y‖.

It follows that F is is Lipschitz with constant Lϕ. By using the Lemma 2.13, we deduce that the operator
F is µ-Lipschitz with the same constant ϕ.
To show the inequality (6), let x ∈ C(∆,R), then we have

|Fx(t)| = |x0 − ϕ(x)| ≤ |x0|+ |ϕ(x)|,

by using the assumption (A2) we get

‖Fx‖ ≤ |x0|+Kϕ‖x‖q +Mϕ.

Lemma 3.5. The operator L is continuous and satis�es the following inequality:

‖Lx‖ ≤ (Kϕ‖x‖p +Mϕ)(ψ(T )− ψ(0))α

Γ(α+ 1)
, for every x ∈ C(J, R). (7)

Proof. To prove that the operator L is continuous, let xn ∈ C(∆,R) converging to x in C(∆,R), it follows
that there exists δ > 0 such that ‖xn‖ ≤ δ and ‖x‖ ≤ δ. Now let t ∈ ∆, then we have

|Lxn(t)− Lx(t)| ≤ 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1 |f(s, xn(s))− f(s, x(s))| ds,

by using the continuity of the function f , it is easy to see that

lim
n→∞

f(s, xn(s)) = f(s, x(s)).

On the one other hand, we use the assumpsion (A3) we get the following inequality

ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
‖f(s, xn(s))− f(s, x(s))‖ ≤ (Kϕδ

p +Mϕ)
ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
,

and since the function s 7→ ψ′(s)(ψ(t)− ψ(s))α−1

Γ(α)
is integrable over [0, t], then by using the Lebesgue

dominated convergence theorem we get

lim
n 7→+∞

1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1 ‖f(s, xn(s))− f(s, x(s))‖ ds = 0,

it follows that

lim
n7→+∞

‖ Lxn − Lx ‖= 0.

Wich shows that L is a continuous operator on C(∆,R) .
Let us show the inequality (7), for this purpose let x(t) ∈ C(∆,R), then we have

|Lx(t)| ≤ 1

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1 |f(s, x(s))| ds,
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by using (A3) we obtain

|Lx(t)| ≤ (Kϕ‖x‖p +Mϕ)

Γ(α)

∫ t

0
ψ′(s)(ψ(t)− ψ(s))α−1ds,

Finally we get

‖ Lx ‖≤ (Kϕ‖x‖p +Mϕ)(ψ(T )− ψ(0))α

Γ(α+ 1)
.

Lemma 3.6. The operator L : C(∆,R)→ C(∆,R) is compact.

Proof. In order to show the compactness of L we need to show that LBη is relatively compact in C(∆, R)
and we usse the Arzela-Ascoli Theorem [16].
For this purpose let x ∈ Bη, then by using the inequality (7) we have

‖ Lx ‖≤ (Kϕη
p +Mϕ)(ψ(T )− ψ(0))α

Γ(α+ 1)
:= ξ.

It follows that LBη ⊂ Bξ. This shows that LBη is bounded.
Now, let us also show that LBη is equicontinuous on ∆.

Let x ∈ LBη and t1, t2 ∈ ∆ such that t1 < t2, then we have

|Lx(t2)− Lx(t1)| ≤ Kϕ | x |p +Mϕ

Γ(α)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1ds,

|Lx(t2)− Lx(t1)| ≤ Kϕη
p +Mϕ

Γ(α)

∫ t2

t1

ψ′(s)(ψ(t2)− ψ(s))α−1ds,

|Lx(t2)− Lx(t1)| ≤ Kϕη
p +Mϕ

Γ(α+ 1)
(ψ(t2)− ψ(t1))α,

Since ψ is a continuous function, then we obatin

lim
t1→t2

|Lx(t1)− Lx(t2)| = 0.

which shows that LBη is equicontinuous.

Now the set LBη is uniformly bounded and equicontinuous and by using Arzelà�Ascoli Theorem [16] we
deduce that LBη is relatively compact, wich implies that the operator L is compact.

Corollary 3.7. The operator L : C(∆,R)→ C(∆,R) is µ-Lipschitz with zero constant.

Proof. Since L is compact and by using Lemma 2.12 we deduce that L is µ-Lipschitz with zero constant.

Now, we have all the ingredients to give the proof of our main result; Theorem 3.3.

Proof of Theorem 3.3.
Let F ,L, T : C(J,R)→ C(J,R) be the operators given by the equations (3),(4) and (5) respectively.
They are continuous and bounded. Moreover, by using Lemma 3.4 we have F is µ-Lipschitz with constant
Lϕ ∈ [0, 1) and by using Corollary 3.7 we have F is µ-Lipschitz with zero constant. It follows from Lemma
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2.11 that T is a strict µ-contraction with constant Lϕ.
We consider the following set

Sγ = {x ∈ C(∆, R) : x = γT x for some γ ∈ [0, 1]}.

Let us show that Sγ is bounded in C(∆,R). For this purpose let x ∈ Sγ , then x = γT x = γ(Fx + Lx). It
follows that

‖x‖ = γ‖T x‖ ≤ γ(‖Fx‖+ ‖Lx‖),

by using Lemmas 3.4 and 3.5 we get

‖x‖ ≤
(
|x0|+Kϕ‖x‖q +Mϕ +

(Kf‖x‖p +Mf )(ψ(T )− ψ(0))α

Γ(α+ 1)

)
. (8)

From the inequality (8) we deduce that Sγ is bounded in C(∆, R) with p < 1 and q < 1.

if it's not the case, we suppose that σ := ‖x‖ −→ ∞. Dividing both sides of (8) by σ, and taking σ →∞,
it follows that

1 ≤ lim
σ→∞

(
|x0|+Kϕσ

q +Mϕ +
(Kϕσ

p +Mϕ)(ψ(T )− ψ(0))α

Γ(α+ 1)

)
σ

= 0,

which is a contradiction. Hence , as a consequence of the Theorem 2.14 we conclude that T has at least one
�xed point which is the solution of the fractional problem (1) and the set of the �xed points of T is bounded
in C(∆, R). �

Remark 3.8. Note that if the assumptions (A2) and (A3) are formulated for q = 1 and p = 1, then the
conclusions of Theorem 3.3 remain valid provided that

Kϕ +
Kf (ψ(T )− ψ(0))α

Γ(α+ 1)
< 1.

4. An illustrative example

In this section, we give a nontrivial example to illustrate our main result.
Consider the following fractional Cauchy problem:



CD
3
2
,t

0+
x(t) =

e−t

9 + et

(
|x(t)|

1 + |x(t)|

)
, t ∈ ∆ = [0, 1],

x′(0) = 0, x(0) =
10∑
i=1

βi|x(ti)|, βi > 0, 0 < ti < 1, i = 1, 2, .., 10.

(9)

In this example we set α = 3
2 , T = 1, ψ(t) = t, f(t, x(t)) =

e−t

9 + et

(
|x(t)|

1 + |x(t)|

)
and ϕ(x) =

10∑
i=1

βi|x(ti)|

with
10∑
i=1

βi < 1.

It is clear that the assumptions (A1) and (A2) are satis�ed with Kϕ = Lϕ =
10∑
i=1

βi, Mϕ = 0 and q = 1.

Indeed, we have

|ϕ(x(t))| =

∣∣∣∣∣
10∑
i=1

βi|x(ti)

∣∣∣∣∣ ,
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it follows that

|ϕ(x)| ≤
10∑
i=1

βi ‖x‖ ,

hence Kϕ =
10∑
i=1

βi, Mϕ = 0 and q = 1.

On the other hand, we have

|ϕ(x(t))− ϕ(y(t))| =

∣∣∣∣∣
10∑
i=1

βi|x(ti)−
10∑
i=1

βi|y(ti)

∣∣∣∣∣ ,
from which, we have

|ϕ(x)− ϕ(y)| ≤
10∑
i=1

βi |x− y| ,

thus Lϕ =
10∑
i=1

βi.

To prove the assumption (A3), let t ∈ ∆ and x ∈ R, then we have

|f(t, x(t))| =
∣∣∣∣ e−t9 + et

(
|x(t)|

1 + |x(t)|

)∣∣∣∣ ,
|f(t, x(t))| ≤

∣∣∣∣ e−t9 + et

∣∣∣∣ ∣∣∣∣( |x(t)|
1 + |x(t)|

)∣∣∣∣ ,
|f(t, x(t))| ≤ 1

10
(|x|+ 1) .

Thus, the assumption (H3) holds true with Kf = Mf =
1

10
and p = 1.

Finally, all the conditions of Theorem 3.3 are satis�ed, thus it is easy to see that the fractional nonlinear
Cauchy problem (9) has at least one solution de�ned on [0, 1]. Moreover, the set of its solutions is bounded
in C(∆,R) . Indeed, from the inequality (8) we have

‖x‖ ≤
Mf (ψ(1)−ψ(0))α

Γ(α+1)

1− Kf (ψ(1)−ψ(0))α

Γ(α+1)

=
1

10Γ(5/2)− 1
= 0.082.

5. Conclusion

In this paper, we studied the existence of solutions for nonlocal fractional Cauchy problem of nonlinear
fractional di�erential equations involving Caputo type fractional derivative with respect to another function
ψ. The existence theorems are proved by using some �xed point theorems based on topological degree theory
for condensing maps. As application, an example is given to illustrate the obtained result.
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