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Abstract: Oscillation theory is one of the important and striking subjects of applied 
mathematics. Therefore, it has been meticulously studied by many researchers for many 
years. Many results have been obtained concerning the oscillation of differential 
equations of various orders. Some of the oscillation criteria obtained are related to fourth 
order differential equations. In this study, new oscillation criteria are given for a special 
type of fourth order differential equation. The importance of these criteria is due to the 
fact that the known results are expanded and have not been used before. 

  

  

Dördüncü Mertebeden Diferensiyel Denklemler için Salınım Kriterleri 
 
 

 
Anahtar Kelimeler 
Salınım, 
Dördüncü mertebe, 
Diferensiyel denklem 
 

 
Öz: Salınım teorisi, uygulamalı matematiğin önemli ve ilgi çekici konularından biridir. Bu 
nedenle birçok araştırmacı tarafından uzun yıllar yoğun bir şekilde incelenmiştir. Çeşitli 
mertebeden diferensiyel denklemlerin salınımı ile ilgili birçok sonuç elde edilmiştir. Elde 
edilen salınım kriterlerinin bir kısmı dördüncü mertebeden diferensiyel denklemlerle 
ilgilidir. Bu çalışmada dördüncü mertebeden belirli tipteki diferensiyel denklemler için 
yeni salınım kriterleri verilmiştir. Burada elde edilen kriterlerin önemi, bilinen sonuçların 
genişletilmiş hali ve daha önce kullanılmamış olmasından kaynaklanmaktadır. 
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1. Introduction 
 

 

This paper concerns the oscillatory behaviour of solutions to a fourth order linear delay differential equation 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑟2(𝑟1𝑥
′)′)″ + 𝑞1(𝑡)𝑥(𝜏1(𝑡)) = 0,  𝑡 ≥ 𝑡0 > 0.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(1) 

The following properties are assumed to be provided during this study 

(𝐴1) 𝑟1 ,  𝑟2 ∈ 𝐶([𝑡0,∞), ℝ) are positive and satisfy 

𝜋1(𝑡0) = ∫
𝑑𝑠

𝑟1(𝑠)

∞

𝑡0
< ∞⁡⁡⁡and⁡⁡𝜋2(𝑡0) = ∫

𝑑𝑠

𝑟2(𝑠)

∞

𝑡0
< ∞, 

(𝐴2) 𝑞1 ∈ 𝐶([𝑡0,∞),ℝ), 𝑞1(𝑡) ≥ 0 and does not vanish for all large 𝑡 for this interval [𝑡∗,∞) for some 𝑡∗ ∈ [𝑡0,∞), 
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(𝐴3) 𝜏1(𝑡) ≤ 𝑡, lim𝑡→∞𝜏1(𝑡) = ∞ such that 𝜏1 ∈ 𝐶1([𝑡0,∞),ℝ) is a strictly increasing function. 

Further, equation (1)  is called delay differential equation, since 𝜏1(𝑡) ≤ 𝑡 . 
 

Define the operators 

𝐿0𝑥 = 𝑥,  𝐿1𝑥 = 𝑟1𝑥
′,  𝐿2𝑥 = 𝑟2(𝑟1𝑥

′)′,  𝐿3𝑥 = (𝑟2(𝑟1𝑥
′)′)′,  𝐿4𝑥 = (𝑟2(𝑟1𝑥

′)′)″. 

𝑥 is said to be a solution of (1); if function 𝑥 four times continuously differentiable and satisfies equation (1) on [𝑇𝑥 ,∞). 

If a solution of (1) has no largest zero for all large 𝑡 then this solution is termed oscillatory. Otherwise, a solution of (1) 

is termed nonoscillatory. If all of the solutions of equation (1) are oscillates, (1) is called oscillatory. 

Dzurina and Jadlovska[5] used the definition of property (𝐴) in their work. The definition of property A is if any solution 
𝑥 of (1) is either oscillatory or satisfies lim

𝑡→∞
𝑥(𝑡) = 0. We can also see this in the results of Kiguradze’s work[6]. In place 

of property (𝐴) , some researchers prefer to use that the equation is almost oscillatory. Dzurina and Jadlovska’s 
conclusions[5] include new results obtained on property (𝐴)⁡and oscillation of the form 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑟2(𝑟1𝑦
′)′)′ + 𝑞1(𝑡)𝑦(𝜏1(𝑡)) = 0⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(2) 

third order delay differential equation. Research of the qualitative behavior of canonical third order differential equations 
especially in point of oscillation and nonoscillation have been the main topic of wide research. And a lot of studies have 
been done on this point. Among these studies we can refer [1-5]. 

In addition, the oscillation theory for higher order differential equations call attention of a great number of authors. Thus, 
a lot of work have been conducted on the oscillation theory of higher order differential equations, especially the fourth 
order, which we can refer to as reference [7-11]. 

In summary, we can say the following for our work: First of all, we will examine the applicability of the new criteria 
obtained in [5] and the results of the oscillation of (2) to the fourth order differential equation in form (1), which we 
have discussed. 

[5] forms the basis of our ideas. However, we would like to point out that the results we will obtain in this paper are more 
general and improved than those obtained in [5]. 

 

2. Material and Method 
 

The whole of the functional inequalities used in our work are supposed to hold, which are satisfied for all large 𝑡. As usual, 
we may consider solely not negative solutions of (1). We begin with the main lemma, which is used in our theorems. 

 

Lemma 1. Let (𝐴1) − (𝐴3) hold and 𝑥 be a solution of equation (1) such that 𝑥(𝑡) > 0. Then there are eight cases  

for 𝑥:  

Case (a): 𝑥 > 0,  𝐿1𝑥 < 0,  𝐿2𝑥 < 0,  𝐿3𝑥 < 0,  𝐿4𝑥 < 0, 
Case (b): 𝑥 > 0,  𝐿1𝑥 < 0,  𝐿2𝑥 > 0,  𝐿3𝑥 < 0,  𝐿4𝑥 < 0, 
Case (c):  𝑥 > 0,  𝐿1𝑥 > 0,  𝐿2𝑥 > 0,  𝐿3𝑥 > 0,  𝐿4𝑥 < 0, 
Case (d): 𝑥 > 0,  𝐿1𝑥 > 0,  𝐿2𝑥 < 0,  𝐿3𝑥 < 0,  𝐿4𝑥 < 0, 
Case (e): 𝑥 > 0,  𝐿1𝑥 > 0,  𝐿2𝑥 < 0,  𝐿3𝑥 > 0,  𝐿4𝑥 < 0, 
Case (f):  𝑥 > 0,  𝐿1𝑥 > 0,  𝐿2𝑥 > 0,  𝐿3𝑥 < 0,  𝐿4𝑥 < 0, 
Case (g): 𝑥 > 0,  𝐿1𝑥 < 0,  𝐿2𝑥 < 0,  𝐿3𝑥 > 0,  𝐿4𝑥 < 0, 
Case (h): 𝑥 > 0,  𝐿1𝑥 < 0,  𝐿2𝑥 > 0,  𝐿3𝑥 > 0,  𝐿4𝑥 < 0, 

 
for 𝑡 ≥ 𝑡1 with sufficiently large 𝑡. 

Proof. The proof is obvious and hence is neglected. 
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At this time, we will build a new criterion for almost oscillatory, that is property (𝐴) of (1). 

 

Theorem 1. Let (𝐴1)-(𝐴3) hold. If 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∫
1

𝑟1(𝑧1)

∞

𝑡0

(∫
1

𝑟2(𝑠1)

𝑧1

𝑡0

(∫ ∫ 𝑞1

𝑢1

𝑡0

𝑠1

𝑡0

(𝑠)𝑑𝑠𝑑𝑢1)𝑑𝑠1)𝑑𝑧1 = ∞,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(3) 

then all of the solutions of (1) are almost oscillatory. 

Proof.  

Firstly, we note that if both (𝐴1) and (3) hold, then 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡∫
1

𝑟2(𝑠1)

∞

𝑡0

∫ ∫ 𝑞1

𝑢1

𝑡0

𝑠1

𝑡0

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1 = ∫ 𝑞1

∞

𝑡0

(𝑠)𝑑𝑠 = ∞.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(4) 

If 𝑥 is a not an oscillatory solution of (1) on [𝑡0,∞), for 𝑡 ≥ 𝑡1 we get 𝑡1 ≥ 𝑡0 such that 𝑥(𝑡) > 0 and 𝑥(𝜏1(𝑡)) > 0 . 
From Lemma 1, eight possible cases may emerge for 𝑡 ≥ 𝑡1. Each of these cases will be taken into account individually. 

Suppose that case (a) holds. As 𝐿1𝑥 < 0, we view that 𝑥 is not increasing, namely, there is a constant 𝑚 ≥ 0 such that 
lim𝑡→∞𝑥(𝑡) = 𝑚. It is assert that 𝑚 = 0. Vice versa, suppose that 𝑚 > 0. So there is a 𝑡2 ≥ 𝑡1 such that 𝑥(𝜏1(𝑡)) ≥ 𝑚 
for 𝑡 ≥ 𝑡2. Hence, for 𝑡 ≥ 𝑡2 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝐿4𝑥(𝑡) = 𝑞1(𝑡)𝑥(𝜏1(𝑡)) ≥ 𝑚𝑞1(𝑡).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(5) 

Integrating (5) from 𝑡2 to 𝑡 twice, we acquire 

−𝐿2𝑥(𝑡) ≥ −𝐿2𝑥(𝑡2) + 𝑚 ∫ ∫ 𝑞1

𝑢1

𝑡2

𝑡

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1 ≥ 𝑚 ∫ ∫ 𝑞1

𝑢1

𝑡2

𝑡

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1. 

Therefore  

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝐿1𝑥)
′(𝑡) ≥

𝑚

𝑟2(𝑡)
∫ ∫ 𝑞1

𝑢1

𝑡2

𝑡

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(6) 

Integrating (6) again from 𝑡2 to 𝑡, we obtain 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝑥′(𝑡) ≥
𝑚

𝑟1(𝑡)
∫

1

𝑟2(𝑠1)

𝑡

𝑡2

(∫ ∫ 𝑞1

𝑢1

𝑡2

𝑠1

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1)𝑑𝑠1.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(7) 

Integrating (7) from 𝑡2 to 𝑡 and because of (3), we get 

𝑥(𝑡) ≤ 𝑥(𝑡2) − 𝑚 ∫
1

𝑟1(𝑧1)

𝑡

𝑡2

(∫
1

𝑟2(𝑠1)

𝑧1

𝑡2

(∫ ∫ 𝑞1

𝑢1

𝑡2

𝑠1

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1)𝑑𝑠1)𝑑𝑧1 → −∞ 

as 𝑡 → ∞, this contradicts with our assumption. So lim𝑡→∞𝑥(𝑡) = 0. 

 

Suppose that case (b) exists. If proceeds same way with case (a), (5) is obtained. Integrating (5) from 𝑡2 to 𝑡 twice, we 

get 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝐿2𝑥(𝑡) ≤ −𝐿2𝑥(𝑡2) − 𝑚 ∫ ∫ 𝑞1

𝑢1

𝑡2

𝑡

𝑡2

(𝑠)𝑑𝑠𝑑𝑢1 → −∞⁡⁡⁡⁡⁡⁡𝑎𝑠⁡⁡⁡⁡⁡⁡𝑡 → ∞⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(8) 
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we used (4), thus a contradiction is obtained and lim𝑡→∞𝑥(𝑡) = 0. 

 
Suppose that case (c) applies. So 

𝑤1(𝑡) =
𝐿3𝑥(𝑡)

𝑥(𝜏1(𝑡))
⁡,⁡⁡⁡⁡⁡⁡𝑡 ≥ 𝑡1 

is defined. Certainly, 𝑤1(𝑡) > 0 for 𝑡 ≥ 𝑡1. By (1), we acquire 

𝑤1
′(𝑡) =

𝐿4𝑥(𝑡)

𝑥(𝜏1(𝑡))
−

𝐿3𝑥(𝑡)𝑥′(𝜏1(𝑡))𝜏1
′ (𝑡)

𝑥2(𝜏1(𝑡))
 

≥
𝐿4𝑥(𝑡)

𝑥(𝜏1(𝑡))
= −𝑞1(𝑡).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

If the integral taken from 𝑡2 to 𝑡 and using equality (4), we attain 

𝑤1(𝑡) ≤ 𝑤1(𝑡2) − ∫ 𝑞1
𝑡

𝑡2
(𝑠)𝑑𝑠 → −∞      as      𝑡 → ∞, 

which contradicts with 𝑤1(𝑡) > 0. 

 

Suppose that case (d) applies. Because of 𝑥 is an increasing function, integration (1) from 𝑡1 to 𝑡 gives, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝐿2𝑥)′(𝑡) ≥ 𝑘 ∫𝑞1

𝑡

𝑡1

(𝑠)𝑑𝑠.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(9) 

Integrating (9) from 𝑡1 to 𝑡 twice and using equality (4), we obtain 

𝑟1𝑥
′(𝑡) ≤ 𝑟1𝑥

′(𝑡1) − 𝑘 ∫
1

𝑟2(𝑠1)

𝑡

𝑡1

(∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1)𝑑𝑠1 → −∞ 

as 𝑡 → ∞, and this is a contradiction. 

 

Proof of case (e) and case (f) are similar to proof of case (c) and case (b). Hence these cases are omitted. 

Now, we suppose that case (g) applies. From (1), we acquire 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝐿4𝑥(𝑡) = 𝑞1(𝑡)𝑥(𝜏1(𝑡)) ≥ 𝑚𝑞1(𝑡).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(10) 

Integrating (10) from 𝑡2 to 𝑡, we attain 

𝐿3𝑥(𝑡) ≤ 𝐿3𝑥(𝑡2) − 𝑚 ∫𝑞1

𝑡

𝑡2

(𝑠)𝑑𝑠 → −∞ 

as 𝑡 → ∞. Thus a contradiction is obtained and lim𝑡→∞𝑥(𝑡) = 0.  

Case (h) can be proved similar to case (g).  

Hence, the proof is complete. 
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3. Results 
 
Theorem 2. Assume (𝐴1) − (𝐴3). If 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡liminf
𝑡→∞

∫
1

𝑟1(𝑧1)

𝑡

𝜏1(𝑡)

(∫
1

𝑟2(𝑠1)

𝑧1

𝑡0

(∫ ∫ 𝑞1

𝑢1

𝑡0

𝑠1

𝑡0

(𝑠)𝑑𝑠𝑑𝑢1)𝑑𝑠1)𝑑𝑧1 >
1

𝑒
⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(11) 

and 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡limsup
𝑡→∞

∫
1

𝑟1(𝑠1)

𝑡

𝜏1(𝑡)

∫
1

𝑟2(𝑢1)

𝑡

𝑠1

∫ ∫𝑞1

𝑡

𝑧1

𝑡

𝑢1

(𝑠)𝑑𝑠𝑑𝑧1𝑑𝑢1𝑑𝑠1 > 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(12) 

then (1) is almost oscillatory. 

Proof. Let 𝑥 is not oscillatory solution of (1) on [𝑡0,∞). As usual, we may get a value of 𝑡1 ≥ 𝑡0 such that 𝑥(𝑡) > 0 and 

𝑥(𝜏1(𝑡)) > 0 for 𝑡 ≥ 𝑡1. At the time there exist eight possible cases (a)-(h), as Lemma 1. Let case (a) holds. If the integral 

of equation (1) taken from 𝑡1 to 𝑡 with 𝑥 is not increasing, we have 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝐿3𝑥(𝑡) = −𝐿3𝑥(𝑡1) + ∫𝑞1

𝑡

𝑡1

(𝑠)𝑥(𝜏1(𝑠))𝑑𝑠 ≥ 𝑥(𝜏1(𝑡)) ∫𝑞1

𝑡

𝑡1

(𝑠)𝑑𝑠⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(13) 

namely, 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−(𝐿2𝑥)
′(𝑡) ≥ 𝑥(𝜏1(𝑡)) ∫𝑞1

𝑡

𝑡1

(𝑠)𝑑𝑠.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(14) 

If the integral of (14) taken from 𝑡1 to 𝑡 again, we acquire 

−𝐿2𝑥(𝑡) + 𝐿2𝑥(𝑡1) ≥ ∫𝑥

𝑡

𝑡1

(𝜏1(𝑢1)) ∫ 𝑞1

𝑢1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1 ≥ 𝑥(𝜏1(𝑡)) ∫ ∫ 𝑞1

𝑢1

𝑡1

𝑡

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1. 

If the integral taken from 𝑡1 to 𝑡, we attain 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡−𝐿1𝑥(𝑡) ≥ ∫
𝑥(𝜏1(𝑠1))

𝑟2(𝑠1)

𝑡

𝑡1

∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(15) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡≥ 𝑥(𝜏1(𝑡)) ∫
1

𝑟2(𝑠1)

𝑡

𝑡1

∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1  

or 

𝑥′(𝑡) + (
1

𝑟1(𝑡)
∫

1

𝑟2(𝑠1)

𝑡

𝑡1

∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1)𝑥(𝜏1(𝑡)) ≤ 0. 

But, by [6], condition (11) provides that this inequality have not a positive solution, this is a contradiction with our 
primary supposition. 

Suppose that case (b) applies. Integrating (1) from 𝑢1 to 𝑡(> 𝑢1), twice and from the fact the monotony of 𝑥, we acquire 

−𝐿2𝑥(𝑡) + 𝐿2𝑥(𝑢1) ≥ ∫𝑥

𝑡

𝑢1

(𝜏1(𝑠1)) ∫ 𝑞1

𝑠1

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1, 

and 
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(𝐿1𝑥)′(𝑢1) ≥
𝑥(𝜏1(𝑡))

𝑟2(𝑢1)
∫ ∫ 𝑞1

𝑠1

𝑢1

𝑡

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1. 

Repeating the steps above, integrating from 𝑢1 to 𝑡(> 𝑢1) twice, we attain 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥(𝑢1) ≥ 𝑥(𝜏1(𝑡)) ∫
1

𝑟1(𝑧1)

𝑡

𝑢1

∫
1

𝑟2(𝑠1)

𝑧1

𝑢1

∫ ∫𝑞1

𝑥

𝑢1

𝑠1

𝑢1

(𝑠)𝑑𝑠𝑑𝑥𝑑𝑠1𝑑𝑧1.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(16) 

Substitute of 𝑢1 = 𝜏1(𝑡) in (16), we get a contradiction with (12). 

Pointing that (3) is required for the validation of (11), it pursue right away that cases (c)-(f) are not possible. 

Suppose that case (g) holds. Integrating equation (1) from 𝑢1 to 𝑡(> 𝑢1) and from the fact that the monotony of 𝑥 we 

get 

𝐿3𝑥(𝑡) − 𝐿3𝑥(𝑢1) = − ∫𝑞1

𝑡

𝑢1

(𝑠)𝑥(𝜏1(𝑠))𝑑𝑠 

namely 

𝐿3𝑥(𝑢1) ≥ 𝑥(𝜏1(𝑡)) ∫𝑞1

𝑡

𝑢1

(𝑠)𝑑𝑠. 

Integrating again from 𝑢1 to 𝑡; (𝑡 > 𝑢1), we have 

𝐿2𝑥(𝑢1) ≥ 𝑥(𝜏1(𝑡)) ∫ ∫ 𝑞1

𝑠1

𝑢1

𝑡

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1 

that is 

(𝐿1𝑥)′(𝑢1) ≥
𝑥(𝜏1(𝑡))

𝑟2(𝑡)
∫ ∫ 𝑞1

𝑠1

𝑢1

𝑡

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1. 

Integrating again from 𝑢1 to 𝑡; (𝑡 > 𝑢1) twice, we acquire 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥(𝑢1) ≥ 𝑥(𝜏1(𝑡)) ∫
1

𝑟1(𝑧1)

𝑡

𝑢1

∫
1

𝑟2(𝑠1)

𝑧1

𝑢1

∫ ∫𝑞1

𝑥

𝑢1

𝑠1

𝑢1

(𝑠)𝑑𝑠𝑑𝑥𝑑𝑠1𝑑𝑧1.⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

Substitute of 𝑢1 = 𝜏1(𝑡) in (17), this contradicts with (12). 

 
Let case (h) holds. Integrating (1) from 𝑢1 to 𝑡 twice, we get 

−(𝐿1𝑥(𝑢))′ ≥
𝑥(𝜏1(𝑡))

𝑟2(𝑡)
∫ ∫ 𝑞1

𝑠1

𝑢1

𝑡

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1. 

Integrating the last inequality from 𝑢1 to 𝑡; (𝑡 > 𝑢1), we gain 

0 ≥ −𝐿1𝑥(𝑡) + 𝐿1𝑥(𝑢1) ≥ ∫
𝑥(𝜏1(𝑧1))

𝑟2(𝑧1)

𝑡

𝑢1

∫ ∫ 𝑞1

𝑠1

𝑢1

𝑧1

𝑢1

(𝑠)𝑑𝑠𝑑𝑠1𝑑𝑧1. 
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Repeating the steps above, integration from 𝑢1 to 𝑡; (𝑡 > 𝑢1) once, we have inequality (17) and a contradiction with 
(12). This situation is similar to the last part of the proof of the case (g). So the proof is completed. 

Theorem 3. Let (𝐴1) − (𝐴3). If 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡limsup
𝑡→∞

𝜋1(𝑡) ∫
1

𝑟2(𝑢1)

𝑡

𝑡0

∫ ∫ 𝑞1

𝑢1

𝑡0

𝑠1

𝑡0

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1 > 1⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(18) 

and (12) hold, then equation (1) is oscillatory. 

Proof. Let 𝑥 is a not oscillatory solution of equation (1) on [𝑡0,∞). As usual, for 𝑡 ≥ 𝑡1 we may get 𝑡1 ≥ 𝑡0 such that 

𝑥(𝑡) > 0  and 𝑥(𝜏1(𝑡)) > 0 . At that time there are eight possible cases (a)-(h), as Lemma 1. 

Suppose that case (a) applies. In that case 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥(𝑡) = 𝑥(∞) − ∫
1

𝑟1(𝑠)

∞

𝑡

𝐿1𝑥(𝑠)𝑑𝑠 ≥ −𝐿1𝑥(𝑡)𝜋1(𝑡).⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(19) 

Using the monotony of 𝑥 and (19) in (15), we see that 

−𝐿1𝑥(𝑡) ≥ 𝑥(𝑡) ∫
1

𝑟2(𝑠1)

𝑡

𝑡1

∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1

≥ −𝐿1𝑥(𝑡)𝜋1(𝑡) ∫
1

𝑟2(𝑠1)

𝑡

𝑡1

∫ ∫ 𝑞1

𝑢1

𝑡1

𝑠1

𝑡1

(𝑠)𝑑𝑠𝑑𝑢1𝑑𝑠1.

 

If this inequality are taking limsup on both sides, and this contradicts with (18). The proof of case (b) keeps going in the 
same way as the case of Theorem 4. To prove that cases (c)-(f) are not possible, pointing that (4) is required for the 
validity of (18). The proof of the other cases keeps going in the same way as that of Theorem 2. Thus, the proof is 
completed. 

Example 1. We take account of the fourth order delay differential equation form of 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(𝑡3(𝑡2𝑥′(𝑡))′)″ + 2𝑡3𝑥(
𝑡

2
) = 0,  𝑡 ≥ 0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(20) 

where 𝑟1(𝑡) = 𝑡2, 𝑟2(𝑡) = 𝑡3, 𝑞1(𝑡) = 2𝑡3, 𝜏1(𝑡) ≤ 𝑡, lim𝑡→∞𝜏1(𝑡) = ∞. 

And the equation (20) has the main assumptions (𝐴1) − (𝐴3). Also condition (3), i.e.,  

⁡⁡∫
1

𝑧1
2

∞

𝑡0

(∫
1

𝑠1
3

𝑧1

𝑡0

(∫ ∫ 2𝑠3

𝑢1

𝑡0

𝑠1

𝑡0

𝑑𝑠𝑑𝑢1)𝑑𝑠1)𝑑𝑧1 = ∞ 

is supplied and by Theorem 2, we infer from all of the solutions of Eq. (20) are almost oscillatory without any additional 
requirement. 

4. Discussion and Conclusion 

In this paper, three theorem on oscillation for fourth order differential equations with noncanonical operators has been 

obtained and an example has been given for intelligibility of the theorems. Furthermore, obviously in Theorem 2 any 

nonoscillatory solution satisfies either case (a)-(b) or case (g)-(h) of Lemma 1. It has been shown that the oscillation results 

given for third order noncanonical differential equations can be applied to fourth order differential equations. 
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