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Abstract. Motivated by q-shuffle products determined by Singer from q-

analogues of multiple zeta values, we build in this article a generalisation

of the shuffle and stuffle products in terms of weak shuffle and stuffle prod-

ucts. Then, we characterise weak shuffle products and give as examples the

case of an alphabet of cardinality two or three. We focus on a comparison

between algebraic structures respected in the classical case and in the weak

case. As in the classical case, each weak shuffle product can be equipped with

a dendriform structure. However, they have another behaviour towards the

quadri-algebra and the Hopf algebra structure. We give some relations satis-

fied by weak stuffle products.
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1. Introduction

The notion of shuffle and stuffle algebras is widely used in several fields of math-

ematics. Indeed, they participate in the study of Rota-Baxter algebras with the

notion of mixable shuffle algebras [6,14,20], in the study of Yang-Baxter algebras

[21], in the study of quasi-symmetric functions and words algebras [4,5,12,13,24,25,

26,33], in the study of multiple zeta values [7,8,15,16,17,18,19,30,34] . . .

The classical stuffle product comes from the product of classical multiple zeta

values and is defined by the relation

au2bv = a(u2bv) + b(au2v) + (a � b)(u2v)

where a and b are letters, u and v are words and � is an associative and commutative

product which is equal to 0 in the case of the classical shuffle product. Thus, the

shuffle part of the relation is symmetric and does not depend on letters of any

words in the product. In his work, Singer focuses on q-shuffle products coming

from q-analogues of multiples zeta values. This case enables the existance of some
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letters p and y satisfying a relation in the form of

yu2pv = pv2yu = y(u2pv)

for any words u and v. This new q-shuffle relation is not symmetric and depends

on the beginning of each word in the product. This leads to focus on new general-

isations of shuffle and stuffle products [7,8,31].

In this article, we present a new generalisation of shuffle and stuffle algebras, we

study their algebraic structures and compare them to the classical case. The article

is organised as follows.

• In Section 2, we recall the classical notion of shuffle and stuffle product

thanks to the multiple zeta values as well as the calculation by Singer of

q-shuffle associated to the Schlesinger-Zudilin model and the Bradley-Zhao

model.

• In Section 3, we define a generalisation of the classical shuffle product and

the classical stuffle product called weak shuffle products and weak stuffle

products and prove a characterisation of weak shuffle products. We detail

the case of an alphabet of cardinality 2 or 3.

• In Section 4, we focus on algebraic structures respected by the classical

shuffle product and we determine if the weak shuffle products respect them

too. Thus we prove that weak shuffle products are dendriform but there

are obstacles to the quadri-algebra structure.

• In Section 5, we express some relations satistied by weak stuffle products

and we express the q-shuffle products given by Singer in terms of weak

stuffle product. Besides, in the case of an infinite, countable and totally

ordered alphabet {x1, . . . , xn, . . . }, we prove that, if the contracting part

in the weak stuffle products is expressed as f3(xi ⊗ xj) ∈ K∗xi+j , then

the shuffle part is the null product or the classical shuffle product. We

give some informations more about weak stuffle products in the case of an

alphabet of cardinality 2 or 3.

• In Section 6, we prove that a weak stuffle product is compatible with the

deconcatenation coproduct if and only if the underlying weak shuffle prod-

uct is the classical shuffle product and the contracting part is associative

and commutative.

• Computation programs used to prove Lemma 3.17 are detailed in Section

7.
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2. Reminders

2.1. Classical shuffle and stuffle algebras. We recall here the definition of the

stuffle product in the context of the multiple zeta values.

Definition 2.1. Let s be an integer and let (k1, . . . , ks) be an s-tuple in N≥2×Ns−1.

The multiple zeta value associated to (k1, . . . , ks) is

ζ(k1, . . . , ks) =
∑

(m1,...,ms)∈N
m1>···>ms>0

1

mk1
1 . . .mks

s

.

On multiple zeta values, we consider the product of functions taking values in

C. For instance,

ζ(n)ζ(m) =ζ(m,n) + ζ(n,m) + ζ(m+ n),

ζ(n, p)ζ(m) =ζ(m,n, p) + ζ(n,m, p) + ζ(n, p,m) + ζ(n+m, p) + ζ(n, p+m).

Then, it leads to the following algebraic definition and following theorem [15].

Theorem 2.2. Let X = {x1, . . . , xn, . . . } be a countable alphabet. Let K〈X〉 be

the algebra of words on the alphabet X. We define the product ?, called the stuffle

product, by:

u ? 1 =1 ? u = 1,

u ? 0 =0 ? u = 0,

xiu ? xjv =xi(u ? xjv) + xj(xiu ? v) + xi+j(u ? v)

for any letters xi and xj and any words u and v.

Then

xiuxk ? xjvxl =xi(uxk ? xjvxl) + xj(xiuxk ? vxl) + xi+j(uxk ? vxl)

=(xiu ? xjvxl)xk + (xiuxk ? xjv)xl + (xiu ? xjv)xk+l

and (K〈X〉, ?) is an associative and commutative algebra.

It is possible to define another algebra:

Theorem 2.3. Let X = {x1, . . . , xn, . . . } be a countable alphabet. Let K〈X〉 be

the algebra of words on the alphabet X. We define the product �, called the shuffle

product, by:

u� 1 =1� u = 1,

u� 0 =0� u = 0,

xiu� xjv =xi(u� xjv) + xj(xiu� v)
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for any letters xi and xj and any words u and v.

Then

xiuxk � xjvxl =xi(uxk � xjvxl) + xj(xiuxk � vxl)

=(xiu� xjvxl)xk + (xiuxk � xjv)xl

and (K〈X〉,�) is an associative and commutative algebra.

Theorem 2.4. Let X = {x1, . . . , xn, . . . } be a countable alphabet. The algebras

(K〈X〉, ?) and (K〈X〉,�) are isomorphic.

Proof. This theorem was proved by Hoffman [16, Theorem 2.5] by describing an

explicit isomorphism exp. Another construction of exp leading to the proof of this

theorem is given in [26, Proposition 41]. �

2.2. q-shuffle products for the Schlesinger-Zudilin model and the Bradley-

Zhao model. Let q be a real number such that 0 < q < 1. A q-analogue of a

positive integer m is defined by

[m]q =
1− qm

1− q
= 1 + q + · · ·+ qm−1.

The Schlesinger-Zudilin model [28,36] is defined as the following q-sum:

ζSZq (k1, . . . , kn) =(1− q)−(k1+···+kn)
∑

(m1,...,ms)∈N
m1>···>ms>0

qm1k1+···+mnkn

[m1]k1q . . . [mn]knq

=
∑

(m1,...,ms)∈N
m1>···>ms>0

qm1k1+···+mnkn

(1− qm1)k1 . . . (1− qmn)kn

for any (k1, . . . , kn) ∈ (N∗)n.

The Bradley-Zhao model [2,35] is defined as the following q-sum:

ζBZq (k1, . . . , kn) =(1− q)−(k1+···+kn)
∑

(m1,...,ms)∈N
m1>···>ms>0

qm1(k1−1)+···+mn(kn−1)

[m1]k1q . . . [mn]knq

=
∑

(m1,...,ms)∈N
m1>···>ms>0

qm1(k1−1)+···+mn(kn−1)

(1− qm1)k1 . . . (1− qmn)kn

for any (k1, . . . , kn) ∈ Nn with k1 ≥ 2.

From those two models, Singer defined two q-shuffle products corresponding to

the algebraic version of the Schlesinger-Zudilin model and the Bradley-Zhao model

and proved the following two theorems in [29,30,31]:
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Theorem 2.5 (Singer). Let X = {y, p} be an alphabet. The q-shuffle product

associated to the Schlesinger-Zudilin model is given by: for any words u and v,

(1) 1�SZ u = u�SZ 1 = u,

(2) yu�SZ v = v�SZ yu = y(u�SZ v),

(3) pu�SZ pv = p(u�SZ pv) + p(pu�SZ v) + p(u�SZ v).

Besides, it is an associative and commutative product.

Theorem 2.6 (Singer). Let X = {y, p, p} be an alphabet. The q-shuffle product

associated to the Bradley-Zhao model is given by: for any words u and v,

(1) 1�BZ u = u�BZ 1 = u,

(2) yu�BZ v = v�BZ yu = y(u�BZ v),

(3) au�BZ bv = a(u�BZ bv) + b(au�BZ v) + [a, b]a(u�BZ v) where

a, b ∈ {p, p}, [p, p] = −[p, p] = 1 and [p, p] = [p, p] = 0.

Besides, it is an associative and commutative product.

3. Definition and characterisation of weak shuffle products

The aim of this section is to define a generalisation of the classical shuffle product,

the classical stuffle product, and the two q-shuffle products given by the Schlesinger-

Zudilin model and the Bradley-Zhao model. We give and prove a characterisation

of weak shuffle products too. Then we explicit the case of an alphabet of cardinality

2 or 3.

3.1. Characterisation.

Definition 3.1. An alphabet is a non-empty finite or countable set X.

Definition 3.2. Let X be an alphabet. We denote by X∗ the set of words on the

alphabet X and by K〈X〉 the tensor algebra generated by X (i.e. the algebra of

words on X). The space K〈X〉 is graded by the length of words.

Definition 3.3. Let X be an alphabet. A weak stuffle product on K〈X〉 is an

associative and commutative product 2 such that for any (a, b) ∈ (X)2 and any

(u, v) ∈ (X∗)2

u21 =12u = u,

u20 =02u = 0,

au2bv =f1(a⊗ b)a(u2bv) + f2(a⊗ b)b(au2v) + f3(a⊗ b)(u2v)

where

(1) f1 and f2 are linear maps from K.X ⊗K.X to K,
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(2) f3 = kg is a linear map from K.X ⊗ K.X to K.X such that k(a ⊗ b) ∈ K
and g(a⊗ b) ∈ X for any (a, b) ∈ X2,

(3) If f3 ≡ 0 then the product 2 is called a weak shuffle product.

Examples 3.4. Let X = {x1, . . . , xn, . . . } be an infinite alphabet.

(1) The classical shuffle product on K〈X〉 is a weak stuffle product where f1(a⊗
b) = 1 and f2(a⊗ b) = 1 for any (a, b) ∈ X2, and f3 ≡ 0.

(2) The classical stuffle product on K〈X〉 is a weak stuffle product where f1(a⊗
b) = 1 and f2(a ⊗ b) = 1 for any (a, b) ∈ X2, and f3(xi ⊗ xj) = xi+j for

any (i, j) ∈ (N∗)2.

(3) The stuffle product on K〈X〉 given by Hoffman and Ihara in [18] is a weak

stuffle product where f1(a ⊗ b) = 1 and f2(a ⊗ b) = 1 for any (a, b) ∈ X2,

and f3(xi ⊗ xj) = −xi+j for any (i, j) ∈ (N∗)2.

Theorem 3.5. Let 2 be a product on K〈X〉. The map 2 is a weak shuffle product

if and only if, for any distinct letters a, b, and c in X:

(1) f1(a⊗ b) = f2(b⊗ a).

(2) (a) either f1(a⊗ a) = f2(a⊗ a) = α with α ∈ {0, 1} and

(i) f1(a⊗ b)f1(b⊗ a)[f1(a⊗ a)− 1] = 0,

(ii) f1(a⊗ a)f1(a⊗ b)[f1(a⊗ b)− 1] = 0,

(iii) f1(a⊗ a)f1(b⊗ a)[f1(b⊗ a)− 1] = 0.

(b) or f1(a⊗ a) = α, f2(a⊗ a) = 1− α with α ∈ R and

(i) f1(a⊗ b) = 1,

(ii) f1(b⊗ a) = 0.

(3) f1(a⊗ b)f1(b⊗ c)[f1(a⊗ c)− 1] = 0.

(4) f3 ≡ 0.

Remark 3.6. It is sometimes usefull to use in calculations the following statement

induced by the item (2)(b) of the Theorem 3.5:

“If f1(a⊗b) = 0 or f1(b⊗a) 6= 0 then f1(a⊗a) = f2(a⊗a) = α with α ∈ {0, 1}”.

Proof. Let us prove first the direct implication. Let us assume 2 is a weak shuffle

product. Let a, b, and c be three distinct letters. Then, by direct calculations,

(A) a2b = b2a gives relation f1(a⊗ b) = f2(b⊗ a).

(B) a2aa = aa2a gives f1(a⊗ a) = f2(a⊗ a) or f1(a⊗ a) = 1− f2(a⊗ a).

(C) a2ab = ab2a gives, if f1(a ⊗ b) = 0 or f1(b ⊗ a) 6= 0, that f1(a ⊗ a) =

f2(a ⊗ a). Thus, if f1(a ⊗ a) = 1 − f2(a ⊗ a) and f1(a ⊗ a) 6= 1
2 then

f1(a ⊗ b) 6= 0 and f1(b ⊗ a) = 0. The relation a2ab = ab2a implies

f1(a⊗ b) = 1.
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(D) (a2a)2b = a2(a2b) = (a2b)2a with f1(a⊗ a) = f2(a⊗ a) give

(a) f1(a⊗ b)f1(b⊗ a)[f1(a⊗ a)− 1] = 0,

(b) f1(a⊗ a)f1(a⊗ b)[f1(a⊗ b)− 1] = 0,

(c) f1(a⊗ a)f1(b⊗ a)[f1(b⊗ a)− 1] = 0.

(E) (a2b)2c = a2(b2c) gives f1(a⊗ b)f1(b⊗ c)[f1(a⊗ c)− 1] = 0.

(F) (a2a)2ab = a2(a2ab) implies that if f1(a ⊗ a) = 1 − f2(a ⊗ a) = 1
2 then

f1(a⊗ b) = 1 and f1(b⊗ a) = 0.

(G) (a2a)2aa = a2(a2aa) and (a2a)2aaa = a2(a2aaa) implies that if f1(a⊗
a) = f2(a⊗ a) = α then α ∈ {0, 1, 1

2}.
(H) Cases ba2a = a2ba, aa2b = b2aa, ab2c = c2ab and (a2a)2a = a2(a2a)

do not give any further relations.

As a consequence, in the Theorem 3.5,

• the item (1) is proved by the item (A),

• the item (2)(a) is proved by the items (B), (D), (F) and (G),

• the item (2) (b) is proved by the items (B), (C) and (F),

• the item (3) is proved by the item (E),

• the item (4) is satisfied by the definition of a weak shuffle product.

Conversly, if 2 satisfies all relations given in Theorem 3.5 then for any couple

(u, v) and any triple (w1, w2, w3) of words such that length(u) + length(v) ≤ 3 and

length(w1)+length(w2)+length(w3) ≤ 3 one has: u2v = v2u and (w12w2)2w3 =

w12(w22w3).

We assume now there exists an integer n ≥ 3 such that u2v = v2u and

(w12w2)2w3 = w12(w22w3) for any words u, v, w1, w2 with length(u)+length(v) ≤
n and length(w1) + length(w2) + length(w3) ≤ n.

Let now u and v be two words such that length(u) + length(v) = n + 1. Then

there exist two letters a and b and two words w1 and w2 (not necessarily non-empty)

such that u = aw1 and v = bw2. Then, by induction, we get:

case a 6= b:

u2v =f1(a⊗ b)a(w12bw2) + f1(b⊗ a)b(aw12w2)

=f1(a⊗ b)a(bw22w1) + f1(b⊗ a)b(w22aw1) = v2u.

case a = b and f1(a⊗ a) = f2(a⊗ a):

u2v =f1(a⊗ a)a(w12aw2) + f1(a⊗ a)a(aw12w2)

=f1(a⊗ a)a(aw22w1) + f1(a⊗ a)a(w22aw1) = v2u.

case a = b and f2(a⊗ a) = 1− f1(a⊗ a): There exist two words w3 and w4, not

necessarily non-empty, not starting by a and two positive integers k and l
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such that w1 = a . . . a︸ ︷︷ ︸
k times

w3 and w2 = a . . . a︸ ︷︷ ︸
l times

w4. First of all, by induction,

a . . . a︸ ︷︷ ︸
k times

2 a . . . a︸ ︷︷ ︸
l times

= a . . . a︸ ︷︷ ︸
k+l times

.

Besides, relations satisfied by 2 enjoin f1(a⊗ c) = 1 and f2(c⊗ a) = 0 for

any letter c 6= a. So,

u2v = (a . . . a︸ ︷︷ ︸
k times

2 a . . . a︸ ︷︷ ︸
l times

)(w32w4) = (a . . . a︸ ︷︷ ︸
l times

2 a . . . a︸ ︷︷ ︸
k times

)(w42w3) = v2u.

As a consequence, 2 is a commutative product.

Let now w1, w2 and w3 be three words such that length(w1) + length(w2) +

length(w3) = n + 1. Then there exist three letters a, b and c and three words

w4, w5 and w6 (not necessarily non-empty) such that w1 = aw4, w2 = bw5 and

w3 = cw6. Then, by induction, we get:

case a, b and c distinct:

(w12w2)2w3 =f1(a⊗ b)f1(a⊗ c)a[(w42bw5)2cw6] + f1(a⊗ b)f1(c⊗ a)c[a(w42bw5)2w6]

+f1(b⊗ a)f1(b⊗ c)b[(aw42w5)2cw6] + f1(b⊗ a)f1(c⊗ b)c[b(aw42w5)2w6]

and

w12(w22w3) =f1(b⊗ c)f1(a⊗ b)a[w42b(w52cw6)] + f1(b⊗ c)f1(b⊗ a)b[aw42(w52cw6)]

+f1(c⊗ b)f1(a⊗ c)a[w42c(bw52w6)] + f1(c⊗ b)f1(c⊗ a)c[aw42(bw52w6)].

However

(w42bw5)2cw6 = w42(bw52cw6) = f1(b⊗c)w42b(w52cw6)+f1(c⊗b)w42c(bw52w6),

aw42(bw52w6) = (aw42bw5)2w6 = f1(a⊗b)a(w42bw5)2w6+f1(b⊗a)b(aw42w5)2w6,

and f1 satisfies f1(x⊗y)f1(y⊗z) (f1(x⊗ z)− 1) = 0 for any set {x, y, z} ⊂
X. Thus,

(w12w2)2w3 = w12(w22w3).

case a = b and (a 6= c): By commutativity it is the same case as (a = c and b 6= a)

or (b = c and a 6= b).

(w12w2)2w3 =f1(a⊗ a)f1(a⊗ c)a[(w42aw5)2cw6] + f1(a⊗ a)f1(c⊗ a)c[a(w42aw5)2w6]

+f2(a⊗ a)f1(a⊗ c)a[(aw42w5)2cw6] + f2(a⊗ a)f1(c⊗ a)c[a(aw42w5)2w6]

and

w12(w22w3) =f1(a⊗ c)f1(a⊗ a)a[w42a(w52cw6)] + f1(a⊗ c)f2(a⊗ a)a[aw42(w52cw6)]

+f1(c⊗ a)f1(a⊗ c)a[w42c(aw52w6)] + f1(c⊗ a)2c[aw42(aw52w6)].
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However

(w42aw5)2cw6 = w42(aw52cw6) = f1(a⊗c)w42a(w52cw6)+f1(c⊗a)w42c(aw52w6),

aw42(aw52w6) = (aw42aw5)2w6 = f1(a⊗a)a(w42aw5)2w6+f2(a⊗a)a(aw42w5)2w6,

and f1 satisfies

(1) If f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1} then

(a) f1(a⊗ b)f1(b⊗ a)[f1(a⊗ a)− 1] = 0,

(b) f1(a⊗ a)f1(a⊗ b)[f1(a⊗ b)− 1] = 0,

(c) f1(a⊗ a)f1(b⊗ a)[f1(b⊗ a)− 1] = 0.

(2) If f1(a⊗ a) = 1− f2(a⊗ a) then f1(a⊗ c) = 1 and f1(c⊗ a) = 0.

Thus, (w12w2)2w3 = w12(w22w3).

case a = b = c and f1(a⊗ a) = f2(a⊗ a):

(w12w2)2w3 =f1(a⊗ a)2a[(w42aw5)2aw6] + f1(a⊗ a)2a[a(w42aw5)2w6]

+f1(a⊗ a)2a[(aw42w5)2aw6] + f1(a⊗ a)2a[a(aw42w5)2w6]

and

w12(w22w3) =f1(a⊗ a)2a[w42a(w52aw6)] + f1(a⊗ a)2a[aw42(w52aw6)]

+f1(a⊗ a)2a[w42a(aw52w6)] + f1(a⊗ a)2a[aw42(aw52w6)].

Thus, (w12w2)2w3 = w12(w22w3).

case a = b = c and f2(a⊗ a) = 1− f1(a⊗ a): There exist three words w7, w8 and

w9 not necessarily non-empty, not starting by a and three positive integers

k, l and m such that w1 = a . . . a︸ ︷︷ ︸
k times

w7, w2 = a . . . a︸ ︷︷ ︸
l times

w8 and w3 = a . . . a︸ ︷︷ ︸
m times

w9.

Besides, relations satisfied by 2 enjoin f1(a⊗ c) = 1 and f2(c⊗ a) = 0 for

any letter c 6= a. So,

(w12w2)2w3 =

[
(a . . . a︸ ︷︷ ︸
k times

2 a . . . a︸ ︷︷ ︸
l times

)2 a . . . a︸ ︷︷ ︸
k times

][
(w72w8)2w9

]

= a . . . a︸ ︷︷ ︸
k+l+m times

[
(w72w8)2w9

]

=

[
a . . . a︸ ︷︷ ︸
k times

2(a . . . a︸ ︷︷ ︸
l times

2 a . . . a︸ ︷︷ ︸
k times

)

][
w72(w82w9)

]
= w12(w22w3).

�

Corollary 3.7. Let K be a field of characteristic 0, let X be a countable alphabet

and let 2 be a weak shuffle product on K〈X〉.

(1) There exists at most one letter a such that f1(a⊗ a) = 1− f2(a⊗ a).
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(2) If there exists a letter a such that f1(a⊗a) = 1−f2(a⊗a) then, for any word

u and v, the calculation of u2v does not depend on the value of f1(a⊗ a).

(3) If f1(a⊗b) = f1(b⊗a) = 1 then f1(a⊗a) = f2(a⊗a) = f1(b⊗b) = f2(b⊗b) =

1, f1(a⊗ c) = f1(b⊗ c) ∈ {0, 1} and f1(c⊗ a) = f1(c⊗ b) ∈ {0, 1} for any

c ∈ X \ {a, b}.

Proof. (1) If there are two letters a and b such that a 6= b, f1(a ⊗ a) =

1 − f2(a ⊗ a) and f1(b ⊗ b) = 1 − f2(b ⊗ b) then 1 = f1(a ⊗ b) = 0 and

0 = f1(b⊗ a) = 1. Contradiction.

(2) Let a such that f1(a⊗a) = 1−f2(a⊗a). If u and v are words in X∗ \aX∗,
since f1(a ⊗ b) = 1 and f1(b ⊗ a) = 0 for any b 6= a, there does not exist

any triple (w, u
′
, v
′
) such that u2v = w(au

′
2av

′
).

(3) If f1(a ⊗ b) = f1(b ⊗ a) = 1 then, the fact that f1(a ⊗ a) = f2(a ⊗ a) =

f1(b⊗b) = f2(b⊗b) = 1 comes directly from relations (2) given in Theorem

3.5. To prove f1(a⊗c) = f1(b⊗c) ∈ {0, 1} and f1(c⊗a) = f1(c⊗b) ∈ {0, 1}
for any c ∈ X \ {a, b}, we use the relation

f1(x⊗ y)f1(y ⊗ z)[f1(x⊗ z)− 1] = 0 for any x, y, z ∈ X. �

Proposition 3.8. Let K be a field of characteristic 0, X be a countable alphabet and

2 a weak shuffle product on K〈X〉. We denote by T the set T = {a ∈ X, f1(a⊗a) ∈
K \ {0, 1}}. We assume T 6= ∅; so T is a singleton {a}. Let 2′ be the weak shuffle

product defined by

• f ′1(u⊗ v) = f1(u⊗ u) for any u⊗ v ∈ X ⊗X \ {a⊗ a},
• f ′1(a⊗ a) = 1 and f

′

2(a⊗ a) = 1.

Then, there exists an algebra isomorphism between (K〈X〉,2) and (K〈X〉,2′).

Proof. Thanks to Corollary 3.7, we know that the weak shuffle 2 does not depend

on the value of f1(a⊗ a). We define ψ : (K〈X〉,2)→ (K〈X〉,2′) by:

ψ(w) =


w if w /∈ aX∗,
1
n!w if w = a . . . a︸ ︷︷ ︸

n times

w1 with w1 /∈ aX∗.

Since f1(a ⊗ b) = 1 and f1(b ⊗ a) = 0 for any b ∈ X \ {a}, the linear map ψ is

an algebra morphism. It is trivially an isomorphism. �

Proposition 3.9. Let K be a field of characteristic 0, let X be an alphabet of

cardinality 2 or 3 and let 2 be a weak shuffle product on K〈X〉. Let 2′ be the weak

shuffle product defined by

• f ′1(a ⊗ b) = 1 and f
′

1(b ⊗ a) = 0 for any (a ⊗ b) ∈ X ⊗X such that a 6= b

and f1(a⊗ b) /∈ {0, 1}.
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• f ′1(a ⊗ b) = f1(a ⊗ b) for any (a ⊗ b) ∈ X ⊗ X such that a 6= b and

f1(a⊗ b) ∈ {0, 1}.
• f ′i (a⊗ a) = fi(a⊗ a) for any a ∈ X and any i ∈ {1, 2}.

Then, there exists an algebra isomorphism between (K〈X〉,2) and (K〈X〉,2′).

Proof. If X = {a, b} then there is an one-parameter family of weak shuffle products

2 such that f1(a⊗ b) /∈ {0, 1}. They are defined by f1(a⊗ b) = k ∈ K \ {0, 1} and

f1(b ⊗ a) = f1(a ⊗ a) = f2(a ⊗ a) = f1(b ⊗ b) = f2(b ⊗ b) = 0. We define 2
′

by

changing k in 1. The map ϕ defined by

ϕ(w) =


1
knw if w = a . . . a︸ ︷︷ ︸

n times

w′ with w′ ∈ bX∗,

w else,

is an algebra isomorphism between (K〈X〉,2) and (K〈X〉,2′)
Let us now consider the case X = {a, b, c}. Without loss of generality we assume

f1(a ⊗ b) = k ∈ K \ {0, 1}. The charactarisation of weak shuffle products given in

Theorem 3.5 leads to the following relations:

• f1(b⊗ a) = f1(a⊗ a) = f2(a⊗ a) = f1(b⊗ b) = f2(b⊗ b) = 0,

• f1(a⊗ c)f1(c⊗ a) = 0,

• f1(b⊗ c)f1(c⊗ b) = 0,

• f1(a⊗ c)f1(c⊗ b) = 0,

• f1(b⊗ c)f1(c⊗ a) = 0,

• f1(u⊗ v)f1(v ⊗ w)[f1(u⊗ w)− 1] = 0 where {u, v, w} = X.

Thus, the weak shuffle product 2 is one of the following:

(1) f1(a⊗ c) = f1(b⊗ c) = f1(c⊗a) = f1(c⊗ b) = 0 and f1(c⊗ c) = f2(c⊗ c) ∈
{0, 1}.

(2) f1(a ⊗ c) = 1, f1(b ⊗ c) = p ∈ K∗ and f1(c ⊗ a) = f1(c ⊗ b) = f1(c ⊗ c) =

f2(c⊗ c) = 0,

(3) f1(a ⊗ c) = 1, f1(b ⊗ c) = 1, f1(c ⊗ a) = f1(c ⊗ b) = 0 and f1(c ⊗ c) =

f2(c⊗ c) = 1,

(4) f1(a⊗ c) = f1(b⊗ c) = 0, f1(c⊗ a) = p ∈ K∗, f1(c⊗ b) = 1 and f1(c⊗ c) =

f2(c⊗ c) = 0,

(5) f1(a ⊗ c) = f1(b ⊗ c) = 0, f1(c ⊗ a) = 1, f1(c ⊗ b) = 1 and f1(c ⊗ c) =

f2(c⊗ c) = 1,

(6) f1(a ⊗ c) = f1(b ⊗ c) = 0, f1(c ⊗ a) = 1, f1(c ⊗ b) = 1 and f1(c ⊗ c) =

1− f2(c⊗ c),
(7) f1(a ⊗ c) = f1(b ⊗ c) = f1(c ⊗ a) = 0, f1(c ⊗ b) = p ∈ K∗ and f1(c ⊗ c) =

f2(c⊗ c) = 0,
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(8) f1(a⊗c) = f1(b⊗c) = f1(c⊗a) = 0, f1(c⊗b) = 1 and f1(c⊗c) = f2(c⊗c) =

1,

(9) f1(a ⊗ c) = p ∈ K∗, f1(b ⊗ c) = f1(c ⊗ a) = f1(c ⊗ b) = 0 and f1(c ⊗ c) =

f2(c⊗ c) = 0,

(10) f1(a⊗c) = 1, f1(b⊗c) = f1(c⊗a) = f1(c⊗b) = 0 and f1(c⊗c) = f2(c⊗c) =

1.

We define 2
′

by f
′

1(a ⊗ b) = 1 and f
′

1(u ⊗ v) = f1(u ⊗ v) if u ⊗ v 6= a ⊗ b. Let ϕ1

and ϕ2 be the maps defined by: for any word w,

ϕ1(w) =


1
knw if w = a . . . a︸ ︷︷ ︸

n times

w
′

with w
′ ∈ bX∗,

w else,

and

ϕ2(w) =


1

kn1+···+ns w if w = c . . . c︸ ︷︷ ︸
q1 times

a . . . a︸ ︷︷ ︸
n1 times

c . . . c︸ ︷︷ ︸
q2 times

. . . c . . . c︸ ︷︷ ︸
qs times

a . . . a︸ ︷︷ ︸
ns times

c . . . c︸ ︷︷ ︸
qs+1 times

w
′

with w
′ ∈ bX∗

and (q1, . . . , qs+1) ∈ Ns+1,

w else.

From case 1 to case 3 and from case 9 to case 10 the map ϕ1 is an algebra

isomorphism between (K〈X〉,2) and (K〈X〉,2′). From case 4 to case 8 the map

ϕ2 is an algebra isomorphism between (K〈X〉,2) and (K〈X〉,2′).
If maps f

′

1 and f
′

2 do not take their values in {0, 1} we apply the previous

process once again to 2
′
. And then, we find a weak shuffle product 2

′′
such that

f1
′′(u⊗ v), f2

′′(u⊗ v) ∈ {0, 1} for any (u⊗ v) ∈ X ⊗X. �

Conjecture 3.10. Proposition 3.9 is still true for any countable alphabet.

Remark 3.11. If X is an alphabet such that {a, b, c, d} ⊂ X and f1(a⊗b) /∈ {0, 1}
then relations

(1) f1(a⊗ x)f1(x⊗ a) = 0,

(2) f1(b⊗ x)f1(x⊗ b) = 0,

(3) f1(a⊗ x)f1(x⊗ b) = 0,

(4) f1(b⊗ x)f1(x⊗ a) = 0,

are still satisfied for any letter x ∈ X. However, if x, y ∈ X \ {a, b}, even if they

satisfy relations given in Theorem 3.5, it is hard to anticipate the part of x facing

y.



WEAK STUFFLE ALGEBRAS 13

3.2. Weak shuffle products on K〈{a, b}〉. Let X = {a, b} be an alphabet of

cardinality 2. By using the characterisation given in Theorem 3.5, there are 10

families of weak shuffle products defined on K〈X〉. Let C be the 6-tuple C =(
f1(a⊗ b), f1(b⊗ a), f1(a⊗ a), f2(a⊗ a), f1(b⊗ b), f2(b⊗ b)

)
. If k ∈ K∗ and α ∈ K

then C is one of the following 6-tuples

C1 =(0, 0, 0, 0, 0, 0), C2 =(k, 0, 0, 0, 0, 0), C3 =(1, 0, 1, 1, 0, 0),

C4 =(1, 0, 0, 0, 1, 1), C5 =(0, 0, 1, 1, 0, 0), C6 =(0, 0, 1, 1, 1, 1),

C7 =(1, 0, α, 1− α, 0, 0), C8 =(1, 0, α, 1− α, 1, 1), C9 =(1, 0, 1, 1, 1, 1),

C10 =(1, 1, 1, 1, 1, 1).

For any n ∈ J1, 10K, we denote by 2
n

the weak shuffle product associated to Cn. The

concatenation of two words u and v is denoted by uv. The empty word is denoted

by 1.

Case n = 2: Thanks to Proposition 3.9, for any k ∈ K∗ the weak shuffle product

defined by C2 is isomorphic to the case (1, 0, 0, 0, 0, 0). Let u and v be two

non-empty words. Then

u2
2
v =


knuv if (u = a . . . a︸ ︷︷ ︸

n times

and v = bw with w ∈ X∗)

knvu if (v = a . . . a and u = bw with w ∈ X∗),

0 else.

Cases n = 3 and n = 7: Thanks to Proposition 3.8 the weak shuffle products de-

fines by C3 and C7 are isomorphic. Let u and v be two non-empty words.

Then

u2
3
v =



uv if (u = a . . . a and v = bw with w ∈ X∗)

vu if (v = a . . . a and u = bw with w ∈ X∗),(
k + l

k

)
a . . . a︸ ︷︷ ︸
k+l times

w if (u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗ ∪ {1})

or (v = a . . . a︸ ︷︷ ︸
k times

and u = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗ ∪ {1}),

0 else,
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and u2
7
v =



uv if (u = a . . . a and v = bw with w ∈ X∗)

vu if (v = a . . . a and u = bw with w ∈ X∗),

a . . . a︸ ︷︷ ︸
k+l times

w if (u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗ ∪ {1})

or (v = a . . . a︸ ︷︷ ︸
k times

and u = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗ ∪ {1}),

0 else.

Case n = 5: Let u and v be two non-empty words. Then

u2
5
v =



(
k + l − 1

k

)
a . . . a︸ ︷︷ ︸
k+l times

w if (u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗)

or (v = a . . . a︸ ︷︷ ︸
k times

and u = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗),(
k + l

k

)
a . . . a︸ ︷︷ ︸
k+l times

if u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

,

0 else.

Case n = 6: Let u and v be two non-empty words. Then

u2
6
v =



(
k + l − 1

k

)
a . . . a︸ ︷︷ ︸
k+l times

w if (u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗)

or (v = a . . . a︸ ︷︷ ︸
k times

and u = a . . . a︸ ︷︷ ︸
l times

w with w ∈ bX∗),(
k + l

k

)
a . . . a︸ ︷︷ ︸
k+l times

if u = a . . . a︸ ︷︷ ︸
k times

and v = a . . . a︸ ︷︷ ︸
l times

,(
k + l − 1

k

)
b . . . b︸ ︷︷ ︸

k+l times

w if (u = b . . . b︸ ︷︷ ︸
k times

and v = b . . . b︸ ︷︷ ︸
l times

w with w ∈ aX∗)

or (v = b . . . b︸ ︷︷ ︸
k times

and u = b . . . b︸ ︷︷ ︸
l times

w with w ∈ aX∗),(
k + l

k

)
b . . . b︸ ︷︷ ︸

k+l times

if u = b . . . b︸ ︷︷ ︸
k times

and v = b . . . b︸ ︷︷ ︸
l times

,

0 else.

Case n = 4: First, it is natural to ask whether or not this case is isomorphic to the

case with n = 3? In fact, not. A counter-example is given by the elements

u of degree 2 such that u2 = 0. Indeed,

(1) with the case n = 4, if u = λaa+ µbb+ σab+ τba then

u2 =6µ2bbbb+ 2τ2baba+ 2λµaabb+ 2λτaaba+ 6µσabbb

+2µτ(babb+ bbab+ bbba) + 2στ(abab+ abba).
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So u2 = 0 ⇐⇒ µ = τ = 0 and

{
u ∈ K〈{a, b}〉, length(u) =

2 and u2 = 0

}
= Span(aa, ab).

(2) with the case n = 3, if u = λaa+ µbb+ σab+ τba then

u2 =6λ2aaaa+ 2λµaabb+ 6λσaaab+ 2λτaaba.

So u2 = 0 ⇐⇒ λ = 0 and

{
u ∈ K〈{a, b}〉, length(u) = 2 and u2 =

0

}
= Span(bb, ab, ba).

Let u and v be two non-empty words. Then

(1) If u = a . . . a︸ ︷︷ ︸
m times

u
′

and u′, v ∈ bX∗ ∪ {1} then

u2
4
v = v2

4
u = a . . . a︸ ︷︷ ︸

m times

(u
′
2
4
v).

(2) If u = b . . . b︸ ︷︷ ︸
m1 times

u
′
, v = b . . . b︸ ︷︷ ︸

m2 times

v
′

and u
′
, v
′ ∈ aX∗ ∪ {1} then

u2
4
v =

m2−1∑
k=0

(
m1 + k − 1

k

)
b . . . b︸ ︷︷ ︸

m1+k times

(u
′
2
4

b . . . b︸ ︷︷ ︸
m2−k times

w
′
)

+

m1−1∑
k=0

(
m2 + k − 1

k

)
b . . . b︸ ︷︷ ︸

m2+k times

( b . . . b︸ ︷︷ ︸
m1−k times

u
′
2
4
v
′
)

=v2
4
u

(3) If u, v ∈ aX∗ then u2
4
v = v2

4
u = 0.

Cases n = 8 and n = 9: We recall that the case n = 8 does not depend on α ∈ K.

Thanks to Proposition 3.8 the weak shuffle products defined by C8 and C9

are isomorphic. Let u and v be two non-empty words. Then

(1) If u = a . . . a︸ ︷︷ ︸
m times

u
′

and u′, v ∈ bX∗ ∪ {1} then

u2
9
v = v2

9
u = a . . . a︸ ︷︷ ︸

m times

(u
′
2
9
v) = u2

8
v = v2

8
u.
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(2) If u = b . . . b︸ ︷︷ ︸
m1 times

u
′
, v = b . . . b︸ ︷︷ ︸

m2 times

v
′

and u
′
, v
′ ∈ aX∗ ∪ {1} then

u2
9
v =

m2−1∑
k=0

(
m1 + k − 1

k

)
b . . . b︸ ︷︷ ︸

m1+k times

(u
′
2
9

b . . . b︸ ︷︷ ︸
m2−k times

v
′
)

+

m1−1∑
k=0

(
m2 + k − 1

k

)
b . . . b︸ ︷︷ ︸

m2+k times

( b . . . b︸ ︷︷ ︸
m1−k times

u
′
2
9
v
′
)

=v2
9
u = u2

8
v = v2

8
u.

(3) If u = a . . . a︸ ︷︷ ︸
k times

u
′
, v = a . . . a︸ ︷︷ ︸

l times

v
′

and u
′
, v
′ ∈ bX∗ ∪ {1} then

u2
9
v = v2

9
u =

(
k + l

k

)
a . . . a︸ ︷︷ ︸
k+l times

(u
′
2
9
v
′
),

and

u2
8
v = v2

8
u = a . . . a︸ ︷︷ ︸

k+l times

(u
′
2
8
v
′
).

From the previous calculations, we have the following consequence:

Corollary 3.12. Let v and w be two words. Then v2
9
w 6= 0.

Remark 3.13. For cases n ∈ {4, 8, 9}, since f1(a⊗b) = 1 and f1(b⊗a) = 0,

the calculation of u2
n
v where u = b . . . b︸ ︷︷ ︸

m1 times

u
′
, v = b . . . b︸ ︷︷ ︸

m2 times

v
′

and u
′
, v
′ ∈

aX∗∪{1} does not depend on the values of f1(a⊗a) nor f2(a⊗a). We give

the value of u2
4
v(= u2

8
v = u2

9
v) for some example couple (u, v) ∈ (bX∗)2.

For some examples of pairs (x, p) ∈ X × N∗, to lighten the notation, we

write xp instead of x . . . x︸ ︷︷ ︸
p times

.

Let (m, s, p, r) be a quadruple of positive integers. Then:

bmas2
4
bpar =

p−1∑
k=0

(
m+ k − 1

k

)
bm+kasbp−kar +

m−1∑
k=0

(
p+ k − 1

k

)
bp+karbm−kas.

Let (m, s, p, r, t) be a quintuple of positive integers such that m ≥ 2. Then:

bmas2
4
bparbt =

p−1∑
k=0

(
m+ k − 1

k

)
bm+kasbp−karbt +

t∑
k=0

(
m+ k − 1

k

)
bparbm+kasbt−k

+
∑

f+g=m
f∈N∗
g∈N∗

t∑
k=0

(
f + p− 1

f

)(
g + k − 1

k

)
bp+farbg+kasbt−k.
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Proposition 3.14. Let 2
9

be the weak shuffle product defined by C9. Let p be a

positive integer and n ∈ {1, 2, 3}. We denote by K(n,p) the set

K(n,p) =

{
u =

∑
w∈X∗

length(w)=n

λww, u
p = 0

}
.

Then, K(n,p) = {0}.

Proof. We equip X∗ with the lexicographic order. For any words v and w we

denote by max(v2w) the greatest word of length l = length(v) + length(w) which

appears in v2w for the lexicographic order.

If u =
∑
w∈X∗

length(w)=n

λww then

up =
∑
w∈X∗

length(w)=n

λpw(w2
9
. . .2

9
w)+

min(p,xn)∑
l=2

∑
(α1,...,αl)|=p

∑
w1<···<wl∈X∗
∀i length(wi)=n

λα1
w1
. . . λαl

wl
(w12

9
. . .2

9
wl).

(1) If n = 1 then the result is trivial.

(2) If n = 2 then

aap =
(2p)!

2p
a . . . a︸ ︷︷ ︸
2p times

, abp = (p!)2 a . . . a︸ ︷︷ ︸
p times

b . . . b︸ ︷︷ ︸
p times

, bap = p! ba . . . ba︸ ︷︷ ︸
p times

, bbp =
(2p)!

2p
b . . . b︸ ︷︷ ︸

2p times

,

and

max(aak2
9
abl2

9
bam2

9
bbn) = a . . . a︸ ︷︷ ︸

2k+l
times

b . . . b︸ ︷︷ ︸
2n+l
times

ba . . . ba︸ ︷︷ ︸
m

times

.

Thus λaa = λbb = λba = λab = 0.

(3) If n = 3 then

w1 =aaap =
(3p)!

(3!)p
a . . . a︸ ︷︷ ︸
3p times

, w2 =aabp =
(2p)!p!

2p
a . . . a︸ ︷︷ ︸
2p times

b . . . b︸ ︷︷ ︸
p times

,

w3 =abap = (p!)2 a . . . a︸ ︷︷ ︸
p times

ba . . . ba︸ ︷︷ ︸
p times

, w4 =abbp =
(2p)!p!

2p
a . . . a︸ ︷︷ ︸
p times

b . . . b︸ ︷︷ ︸
2p times

,

w5 =baap = p! baa . . . baa︸ ︷︷ ︸
p times

, w6 =bbbp =
(3p)!

(3!)p
b . . . b︸ ︷︷ ︸

3p times

.

For babp and bbap, there are several terms in the result. For babp we will use

w7 = bab . . . bab︸ ︷︷ ︸
p times

and, for bban we will use w8 = b . . . b︸ ︷︷ ︸
p times

ba . . . ba︸ ︷︷ ︸
p times

. In fact, for

the lexicographic order, we use the maximal term obtained in each product.

For any i we determine how build wi by doing the weak shuffle of p words
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of length 3. We get λaaa = λbbb = λaba = λbaa = λaab = λabb = λbab =

λbba = 0. �

Conjecture 3.15. Let 2
9

be the weak shuffle product defined by C9. For any positive

integers p and n, we have K(n,p) = {0}.

Remarks 3.16. (1) By induction we can express max(u2
9
v) for any words u

and v.

Case w1 and w2 are in aX∗: There exist α, β ∈ N∗ and w
′

1, w
′

2 ∈ bX∗ ∪
{1} such that w1 = a . . . a︸ ︷︷ ︸

α times

w
′

1 and w2 = a . . . a︸ ︷︷ ︸
β times

w
′

2. Then,

max(w12
9
w2) = a . . . a︸ ︷︷ ︸

α+β times

max(w
′

12
9
w
′

2).

Case w1 ∈ aX∗ and w2 ∈ bX∗: There exist α ∈ N∗ and w
′

1 ∈ bX∗ ∪ {1}
such that w1 = a . . . a︸ ︷︷ ︸

α times

w
′

1. Then,

max(w12
9
w2) = a . . . a︸ ︷︷ ︸

α times

max(w
′

12
9
w2).

Case w1 and w2 are in bX∗: There exist α, β ∈ N∗, p, q ∈ N (they are

not necessarily different from 0) and w
′

1, w
′

2 ∈ bX∗ ∪ {1} such that

w1 = b . . . b︸ ︷︷ ︸
α times

a . . . a︸ ︷︷ ︸
p times

w
′

1 and w2 = b . . . b︸ ︷︷ ︸
β times

a . . . a︸ ︷︷ ︸
q times

w
′

2. Thus,

• If 0 < q < p then

max(w12
9
w2) = b . . . b︸ ︷︷ ︸

α+β−1 times

a . . . a︸ ︷︷ ︸
q times

max(b a . . . a︸ ︷︷ ︸
p times

w
′

12
9
w
′

2).

• If 0 < p < q then

max(w12
9
w2) = b . . . b︸ ︷︷ ︸

α+β−1 times

a . . . a︸ ︷︷ ︸
p times

max(w
′

12
9
b a . . . a︸ ︷︷ ︸
q times

w
′

2).

• If 0 < p and p = q then max(w12
9
w2) = max(w̃1, w̃2) where

w̃1 = b . . . b︸ ︷︷ ︸
α+β−1 times

a . . . a︸ ︷︷ ︸
q times

max(b a . . . a︸ ︷︷ ︸
p times

w
′

12
9
w
′

2)

and

w̃2 = b . . . b︸ ︷︷ ︸
α+β−1 times

a . . . a︸ ︷︷ ︸
p times

max(w
′

12
9
b a . . . a︸ ︷︷ ︸
q times

w
′

2)).
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• If p = 0 (respectively q = 0) then w1 = b . . . b︸ ︷︷ ︸
α times

(respectively

w2 = b . . . b︸ ︷︷ ︸
β times

) and

max((w12
9
w2)) = w1w2 (respectively max((w12

9
w2)) = w2w1).

For instance,

max(ab2
9
abaa) = aamax(b2

9
baa) = aabbaa,

max(bba2
9
baa) = bbabaa,

max(bbbaaabba2
9
bbaabbba) = bbbbaamax(baaabba2

9
bbba) = bbbbaabbbabaaabba.

(2) For p = 2 Conjecture 3.15 is implied by the statement “Let n be a posi-

tive integer, let w1, w2 and w be three non-empty words of length n such

that w1 ≤ w2 ≤ w and w1 < w. Then max(w12
9
w2) < max(w2

9
w)”.

We attend a reasoning by induction but there are some obstructions. In-

deed, it leads us to compare max(u12
9
u2) and max(u32

9
u4) where u1 ≤ u3,

u2 ≤ u4, length(u1) = length(u3), length(u2) = length(u4) and (u1, u2) 6=
(u3, u4). Then, it leads us to determine if max(v12

9
v2) > max(v32

9
v4) or

max(v12
9
v2) < max(v32

9
v4) where v1 < v3, v2 > v4. If we consider v1 = a,

v2 = bb, v3 = ab and v4 = b, then we get max(v12
9
v2) = abb = max(v32

9
v4).

By using computation programs realised with Maxima, (c.f. Section 7) we get:

Lemma 3.17. Let n be a positive integer smaller than or equal to 7. Then Kn,2 =

{0}.

Proposition 3.18. Let X be the alphabet {a, b} and S be the set defined by

S = {C1 . . . C10} equipped with the relation ≡ such that: for any A and B in S,

A ≡ B if and only if there exists an homogenous isomorphism between (K〈X〉,2A)

and (K〈X〉,2B) where 2A (respectively 2B) is the shuffle product associated to A

(respectively B). Let n be the number of isomorphic classes.

Then n ∈ {7, 8}.

3.3. Weak shuffle products on K〈{a, b, c}〉. Let X = {a, b, c} be an alphabet

of cardinality 3. Let C be the 12-tuple C =
(
f1(a ⊗ b), f1(b ⊗ a), f1(b ⊗ c), f1(c ⊗

b), f1(a ⊗ c), f1(c ⊗ a)f1(a ⊗ a), f2(a ⊗ a), f1(b ⊗ b), f2(b ⊗ b), f1(c ⊗ c), f2(c ⊗ c)
)

.

By using Theorem 3.5, if (k,m) ∈ (K∗)2 and α ∈ K then C is one of the following
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tuples

C1 =(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), C2 =(0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0),

C3 =(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0), C4 =(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

C5 =(k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), C6 =(k, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1),

C7 =(1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0), C8 =(1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0),

C9 =(1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0), C10 =(1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1),

C11 =(1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1), C12 =(1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

C13 =(1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0), C14 =(1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1),

C15 =(k, 0, 0,m, 0, 0, 0, 0, 0, 0, 0, 0), C16 =(k, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1),

C17 =(1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0), C18 =(1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0),

C19 =(1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1), C20 =(1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1),

C21 =(k, 0, 0, 0,m, 0, 0, 0, 0, 0, 0, 0), C22 =(1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0),

C23 =(1, 0, 0, 0, 1, 0, α, 1− α, 0, 0, 0, 0), C24 =(k, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1),

C25 =(1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0), C26 =(1, 0, 0, 0, 1, 0, α, 1− α, 1, 1, 0, 0),

C27 =(1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1), C28 =(1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1),

C29 =(1, 0, 0, 0, 1, 0, α, 1− α, 1, 1, 1, 1), C30 =(k, 0,m, 0, 1, 0, 0, 0, 0, 0, 0, 0),

C31 =(1, 0, k, 0, 1, 0, 1, 1, 0, 0, 0, 0), C32 =(1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0),

C33 =(k, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 1), C34 =(1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0),

C35 =(1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1), C36 =(1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1),

C37 =(1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1), C38 =(1, 0, k, 0, 1, 0, α, 1− α, 0, 0, 0, 0),

C39 =(1, 0, 1, 0, 1, 0, α, 1− α, 1, 1, 0, 0), C40 =(1, 0, 1, 0, 1, 0, α, 1− α, 0, 0, 1, 1),

C41 =(1, 0, 1, 0, 1, 0, α, 1− α, 1, 1, 1, 1), C42 =(1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0),

C43 =(1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1), C44 =(1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0),

C45 =(1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1), C46 =(1, 1, 0, 1, 0, 1, 1, 1, 1, 1, α, 1− α),

C47 =(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).

Proposition 3.19. Let X be the alphabet {a, b, c} and S be the set defined by

S = {C1 . . . C47} equipped with the relation ≡ such that: for any A and B in S,

A ≡ B if and only if there exists an homogenous isomorphism between (K〈X〉,2A)

and (K〈X〉,2B) where 2A (respectively 2B) is the shuffle product associated to A

(respectively B). Let n be the number of isomorphic classes.

Then n ∈ J33, 39K.
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Proof. Thanks to Proposition 3.9, in any set, it is sufficient to consider that k =

m = 1. Thanks to Proposition 3.8, we can prove that cases C22 and C23 are

isomorphic, cases C25 and C26 are isomorphic, cases C28 and C29 are isomorphic,

cases C31 and C38 are isomorphic, cases C34 and C39 are isomorphic, cases C35 and

C40 are isomorphic, cases C37 and C41 are isomorphic and cases C45 and C46 are

isomorphic.

Let K1, K2 and K3 be the sets defined by:

• K1 =

{
u =

∑
x∈X

λxx, u
2 = 0

}
,

• K2 =

{
u =

∑
w∈X∗

length(w)=2

λww, u
2 = 0

}
,

• K3 =

{
u =

∑
w∈X∗

length(w)=3

λww, u
2 = 0

}
.

By using K1 and K2, we conclude that C6, C7 and C8 are in three different iso-

morphic classes, C9, C10 and C11 are in three different isomorphic classes, C16,

C17, C22 and C24 are in four different isomorphic classes, C18, C19, C25 and C27

are in four different isomorphic classes, C15 and C21 are in two different isomorphic

classes, C31, C32 and C33 are in three different isomorphic classes, C34, C35 and C36

are in three different isomorphic classes, C42 and C44 are in two different isomor-

phic classes. With K3, we prove that C20 and C28 are in two different isomorphic

classes. Those sets do not enable us to conclude if there exists an isomorphism

between C9 and C13, between C12 and C14, between C34 and C42, between C36 and

C44, between C43 and C47, between C45 and C47. �

4. Weak shuffle algebras, dendriform algebras, quadri-algebras

Dendriform algebras [22] and quadri-algebras [1] are algebraic structures which

enables one to split the associativity. Actually, a dendriform algebra is an algebra

A equipped with a left product ≺ and a right product � making the couple (A,≺
+ �) into an associative algebra and satisfying compatibilities. A quadri-algebra

is obtained by splitting each product of a dendriform algebra in two products and

the four new products must respect compatibilities. So, a quadri-algebra leads to

two dendriform structures and the sum of the four products gives an associative

product.

Those two notions have been extensively studied. For instance, Loday and Ronco

give the free dendriform algebra on one generator as an algebra over binary planar

trees [23]. Thanks to dendriform algebras, Foissy proves [9, Proposition 31] that
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the decorated Hopf algebra of Loday and Ronco and the decorated Hopf algebra

of planar rooted trees are isomorphic. Analogue theorems of the Cartier-Quillen-

Milnor-Moore theorem have been proved: by Ronco [27] for dendriform algebras,

by Chapoton [3] for dendriform bialgebras and by Foissy [10] for bidendriform bial-

gebras. The bidendriform case implies that FQSym is isomorphic to one decorated

Hopf algebra of planar rooted trees.

About quadri-algebras, Aguiar and Loday [1] have determined a quadri-algebra

structure on infinitesimal algebras and have focused on the free quadri-algebra on

one generator. Vallette [32] has proved some conjectures given by Aguiar and Loday

in [1, conjectures 4.2, 4.5 and 4.6]. Foissy has presented the free quadri-algebra on

one generator as a sub-object of FQSym [11].

In this section, we recall the dendriform algebra structure and the quadri-algebra

structure underlying the classical shuffle algebra. Then, we consider the case of

weak shuffle algebras. We prove that they can be equipped with a dendriform

structure yet only two weak shuffle products can be considered as coming from a

quadri-algebra.

4.1. Dendriform algebras.

4.1.1. Background.

Definition 4.1. A dendriform algebra is a vector space D equipped with two ≺
products � such that ∀x, y, z ∈ D,

(x ≺ y) ≺ z = x ≺ (y ≺ z) + x ≺ (y � z),

(x � y) ≺ z = x � (y ≺ z),

(x ≺ y) � z + (x � y) � z = x � (y � z).

Theorem 4.2. Let X be a countable alphabet and � be the classical shuffle product.

We define ≺ and � respectively by:

au ≺ bv = a(u� bv), au � bv = b(au� v),

for any letters a and b and any words u and v. Then (K〈X〉,≺,�) is a dendriform

algebra and for any words u and v

u� v = u ≺ v + u � v.

Theorem 4.3. Let X be a countable alphabet and � be the classical shuffle product.

We define ∧ and ∨ respectively by:

ua ∧ vb = (u� vb)a, ua ∨ vb = (ua� v)b,
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for any letters a and b and any words u and v. Then (K〈X〉,∧,∨) is a dendriform

algebra and for any words u and v

u� v = u ∧ v + u ∨ v.

4.1.2. Weak shuffle products.

Theorem 4.4. Let X be a countable alphabet and 2 be a weak shuffle product such

that f1(a ⊗ a) ∈ {0, 1} for any letter a ∈ X. We define the products ≺ and �
respectively by:

au ≺ bv = f1(a⊗ b)a(u2bv), au � bv = f2(a⊗ b)b(au2v),

for any letters a and b and any words u and v. Then (K〈X〉,≺,�) is a dendriform

algebra.

Proof. Let 2 be a weak shuffle product and let a, b and c be three letters of X.

Then:

(a ≺ b) ≺ c =f1(a⊗ b)f1(a⊗ c)f1(b⊗ c)abc+ f1(a⊗ b)f1(a⊗ c)f2(b⊗ c)acb,

a ≺ (b2c) =f1(a⊗ b)f1(b⊗ c)abc+ f1(a⊗ c)f2(b⊗ c)acb,

(a � b) ≺ c =f2(a⊗ b)f1(b⊗ c)f1(a⊗ c)bac+ f2(a⊗ b)f1(b⊗ c)f2(a⊗ c)bca,

a � (b ≺ c) =f2(a⊗ b)f1(b⊗ c)f1(a⊗ c)bac+ f2(a⊗ b)f1(b⊗ c)f2(a⊗ c)bca,

(a2b) � c =f1(a⊗ b)f2(a⊗ c)cab+ f2(a⊗ b)f2(b⊗ c)cba,

a � (b � c) =f2(b⊗ c)f2(a⊗ c)f1(a⊗ b)cab+ f2(b⊗ c)f2(a⊗ c)f2(a⊗ b)cba.

Then (a � b) ≺ c = a � (b ≺ c). If the three letters are all distinct or only two of

them are equal or a = b = c with f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1} the relations given

by Theorem 3.5 imply (a ≺ b) ≺ c = a ≺ (b2c) and (a2b) � c = a � (b � c). If

a = b = c with f1(a⊗a) = 1−f2(a⊗a) then (a ≺ a) ≺ a = a ≺ (a2a) and (a2a) �
a = a � (a � a) if and only if f1(a⊗ a) ∈ {0, 1} and then f1(a⊗ a)f2(a⊗ a) = 0.

We assume now there exists an integer n ≤ 3 such that, for any non-empty words

u, v and w with length(u) + length(v) + length(w) = n, relations (u ≺ v) ≺ w =

u ≺ (v2w), (u � v) ≺ w = u � (v ≺ w) and (u2v) � w = u � (v � w) are

satisfied.

Let u, v and w be three non-empty words such that length(u) + length(v) +

length(w) = n+ 1. There exist three letters a, b and c, not necessarily distinct and

three words u1, v1 and w1, not necessarily non-empty, such that u = au1, v = bv1

and w = cw1. Then
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(1)

(u ≺ v) ≺ w =f1(a⊗ b)f1(a⊗ c)a
[
(u12bv1)2cw1

]
= f1(a⊗ b)f1(a⊗ c)a

[
u12(bv12cw1)

]
=f1(a⊗ b)f1(a⊗ c)f1(b⊗ c)a

[
u12b(v12cw1)

]
+ f1(a⊗ b)f1(a⊗ c)f2(b⊗ c)a

[
u12c(bv12w1)

]
,

u ≺ (v2w) =f1(b⊗ c)f1(a⊗ b)a
[
u12b(v12cw1)

]
+ f2(b⊗ c)f1(a⊗ c)f1(a⊗ c)a

[
u12c(bv12w1)

]
.

(2)

(u � v) ≺ w =f2(a⊗ b)f1(b⊗ c)b
[
(au12v1)2cw1

]
,

u � (v ≺ w) =f1(b⊗ c)f2(a⊗ b)b
[
au12(v12cw1)

]
.

(3)

(u2v) � w =f1(a⊗ b)f2(a⊗ c)c
[
a(u12bv1)2cw1

]
+ f2(a⊗ b)f2(b⊗ c)c

[
b(au12v1)2cw1

]
,

u � (v � w) =f2(b⊗ c)f2(a⊗ c)c
[
au12(bv12w1)

]
= f2(b⊗ c)f2(a⊗ c)c

[
(au12bv1)2w1

]
=f2(b⊗ c)f2(a⊗ c)f1(a⊗ b)c

[
a(u12bv1)2w1

]
+ f2(b⊗ c)f2(a⊗ c)f2(a⊗ b)c

[
b(au12v1)2w1

]
.

Thus, (u ≺ v) ≺ w = u ≺ (v2w), (u � v) ≺ w = u � (v ≺ w) and (u2v) � w =

u � (v � w). �

By considering the right hand side rather than the left hand side, we get the

following definition and theorem.

Definition 4.5. Let X be a countable alphabet. An end weak shuffle product on

K〈X〉 is an associative and commutative product 2E such that for any (a, b) ∈ (X)2

and any (u, v) ∈ (X∗)2 then

ua2Evb = f1,E(a⊗ b)(u2Evb)a+ f2,E(a⊗ b)(ua2Ev)b,

where f1,E and f2,E are linear maps from K.X ⊗ K.X to K, u2E0 = 02Eu = 0

and u2E1 = 12Eu = u.

Theorem 4.6. Let X be a countable alphabet and let 2E be an end weak shuffle

product such that f1,E(a⊗ a) ∈ {0, 1} for any letter a ∈ X. We define the products

∧ and ∨ by:

ua ∧ vb = f1,E(a⊗ b)(u2Evb)a, au ∨ bv = f2,E(a⊗ b)(ua2Ev)b,

for any letters a and b and any words u and v. Then (K〈X〉,∧,∨) is a dendriform

algebra.
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Remark 4.7. Let α be a real number. Let 2 be the weak shuffle product satisfying

f1(a ⊗ a) = 1 − f2(a ⊗ a) = α for a unique letter a. Even if 2 does not depend

on the value of α, to express the algebra as a dendriform algebra the assumption

α ∈ {0, 1} is necessary.

4.2. Quadri-algebras.

4.2.1. Background.

Definition 4.8. A quadri-algebra is Q is a vector space equipped with four prod-

ucts ↘, ↗, ↖ and ↙ such that: for any x, y, z ∈ Q,

(x↖ y)↖ z = x↖ (y · z), (x↗ y)↖ z = x↗ (y ≺ z),

(x↙ y)↖ z = x↙ (y ∧ z), (x↘ y)↖ z = x↘ (y ↖ z),

(x ≺ y)↙ z = x↙ (y ∨ z), (x � y)↙ z = x↘ (y ↙ z),

and

(x ∧ y)↗ z = x↗ (y � z),

(x ∨ y)↗ z = x↘ (y ↗ z),

(x · y)↘ z = x↘ (y ↘ z).

where

x ≺ y = x↖ y + x↙ y, x ∧ y = x↗ y + x↖ y,

x � y = x↗ y + x↘ y, x ∨ y = x↘ y + x↙ y,

and

x · y = x↖ y + x↙ y + x↗ y + x↘ y = x ≺ y + x � y = x ∧ y + x ∨ y.

Theorem 4.9. Let X be a countable alphabet and let � be the classical shuffle

product. The products ↘, ↗, ↖ and ↙ are defined as follow:

auc↖ bvd = a(u� bvd)c, auc↙ bvd = a(uc� bv)d,

auc↗ bvd = b(au� vd)c, auc↘ bvd = b(auc� v)d

for any letters a, b, c and d and any words u and v. Then (K〈X〉,↘,↗,↖,↙) is

a quadri-algebra.
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Proof. It is proved in [1, Section 1.8]. The main ingredient of the proof is the

following statement: for any letters a, b, c and d and any words u and v we have

auc� bvd = a(uc� bvd) + b(auc� vd) = (au� bvd)c+ (auc� bv)d. �

4.2.2. Weak shuffle algebras.

Proposition 4.10. Let X be a countable alphabet of cardinality at least 2. Let 2

be a weak shuffle product. There exists an end weak shuffle product 2E such that

2 = 2E if, and only if, 2 is the null product or the classical shuffle product.

Proof. It is sufficient to prove the proposition for an alphabet of cardinality 2 and

assume images of functions f1, f2, f1,E and f2,E are subsets of {0, 1}. Let C be the

6-tuple C =

(
f1(a⊗ b), f1(b⊗ a), f1(a⊗ a), f2(a⊗ a), f1(b⊗ b), f2(b⊗ b)

)
.

Case C = (1, 0, 0, 0, 0, 0): If 2 = 2E then

a2Eba = (f1,E(a⊗ a) + f2,E(a⊗ a)f1,E(a⊗ b)) baa+ f2,E(a⊗ a)f1,E(b⊗ a)aba

=a2ba = aba.

Thus f2,E(a ⊗ a) = 1 and then a2Ea = (f1,E(a⊗ a) + 1) aa 6= 0 and yet

a2a = 0. Contradiction.

Cases C = (1, 0, 1, 1, 0, 0) and C = (1, 0, 1, 0, 0, 0): We recall that these two cases

are isomorphic. If 2 = 2E then

a2Eba = (f1,E(a⊗ a) + f2,E(a⊗ a)f1,E(a⊗ b)) baa+ f2,E(a⊗ a)f1,E(b⊗ a)aba

= (f1,E(a⊗ a)f1,E(a⊗ b) + f2,E(a⊗ a)) baa+ f1,E(a⊗ a)f1,E(b⊗ a)aba

=ba2Ea = a2ba = aba.

Thus f1,E(a ⊗ a) = f2,E(a ⊗ a) = f1,E(b ⊗ a) = 1 and f1,E(a ⊗ b) = −1.

Contradiction.

Cases C = (1, 0, 1, 0, 1, 1) and C = (1, 0, 1, 1, 1, 1).: The same calculations as in

the previous case answer the question.

Case C = (1, 0, 0, 0, 1, 1): If 2 = 2E then

ba2Eb =f1,E(a⊗ b) (f1,E(b⊗ b) + f2,E(b⊗ b)) bba+ f1,E(b⊗ a)bab

=ba2b = bba+ bab.

Thus f1,E(a⊗ b) = f1,E(b⊗ a) = f1,E(a⊗ a) = f2,E(a⊗ a) = f1,E(b⊗ b) =

f2,E(b⊗ b) = 1 with f1,E(b⊗ b) + f2,E(b⊗ b) = 1. Contradiction.
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Cases C = (0, 0, 1, 1, 0, 0): If 2 = 2E then

ab2Ea =f1,E(b⊗ a) (f1,E(a⊗ a) + f2,E(a⊗ a)) aab+ f1,E(a⊗ b)aba

=ab2a = aab.

Thus f1,E(a ⊗ b) = 0, f1,E(b ⊗ a) = 1 and f1,E(a ⊗ a) + f2,E(a ⊗ a) = 1.

Contradiction.

Cases C = (0, 0, 1, 1, 1, 1): The same calculations as in the previous case answer

the question. �

Corollary 4.11. The construction used in Theorem 4.9 does not lead to a quadri-

algebra structure on a weak shuffle product 2 except if 2 is the null shuffle or the

classical shuffle.

5. Relations on weak stuffle products

Proposition 5.1. Let X be a countable alphabet, let a, b and c be three distinct

letters in X and 2 a weak stuffle product. Then:

(1) By using the maps f1 and f2 coming from 2, we define the product 2
′

by:

au2
′
bv = f1(a⊗ b)a(u2

′
bv)+f2(a⊗ b)b(au2′v) for any letters a and b and

any words u and v. The product 2
′

is a weak shuffle product.

(2) The function f3 is associative and commutative.

(3) If f3(a⊗ a) 6= 0 then f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1}.
(4) If f3(a⊗b) 6= 0 then f1(a⊗a) = f2(a⊗a) ∈ {0, 1} and f1(b⊗b) = f2(b⊗b) ∈
{0, 1}.

(5) If f3(a⊗ a) ∈ K∗a then f1(b⊗ a) ∈ {0, 1}.
(6) If f3(a⊗ a) ∈ K∗b then

(a) If f3(a ⊗ b) 6= 0 or f3(b ⊗ b) 6= 0 or there exists x ∈ X \ {a, b} such

that f3(b⊗x) 6= 0 then f1(a⊗ a) = f2(a⊗ a) = f1(b⊗ b) = f2(b⊗ b) =

f1(a⊗ b) = f1(b⊗ a) ∈ {0, 1}.
(b) If f3(a⊗ b) = 0 and f3(b⊗ b) = 0 then

(i) either f1(a⊗a) = f2(a⊗a) = f1(b⊗ b) = f2(b⊗ b) = f1(a⊗ b) =

f1(b⊗ a) ∈ {0, 1},
(ii) or f1(a⊗a) = f2(a⊗a) = f1(b⊗a) = 1, f1(b⊗b)+f2(b⊗b) = 1

and f1(a⊗ b) = 0.

(c) For any x ∈ X \ {a, b} then

(i) f1(a⊗ x) = f1(b⊗ x),

(ii) f2
1 (x⊗ a) = f1(x⊗ b).

(7) If f3(a⊗ b) ∈ K∗a then:

(a) f1(b⊗ a) = f1(a⊗ a)f1(a⊗ b) = f1(b⊗ a)f1(b⊗ b).
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(b) f1(a⊗ b) = f1(b⊗ b).
(c) For any x ∈ X \ {a, b} such that f3(b⊗ x) /∈ K∗x then

(i) f1(a⊗ x) = f1(b⊗ x),

(ii) f1(x⊗ a) [1− f1(x⊗ b)] = 0.

(d) For any x ∈ X \ {a, b} such that f3(b⊗ x) ∈ K∗x then

(i) f1(b⊗ a) = f1(x⊗ a)f1(x⊗ b),
(ii) f1(b⊗ x) = f1(a⊗ b)f1(a⊗ x),

(8) If f3(a⊗ b) ∈ K∗c then:

(a) f1(c⊗ c) = f2(c⊗ c) ∈ {0, 1}.
(b) f1(b⊗ a) = f1(c⊗ a) = f1(a⊗ a).

(c) f1(a⊗ b) = f1(c⊗ b) = f1(b⊗ b).
(d) f1(a⊗ c) = f1(a⊗ a)f1(b⊗ b) = f1(b⊗ c) = f1(c⊗ c).

Proof. (1) Let a and b be two letters and let u and v be two words. By using

words of length length(u) + length(v) + 2 appearing in au2bv , we get the

statement. In the sequel, the use of the relations given in Theorem 3.5 is

implied.

(2) By using words of length 1 appearing in x2y, x2y, (x2y)2z and x2(y2z)

for any letters x, y, z, we prove that the function f3 is associative and

commutative.

(3) We assume f3(a⊗ a) 6= 0. Since a2aa = aa2a and (a2a)2aa = a2(a2aa)

then f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1}.
(4) We assume f3(a ⊗ b) 6= 0. Since a2ab = ab2a, b2ba = ba2b, (a2b)2a =

(a2a)2b and (b2a)2b = (b2b)2a then f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1} and

f1(b⊗ b) = f2(b⊗ b) ∈ {0, 1}.
(5) This item is proved by using (a2a)2b = (a2b)2a and a2(a2ba) = (a2a)2ba.

(6) We assume f3(a⊗ a) ∈ K∗b.
(a) If f3(a⊗ b) 6= 0 or f3(b⊗ b) 6= 0, since f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1},

f1(b ⊗ b) = f2(b ⊗ b) ∈ {0, 1}, (a2b)2a = (a2a)2b and (a2a)2aa =

a2(a2aa), then f1(a ⊗ a) = f2(a ⊗ a) = f1(b ⊗ b) = f2(b ⊗ b) =

f1(a⊗ b) = f1(b⊗ a) ∈ {0, 1}.
(b) If f3(a⊗ b) = 0 and f3(b⊗ b) = 0, since f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1},

(a2b)2a = (a2a)2b and (a2a)2aa = a2(a2aa) then we prove the

relations.

(c) This item is proved thanks to the relation (a2b)2a = (a2a)2b.

(7) We assume f3(a⊗ b) ∈ K∗a.

(a) This item is proved by using f1(a⊗a) = f2(a⊗a) ∈ {0, 1}, f1(b⊗ b) =

f2(b⊗ b) ∈ {0, 1}, (a2b)2a = (a2a)2b and (b2a)2b = (b2b)2a.
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(b) By using (b2b)2a = (b2a)2b and (a2b)2ba = a2(b2ba) we prove

f1(a⊗ b) = f1(b⊗ b).
(c) Those two subitems are proven by using (a2b)2x = (a2x)2b =

(b2x)2a.

(d) Those two subitems are proven by using (a2b)2x = (a2x)2b =

(b2x)2a.

(8) We assume f3(a ⊗ b) ∈ K∗c. Then f1(a ⊗ a) = f2(a ⊗ a) ∈ {0, 1} and

f1(b⊗ b) = f2(b⊗ b) ∈ {0, 1}. By using the relations (a2b)2c = (a2c)2b =

(b2c)2a, (a2b)2b = (b2b)2a, (b2a)2a = (a2a)2b, (a2b)2aa = a2(b2aa) =

b2(a2aa) and (b2a)2bb = b2(a2bb) = a2(b2bb) we prove all subitems.

�

Examples 5.2. (1) The q-shuffle product associated to the Schlesinger-Zudilin

model is the weak stuffle product where f1(y⊗p) = f1(y⊗y) = f1(p⊗p) =

f2(p ⊗ p) = 1, f1(p ⊗ y) = f2(y ⊗ y) = 0, f3(p ⊗ p) = p, f3(y ⊗ p) =

f3(y ⊗ y) = 0.

(2) The q-shuffle product associated to the Bradley-Zhao model is the weak

stuffle product where f1(y ⊗ p) = f1(y ⊗ p) = f1(p ⊗ p) = f1(p ⊗ p) =

f1(p⊗ p) = f2(p⊗ p) = f1(p⊗ p) = f2(p⊗ p) = f1(y ⊗ y) = 1, f1(p⊗ y) =

f1(p ⊗ y) = f2(y ⊗ y) = 0, f3(p ⊗ p) = p, f3(p ⊗ p) = −p f3(y ⊗ p) =

f3(y ⊗ y) = f3(y ⊗ p) = f3(p⊗ p) = 0.

Corollary 5.3. Let X = {x1, . . . , xn . . . } be an infinite countable alphabet. We

assume 2 is a weak stuffle product such that f3(xi ⊗ xj) ∈ K∗xi+j for any positive

integers i and j. Then, the underlying weak shuffle produit is either the null shuffle

product or the classical stuffle product i.e. (f1 ≡ 0 and f2 ≡ 0) or (f1(a ⊗ b) = 1

and f2(a⊗ b) = 1 for any letters a and b).

Proof. We use an inductive proof. First of all, since f3(xi⊗xi) 6= 0 for any positive

integer i, we have f1(xi ⊗ xi) = f2(xi ⊗ xi). Besides, f3(x1 ⊗ x1) = x2 6= x1 and

f3(x2 ⊗ x2) 6= 0, so f1(x1 ⊗ x1) = f2(x1 ⊗ x1) = f1(x2 ⊗ x2) = f2(x2 ⊗ x2) =

f1(x1 ⊗ x2) = f1(x2 ⊗ x1) ∈ {0, 1}.
We assume there exists n ∈ N∗ such that n ≥ 2 and f1(x1⊗x1) = f1(x1⊗xm) for

any m ∈ J1, nK. Then, f3(x1⊗xn) = xn+1 and f1(x1⊗xn+1) = f1(x1⊗x1)f1(x1⊗
xn) = f1(x1 ⊗ x1). Thus, f1(x1 ⊗ x1) = f1(x1 ⊗ xn) for any positive integer n.

We assume now there exists k ∈ N∗ such that f1(x1 ⊗ x1) = f1(xi ⊗ xj) for any

i ∈ J1, kK and any positive integer j. For any i ∈ J1, kK, we know f3(xi⊗xk+1−i) =

xk+1 so, f1(xk+1 ⊗ xi) = f1(xk+1−i ⊗ xi) = f1(x1 ⊗ x1). Besides, we know

f1(xk+1 ⊗ xk+1) = f2(xk+1 ⊗ xk+1) = f1(x1 ⊗ xk+1) = f1(x1 ⊗ x1).
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Since f3(xk+1⊗x1) = xk+2, we have f1(xk+1⊗xk+2) = f1(x1⊗xk+2) = f1(x1⊗x1).

We assume there exists a positive integer j such that f1(xk+1⊗xk+1+p) = f1(x1⊗x1)

for any p ∈ J1, jK. As f3(xk+1 ⊗ xj+1) = xk+j+2 then

f1(xk+1 ⊗ xk+j+2) = f1(xk+1 ⊗ xk+1)f1(xk+1 ⊗ xj+1) = f1(x1 ⊗ x1).

Finally, (f1 ≡ 0 and f2 ≡ 0) or (f1(a ⊗ b) = 1 and f2(a ⊗ b) = 1 for any letters a

and b). �

By using the commutativity and the associativity of k3 we have:

Lemma 5.4. Let X = {a, b} be an alphabet of cardinality 2 and let 2 be a weak

stuffle product. The map f3 is one of the following:

(1) There exists (λ, µ) ∈ (K∗)2 such that f3(a ⊗ a) = λb, f3(a ⊗ b) = µa and

f3(b⊗ b) = µb.

(2) There exists (λ, µ) ∈ (K∗)2 such that f3(a ⊗ a) = λa, f3(a ⊗ b) = µa and

f3(b⊗ b) = µ2

λ a.

(3) There exists (λ, µ) ∈ (K∗)2 such that f3(a ⊗ a) = λa, f3(a ⊗ b) = µa and

f3(b⊗ b) = µb.

(4) There exists (λ, µ) ∈ (K∗)2 such that f3(a ⊗ a) = 0, f3(a ⊗ b) = µa and

f3(b⊗ b) = λb.

(5) There exists (λ, µ) ∈ (K∗)2 such that f3(a ⊗ a) = λa, f3(a ⊗ b) = 0 and

f3(b⊗ b) = µb.

(6) There exists λ ∈ K∗ such that f3(a⊗a) = λb, f3(a⊗b) = 0 and f3(b⊗b) = 0.

(7) There exists λ ∈ K∗ such that f3(a⊗a) = λa, f3(a⊗b) = 0 and f3(b⊗b) = 0.

(8) The map f3 is the null map.

By using Proposition 5.1 we have:

Proposition 5.5. Let X = {a, b} be an alphabet of cardinality 2 and let 2 be a

weak stuffle product. In the previous lemma, if f3 satisfies

(1) Item (1) or item (2), then there are two cases:

• f1(a⊗ b) = 1 and f2(a⊗ b) = 1 for any (a, b) ∈ X2,

• f1 ≡ 0 and f2 ≡ 0.

(2) Item (3) or item (4), then there are four cases:

• f1(a⊗ b) = 1 and f2(a⊗ b) = 1 for any (a, b) ∈ X2,

• f1 ≡ 0 and f2 ≡ 0,

• f1(b ⊗ a) = f1(a ⊗ b) = f1(b ⊗ b) = f2(b ⊗ b) = 0 and f1(a ⊗ a) =

f2(a⊗ a) = 1,

• f1(a ⊗ b) = f1(b ⊗ b) = f2(b ⊗ b) = 1 and f1(b ⊗ a) = f1(a ⊗ a) =

f2(a⊗ a) = 0.
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(3) Item (5), then we have:

• f1(a⊗ b) ∈ {0, 1},
• f1(b⊗ a) ∈ {0, 1},
• f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1},
• f1(b⊗ b) = f2(b⊗ b) ∈ {0, 1}.

(4) Item (6), then there are three cases:

• f1(a⊗ b) = 1 and f2(a⊗ b) = 1 for any (a, b) ∈ X2,

• f1 ≡ 0 and f2 ≡ 0,

• f1(a ⊗ a) = f2(a ⊗ a) = f1(b ⊗ a) = 1, f1(a ⊗ b) = 0 and f1(b ⊗ b) +

f2(b⊗ b) = 1

(5) Item (7), then we have:

• f1(b⊗ a) ∈ {0, 1},
• f1(a⊗ a) = f2(a⊗ a) ∈ {0, 1}.

(6) Item (8), then we give the answer in Theorem 3.5.

Lemma 5.6. Let X = {a, b, c} be an alphabet of cardinality 3 and let 2 be a weak

stuffle product. The map f3 is one of the following:

(1) There exists (λ, γ, µ) ∈ (K∗)3 such that γµ = λ2, f3(a⊗b) = λc, f3(a⊗c) =

λa, f3(b⊗ c) = λb, f3(a⊗ a) = γb, f3(b⊗ b) = µa and f3(c⊗ c) = λc.

(2) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = γa, f3(b⊗ b) = λµ
γ a and f3(c⊗ c) = γµ

λ c.

(3) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = γa, f3(b⊗ b) = µb and f3(c⊗ c) = γµ
λ c.

(4) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = γa, f3(b⊗ b) = λµ
γ c and f3(c⊗ c) = γµ

λ c.

(5) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = γ2

µ b, f3(b⊗ b) = λµ
γ c and f3(c⊗ c) = γµ

λ c.

(6) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = λγ
µ c, f3(b⊗ b) = µ2

γ a and f3(c⊗ c) = γµ
λ c.

(7) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = λγ
µ c, f3(b⊗ b) = µb and f3(c⊗ c) = γµ

λ c.

(8) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = µc, f3(a⊗ a) = λγ
µ c, f3(b⊗ b) = λµ

γ c and f3(c⊗ c) = γµ
λ c.

(9) There exists (λ, γ) ∈ (K∗)2 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = γc,

f3(b⊗ c) = 0, f3(a⊗ a) = γa, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.

(10) There exists λ ∈ K∗ such that f3(a⊗ b) = λb, f3(a⊗ c) = λc, f3(b⊗ c) = 0,

f3(a⊗ a) = λa, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.
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(11) There exists (λ, γ) ∈ (K∗)2 such that f3(a ⊗ b) = λb, f3(a ⊗ c) = λc,

f3(b⊗ c) = 0, f3(a⊗ a) = λa, f3(b⊗ b) = 0 and f3(c⊗ c) = γb.

(12) There exists (λ, γ) ∈ (K∗)2 such that f3(a ⊗ b) = λb, f3(a ⊗ c) = λc,

f3(b⊗ c) = 0, f3(a⊗ a) = λa, f3(b⊗ b) = 0 and f3(c⊗ c) = γc.

(13) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λb, f3(a ⊗ c) = λc,

f3(b⊗ c) = 0, f3(a⊗ a) = λa, f3(b⊗ b) = γb and f3(c⊗ c) = µc.

(14) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = λc, f3(a ⊗ c) = 0,

f3(b⊗ c) = 0, f3(a⊗ a) = γc, f3(b⊗ b) = µc and f3(c⊗ c) = 0.

(15) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗b) = λc, f3(a⊗c) = 0, f3(b⊗c) =

0, f3(a⊗ a) = γb, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.

(16) There exists λ ∈ K∗ such that f3(a⊗ b) = λc, f3(a⊗ c) = 0, f3(b⊗ c) = 0,

f3(a⊗ a) = 0, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.

(17) There exists (λ, γ, µ, τ) ∈ (K∗)4 such that γµ = λ2, f3(a⊗ b) = λa, f3(a⊗
c) = 0, f3(b⊗ c) = 0, f3(a⊗ a) = γa, f3(b⊗ b) = µa and f3(c⊗ c) = τc.

(18) There exists (λ, γ, τ) ∈ (K∗)3 such that f3(a ⊗ b) = λa, f3(a ⊗ c) = 0,

f3(b⊗ c) = 0, f3(a⊗ a) = γa, f3(b⊗ b) = λb and f3(c⊗ c) = τc.

(19) There exists (λ, γ, τ) ∈ (K∗)3 such that f3(a ⊗ b) = λa, f3(a ⊗ c) = 0,

f3(b⊗ c) = 0, f3(a⊗ a) = γb, f3(b⊗ b) = λb and f3(c⊗ c) = τc.

(20) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗ b) = λa, f3(a⊗ c) = 0, f3(b⊗
c) = 0, f3(a⊗ a) = γc, f3(b⊗ b) = λb and f3(c⊗ c) = 0.

(21) There exists (λ, τ) ∈ (K∗)2 such that f3(a⊗ b) = λa, f3(a⊗ c) = 0, f3(b⊗
c) = 0, f3(a⊗ a) = 0, f3(b⊗ b) = λb and f3(c⊗ c) = τc.

(22) There exists (λ, γ, µ ∈ (K∗)3 such that γµ = λ2, f3(a⊗ b) = λa, f3(a⊗c) =

0, f3(b⊗ c) = 0, f3(a⊗ a) = γa, f3(b⊗ b) = µa and f3(c⊗ c) = 0.

(23) There exists (λ, γ, τ) ∈ (K∗)3 such that f3(a ⊗ b) = λa, f3(a ⊗ c) = 0,

f3(b⊗ c) = 0, f3(a⊗ a) = γa, f3(b⊗ b) = λb and f3(c⊗ c) = 0.

(24) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗ b) = λa, f3(a⊗ c) = 0, f3(b⊗
c) = 0, f3(a⊗ a) = γb, f3(b⊗ b) = λb and f3(c⊗ c) = 0.

(25) There exists λ ∈ K∗ such that f3(a⊗ b) = λa, f3(a⊗ c) = 0, f3(b⊗ c) = 0,

f3(a⊗ a) = 0, f3(b⊗ b) = λb and f3(c⊗ c) = 0.

(26) There exists (λ, γ, µ) ∈ (K∗)3 such that f3(a ⊗ b) = 0, f3(a ⊗ c) = 0,

f3(b⊗ c) = 0, f3(a⊗ a) = λa, f3(b⊗ b) = γb and f3(c⊗ c) = µc.

(27) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗b) = 0, f3(a⊗c) = 0, f3(b⊗c) =

0, f3(a⊗ a) = λc, f3(b⊗ b) = γc and f3(c⊗ c) = 0.

(28) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗b) = 0, f3(a⊗c) = 0, f3(b⊗c) =

0, f3(a⊗ a) = λc, f3(b⊗ b) = γb and f3(c⊗ c) = 0.



WEAK STUFFLE ALGEBRAS 33

(29) There exists (λ, γ) ∈ (K∗)2 such that f3(a⊗b) = 0, f3(a⊗c) = 0, f3(b⊗c) =

0, f3(a⊗ a) = λa, f3(b⊗ b) = γb and f3(c⊗ c) = 0.

(30) There exists λ ∈ K∗ such that f3(a ⊗ b) = 0, f3(a ⊗ c) = 0, f3(b ⊗ c) = 0,

f3(a⊗ a) = λb, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.

(31) There exists λ ∈ K∗ such that f3(a ⊗ b) = 0, f3(a ⊗ c) = 0, f3(b ⊗ c) = 0,

f3(a⊗ a) = λa, f3(b⊗ b) = 0 and f3(c⊗ c) = 0.

(32) The map f3 is the null map.

Proof. We use the fact that the map f3 is associative and commutative, and then,

we get the lemma by direct quite long calculations. �

Proposition 5.7. Let X = {a, b, c} be an alphabet of cardinality 3 and let 2 be

a weak stuffle product. In the previous lemma, if f3 satisfies one of the items (1),

(2), (5), (6), (8), (14), (15) then either (f1 ≡ 0 and f2 ≡ 0) or (f1(a⊗ b) = 1 and

f2(a⊗ b) = 1 for (a, b) ∈ X2).

6. Weak stuffle product and Hopf algebras

If 2 is the classical shuffle product or the classical stuffle product then the algebra

(K〈X〉,2) can be equipped with a compatible coalgebra structure, thanks to the

deconcatenation coproduct, which makes it into a Hopf algebra. Are there other

weak stuffle products compatible with the deconcatenation? We begin by recalling

the Hopf algebra construction for stuffle algebras given in [16,18,17]. We then turn

to the case of weak stuffle algebras.

Theorem 6.1. Let X be a countable alphabet, let K〈X〉 be the vector space gen-

erated by words on the alphabet X. We assume there exists at least one product �
on K.X which is commutative and associative. We define the product ? and the

coproduct of deconcatenation ∆ by:

au ? bv = a(u ? bv) + b(au ? v) + (a � b)(u ? v)

and

∆(w) =
∑

(u,v)∈(K〈X〉)2,
uv=w

u⊗ v

for any letters a and b and any words u, v and w.

Then (K〈X〉, ?,∆) is a Hopf algebra.

Proof. This theorem is proven in [16,18,17] by induction and using the filtration

given by the length of words. �
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Theorem 6.2. Let X be a countable alphabet of cardinality n ∈ N ∪ {+∞} and

let 2 be a weak stuffle product on K〈X〉. We denote by ∆ the deconcatenation

coproduct. If ∆ respects 2 ( i.e. if ∆ is an algebra morphism) then the underlying

weak shuffle product is the classical shuffle product.

Proof. Let 2 be a weak stuffle product. We assume the deconcatenation respects

2. Then, for any distinct letters a and b:

∆(a2a) = (f1(a⊗ a) + f2(a⊗ a)) ∆(aa) + ∆(f3(a⊗ a))

= (f1(a⊗ a) + f2(a⊗ a)) ∆(aa) + k(a⊗ a)∆(g(a⊗ a))

= (f1(a⊗ a) + f2(a⊗ a)) (aa⊗ 1 + a⊗ a+ 1⊗ aa)

+ k(a⊗ a) (g(a⊗ a)⊗ 1 + 1⊗ g(a⊗ a))

=∆(a)2∆(a)

= (f1(a⊗ a) + f2(a⊗ a)) (aa⊗ 1 + 1⊗ aa) + 2a⊗ a

+ k(a⊗ a) (g(a⊗ a)⊗ 1 + 1⊗ g(a⊗ a)) ,

∆(a2b) =f1(a⊗ b)∆(ab) + f1(b⊗ a)∆(ba) + k(a⊗ b)∆(g(a⊗ b))

=f1(a⊗ b)(ab⊗ 1 + a⊗ b+ 1⊗ ab) + f1(b⊗ a)(ba⊗ 1 + b⊗ a+ 1⊗ ba)

+ k(a⊗ b) (g(a⊗ b)⊗ 1 + 1⊗ g(a⊗ b))

=∆(a)2∆(b) = f1(a⊗ b)(ab⊗ 1 + 1⊗ ab) + f1(b⊗ a)(ba⊗ 1 + 1⊗ ba) + a⊗ b+ b⊗ a

+ k(a⊗ b) (g(a⊗ b)⊗ 1 + 1⊗ g(a⊗ b)) .

So, f1(a⊗ a) = f2(a⊗ a) = f1(a⊗ b) = f1(b⊗ a) = 1.

The reversal is a particular case of Theorem 6.1. �

7. Computation programs

We give computation programs realised to compute the weak shuffle of two words

or to prove Lemma 3.17. In the sequel we assume the alphabet X is the set of

integers {1, . . . , c} and a word is a list [i1, . . . , in].

We first present a function which computes the weak shuffle product of two

words. This function, called weak shuffle product, takes as entries a list Rules

which coresponds to the values taken by f1 and f2 and two lists w1 and w2 which

represent the two words to use for computations. We assume

Rules =

[
f1(1⊗ 2), . . . , f1(1⊗ c), . . . f1(c⊗ 1), . . . , f1(c⊗ c− 1),

f1(1⊗ 1), f2(1⊗ 1), . . . , f1(c⊗ c), f2(c⊗ c)

]
.
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As exit, the function return a list. Each element of the result is a list of two elements

A and B: A is the number of times the word represented by B appears in the weak

shuffle product of w1 and w2.

weak shu f f l e p roduc t ( Rules , w1 , w2) :=block ( [ n1 , n2 , u1 , u2 , temp , res , i , j ,

v1a , v1b , v2a , v2b , P1 , P2 , g , d , L , r , s , c ] ,

/∗−−−−−−−− I n i t i a l i s a t i o n o f the v a l u e s o f the l e f t s i d e and

the r i g h t s i d e −−−−−−−−∗/
g : 0 ,

d : 0 ,

/∗−−−−−−
Computation o f the c a r d i n a l i t y o f the a l p h a b e t.−−−−−−∗/
r : l ength ( Rules ) ,

s : s o r t ( s o l v e ( c ∗( c+1)=r ) ) ,

c : subst ( s [ 2 ] , c ) ,

/∗−−−−−− Message i f the v a r i a b l e Rules does not correspond

to an a l p h a b e t . −−−−−−∗/
i f ( notequal ( c , f l o o r ( c ) ) or c<1) then pr in t ( ” e r r e u r ” ) ,

/∗−−−−−− Computation o f the l e n g t h o f words w1 and w2 . −−−−−−∗/
n1 : l ength (w1) ,

n2 : l ength (w2) ,

/∗−−−−−−−− We use the commutat iv i ty o f the weak s h u f f l e product

to avoid some sub−cases . The word wi th the s m a l l e s t l e n g t h

i s on the l e f t . −−−−−−−−∗/
i f n1<=n2 then (

u1 : [ [ 1 ] , w1 ] ,

u2 : [ [ 1 ] , w2 ]

)

else ( u1 : [ [ 1 ] , w2 ] ,

u2 : [ [ 1 ] , w1 ] ,

temp : n1 ,

n1 : n2 ,
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n2 : temp

) ,

r e s : [ [ 0 ] , [ ] ] ,

/∗−−−−−−−− We w i l l use a r e c u r s i v e c a l l . −−−−−−−−∗/
i f equal ( n1 , 0 ) then (

/∗−−−− Limit case : w1 i s the empty word and

w2 i s any word . −−−−∗/
r e s : [ [ [ 1 ] , u2 [ 2 ] ] ]

)

else (

/∗−−−− We compute the weak s h u f f l e product thanks to the re la−
t i o n : au ( wsp ) bv=f 1 ( a\ ot b ) a ( u( wsp ) vb)+ f2 ( a\ ot b ) b ( ua ( wsp ) v )

here u and v are words and a and b are l e t t e r s . −−−−∗/
v1a : c r e a t e l i s t ( u1 [ 2 ] [ i ] , i , 2 , n1 ) ,

v1b : u1 [ 2 ] [ 1 ] ,

v2a : c r e a t e l i s t ( u2 [ 2 ] [ i ] , i , 2 , n2 ) ,

v2b : u2 [ 2 ] [ 1 ] ,

P1 : [ ] ,

P2 : [ ] ,

/∗−−− We detemine f 1 ( v1b\ ot v2b ) and f 2 ( v1b\ ot v2b ) . −−−∗/
i f equal ( v1b , v2b ) then (

g : Rules [ r+2∗(−c+v1b )−1] ,

d : Rules [ r+2∗(−c+v1b ) ]

) ,

i f ( v1b<v2b ) then (

g : Rules [ ( v1b−1)∗( c−1)+v2b−1] ,

d : Rules [ ( v2b−1)∗( c−1)+v1b ]

) ,

i f ( v1b>v2b ) then (

g : Rules [ ( v1b−1)∗( c−1)+v2b ] ,

d : Rules [ ( v2b−1)∗( c−1)+v1b−1]

) ,
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/∗−−−−−−−− Recurs ive c a l l . −−−−−−−−∗/
i f g>0 then (

P1 : weak shu f f l e p roduc t ( Rules , v1a , u2 [ 2 ] ) ,

P1 : c r e a t e l i s t ( [ g∗P1 [ i ] [ 1 ] , append ( [ v1b ] , P1 [ i ] [ 2 ] ) ] ,

i , 1 , l ength (P1 ) )

) ,

i f d>0 then (

P2 : weak shu f f l e p roduc t ( Rules , u1 [ 2 ] , v2a ) ,

P2 : c r e a t e l i s t ( [ d∗P2 [ i ] [ 1 ] , append ( [ v2b ] , P2 [ i ] [ 2 ] ) ] ,

i , 1 , l ength (P2 ) )

) ,

r e s : append (P1 , P2)

) ,

/∗−−−−−− We r e w r i t e the r e s u l t f o r having only one occurence o f

each d i s t i n c t words . −−−−−−−−∗/
L : c r e a t e l i s t ( r e s [ i ] [ 2 ] , i , 1 , l ength ( r e s ) ) ,

L : unique (L) ,

r e s : c r e a t e l i s t ( [ rats imp (sum( i f equal (L [ i ] , r e s [ j ] [ 2 ] ) then r e s [ j ] [ 1 ]

else 0 , j , 1 , l ength ( r e s ) ) ) , L [ i ] ] , i , 1 , l ength (L) ) ,

r e turn ( r e s )

) ;

In the sequel, the functions aim at proving if the following statement is true

or not for some low n. Let n be a positive integer and let w1, w2 and w be

three non-empty words of length n such that w1 ≤ w2 ≤ w and w1 < w. Then

max(w12
9
w2) < max(w2

9
w)? It is trivial for n = 1. For n = 2, it comes from

computations doing in the proof of Proposition 3.14. Thus, those cases are not

treated.

The function words aims at building all words of length n with an alphabet of

cardinality c. It takes as entries the integers n and c and returns a list where each

element is a list coresponding to a word. In the result, words are ordered by the

ascending order.

words (n , c ) :=block ( [ res , i , j ,U] ,



38 CÉCILE MAMMEZ

r e s : [ ] ,

i f n=1 then r e s : c r e a t e l i s t ( [ i ] , i , 1 , c ) ,

i f n>1 then (

U: words (n−1, c ) ,

r e s : c r e a t e l i s t ( append (U[ i ] , [ j ] ) , j , 1 , c , i , 1 , l ength (U) )

) ,

r e turn ( s o r t ( r e s ) )

) ;

The function spectrum product aims at determining words appearing in the

weak shuffle product of two words w1 and w2. It takes as entries a list Rules which

gives the rules of computation for the weak shuffle product, an integer r which is

the length of the list Rules, an integer c which is the cardinality of the alphabet,

and two lists w1 and w2 which represent the two words to use for computations.

As exit, the function return a list ordered thanks to the ascending order where

each element is a list representing a word appearing in the weak shuffle product of

two words w1 and w2.

spectrum product ( Rules , r , c , w1 , w2) :=block ( [ n1 , n2 , u1 , u2 , temp , res , i , j ,

v1a , v1b , v2a , v2b , P1 , P2 , g , d ] ,

/∗−−−−−−−− I n i t i a l i s a t i o n o f the v a l u e s o f

the l e f t s i d e and the r i g h t s i d e −−−−−−−−∗/
g : 0 ,

d : 0 ,

/∗−−−−−−− Computation o f the l e n g t h o f words w1 and w2 . −−−−−−−∗/
n1 : l ength (w1) ,

n2 : l ength (w2) ,

/∗−−−−−−−− We use the commutat iv i ty o f the weak s h u f f l e product

to avoid some sub−cases . The word wi th the s m a l l e s t l e n g t h

i s on the l e f t . −−−−−−−−∗/
i f n1<=n2 then (

u1 : w1 ,

u2 : w2

)

else ( u1 : w2 ,

u2 : w1 ,

temp : n1 ,
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n1 : n2 ,

n2 : temp

) ,

r e s : [ ] ,

/∗−−−−−−−− We w i l l use a r e c u r s i v e c a l l . −−−−−−−−∗/
i f equal ( n1 , 0 ) then (

/∗−−− Limit case : w1 i s the empty word and w2 i s any word . −−−∗/
r e s : [ u2 ]

)

else (

/∗−−−− We compute the weak s h u f f l e product thanks to the re la−
t i o n : au ( wsp ) bv=f 1 ( a\ ot b ) a ( u( wsp ) vb)+ f2 ( a\ ot b ) b ( ua ( wsp ) v )

here u and v are words and a and b are l e t t e r s . −−−−∗/
v1a : de l e t en ( u1 , 1 ) ,

v1b : u1 [ 1 ] ,

v2a : d e l e t en ( u2 , 1 ) ,

v2b : u2 [ 1 ] ,

P1 : [ ] ,

P2 : [ ] ,

/∗−−−−− We detemine f 1 ( v1b\ ot v2b ) and f 2 ( v1b\ ot v2b ) . −−−−−∗/
i f equal ( v1b , v2b ) then (

g : Rules [ r+2∗(−c+v1b )−1] ,

d : Rules [ r+2∗(−c+v1b ) ]

) ,

i f ( v1b<v2b ) then (

g : Rules [ ( v1b−1)∗( c−1)+v2b−1] ,

d : Rules [ ( v2b−1) .( c−1)+v1b ]

) ,

i f ( v1b>v2b ) then (

g : Rules [ ( v1b−1)∗( c−1)+v2b ] ,

d : Rules [ ( v2b−1) .( c−1)+v1b−1]

) ,
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/∗−−−−−−−− Recurs ive c a l l . −−−−−−−−∗/
i f g>0 then (

P1 : spectrum product ( Rules , r , c , v1a , u2 ) ,

P1 : c r e a t e l i s t ( append ( [ v1b ] , P1 [ i ] ) , i , 1 , l ength (P1 ) )

) ,

i f d>0 then (

P2 : spectrum product ( Rules , r , c , u1 , v2a ) ,

P2 : c r e a t e l i s t ( append ( [ v2b ] , P2 [ i ] ) , i , 1 , l ength (P2 ) )

) ,

r e s : append (P1 , P2)

) ,

/∗−−−−−− Words are w r i t t e n once wi th the ascending order . −−−−−−∗/
r e s : s o r t ( unique ( r e s ) ) ,

r e turn ( r e s )

) ;

The function maximum product takes as entries a list Rules corresponding to

the weak shuffle product, an integer r which is the length of Rules, an integer c

which is the cardinality of the alphabet, an integer n which is the length of words

used, a list W which represents the list of words of length n, an integer l which

is the length of W , an integer k which is the level of computation. The function

returns a list of length k − 5. The first one is a list of only one element which

is max(W [6]2
9
W [6]). In the result, the element p with 2 ≤ p ≤ k − 5 is a list

of two elements Ap and Bp where Ap = max(max(w12
9
w2)) with w1 < W [p] and

w2 ≤W [k] and Bp = max(W [p]2
9
W [p]). This function really depends on the weak

shuffle product 2
9

.

maximum product ( Rules , r , c , n ,W, l , k ) :=block ( [ res , i ,P, i n i t ] ,

r e s : [ ] ,

i f n>1 then (

/∗−−−−−−−−−−−−−− W[ 1 ]=[ 1 , . . . , 1 ] , W[ 2 ]=[ 1 , . . . , 1 , 2 ] ,

W[ 3 ]=[ 1 , . . . , 1 , 2 , 1 ] , W[ 4 ]=[ 1 , . . . , 1 , 2 , 2 ] ,

W[ 5 ]=[ 1 , . . . , 1 , 2 , 1 , 1 ] , W[ 6 ]=[ 1 , . . . , 1 , 2 , 1 , 2 ] ,

i t i s enouth to do an i n i t i a l i s a t i o n wi th
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W[ 6 ] . −−−−−−−−−−−−−−∗/
i f k=6 then (

i n i t : l a s t ( spectrum product ( Rules , r , c ,W[ 6 ] ,W[ 6 ] ) ) ,

r e s : [ [ i n i t ] ]

) ,

i f ( k>6 and k<l +1) then (

/∗−−−−− Recurs ive c a l l . −−−−−−−−−∗/
r e s : maximum product ( Rules , r , c , n ,W, l , k−1) ,

/∗−−−− Maximum word in r es . −−−−∗/
P : [ l a s t ( s o r t ( r e s [ l ength ( r e s ) ] ) ) ] ,

/∗−−− P i s f i l l e d in maximum words in W[ i ] ( wsp )W[ k ]

f o r i : 1 thru k−1 do (

P: append (P , [ l a s t ( spectrum product ( Rules , r , c ,W[ i ] ,W[ k ] ) ) ] )

) ,

/∗−−− re s i s f i l l e d in a l i s t o f two e lements :

the maximum in P and the maximum in W[K] ( spw )W[ k ] . −−−∗/
re s : append ( res , [ [ l a s t ( s o r t (P) ) ,

l a s t ( spectrum product ( Rules , r , c ,W[ k ] ,W[ k ] ) ) ] ] )

)

) ,

re turn ( r es )

) ;

The function proof statement determines if the statement given at the begin-

ning of the section is proved for words of length n. As entries, it takes a list

Rules corresponding to the weak shuffle product and an integer coresponding to

the length of words used. It returns a boolean. The boolean is true if the state-

ment if satisfied and false if the statement is not satisfied. Since this function uses

maximum product, it depends on the weak shuffle product 2
9

.

p roo f s ta tement ( Rules , n ) :=block ( [ res ,P,U, i , p , c , r , s ,W, l ] ,

/∗−−−−−−− Computation o f the c a r d i n a l i t y o f the a l p h a b e t . −−−−−−−∗/
r : l ength ( Rules ) ,
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s : s o r t ( s o l v e ( c ∗( c+1)=r ) ) ,

c : subst ( s [ 2 ] , c ) ,

/∗−−−−−−−− Message i f the v a r i a b l e Rules

does not correspond to an a l p h a b e t . −−−−−−−−∗/
i f ( notequal ( c , f l o o r ( c ) ) or c<1) then pr in t ( ” e r r e u r ” )

else (

/∗−−−−−−−− Computations . −−−−−−−−∗/
r e s : true ,

/∗−−−−−− B u i l d i n g o f words o f l e n g t h n . −−−−−−∗/
W: words (n , c ) ,

l : l ength (W) ,

/∗−−−−−− B u i l d i n g max(w( wsp )w) and max(max( w 1 ( wsp ) w 2 )

wi th w 1<w and w 2<=w. −−−−−−∗/
P: maximum product ( Rules , r , c , n ,W, l , l ) ,

p : l ength (P) ,

i : 2 ,

/∗−−−−−− Checking o f the s ta tement at l e v e l i . −−−−−−∗/
while ( equal ( res , t rue ) and i<p+1) do (

i f equal (P[ i ] [ 1 ] , P [ i ] [ 2 ] ) then ( r e s : f a l s e ) ,

i : i+1

)

) ,

r e turn ( r e s )

) ;
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