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On matching distance between eigenvalues of unbounded
operators
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ABSTRACT. Let A and Ã be linear operators on a Banach space having compact resolvents, and let λk(A) and
λk(Ã) (k = 1, 2, ...) be the eigenvalues taken with their algebraic multiplicities of A and Ã, respectively. Under some
conditions, we derive a bound for the quantity

md(A, Ã) := inf
π

sup
k=1,2,...

|λπ(k)(Ã)− λk(A)|,

where π is taken over all permutations of the set of all positive integers. That quantity is called the matching optimal
distance between the eigenvalues of A and Ã. Applications of the obtained bound to matrix differential operators are
also discussed.
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1. INTRODUCTION

Let X be a Banach space with the unit operator I = IX and norm ‖.‖. For a linear operator
B, σ(B) denotes the spectrum, B−1 is the inverse operator, Rz(B) = (B − zI)−1 (z 6∈ σ(B)) is
the resolvent, ‖B‖ is the operator norm, if B is bounded; B∗ is the adjoint operator, D(B) is the
domain and

d(B, z) := inf
s∈σ(B)

|s− z|, z ∈ C.

Throughout this paper, A and Ã are linear operators on X having compact resolvents. So A
and Ã can have root vectors and all their eigenspaces are finite dimensional.

Let λk(A) and λk(Ã) (k = 1, 2, ...) be the eigenvalues of A and Ã, respectively, enumerated
with their algebraic multiplicities taken into account. Introduce the following quantity (called
the matching optimal distance between the eigenvalues of A and Ã):

md(A, Ã) := inf
π

sup
i=1,2,...

|λπ(i)(Ã)− λi(A)|,

where π is taken over all permutations of the set of all positive integers.
Our definition of md(A, Ã) is a natural generalization of the well-known definition from the

perturbation theory of finite matrices [19, p. 167].
The present paper is devoted to estimating md(A, Ã). The perturbation theory of opera-

tors is very rich. The classical results are presented in the book [15], the recent results can be
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found in [1]-[5], [7, 8, 9], [11], [12, 13, 14, 18] and references, which are given therein, but to the
best of our knowledge, the matching optimal distance for infinite dimensional operators was
not investigated in the available literature although it is important for the localization of the
spectrum.

Below we suggest a bound for md(A, Ã) assuming that

(1.1) D(A) = D(Ã) and q := ‖A− Ã‖ <∞.

As a particular case, we consider a class of operators on the tensor product of a Hilbert space
and a finite dimensional one. We also discuss applications of our results to matrix differential
operators.

2. OPERATORS ON A BANACH SPACE

In the sequel, by λ̂k(A) (k = 1, 2, ...), we denote the distinct eigenvalues of A and assume
that

r0(A) := inf
j 6=k;j,k=1,2,...

|λ̂k(A)− λ̂j(A)|
2

> 0.

Since A has a compact resolvent, if σ(A) does not contain limit points, one can wait that this
condition holds. If σ(A) contains limit points, then r0(A) = 0.

Put rj := inf
k 6=j

|λ̂k(A)−λ̂j(A)|
2 , j = 1, 2, ...,

Ω(c, r) := {z ∈ C : |z − c| < r}, c ∈ C, r > 0

and
C(c, r) := {z ∈ C : |z − c| = r}, c ∈ C, r > 0.

By νk(A), we denote the algebraic multiplicity of each λ̂k(A).

Lemma 2.1. Let conditions (1.1) hold and for an integer j and a positive number r̂j ≤ rj , let

(2.2) q sup
z∈C(λ̂j(A),r̂j)

‖Rz(A)‖ < 1.

Then, Ã has in Ω(λ̂j(A), rj) eigenvalues whose total algebraic multiplicity is equal to νj(A).

Proof. This result is a particular case of the well-known one [15, Theorem IV.3.18]. �

Assume that

(2.3) ‖Rλ(A)‖ ≤ φ(1/d(A, λ)), for all λ 6∈ σ(A),

where φ(x) is a continuous monotonically increasing non-negative function of a non-negative
variable x, such that φ(0) = 0 and φ(∞) =∞.

Let conditions (1.1) and (2.3) hold, and let there be a positive number r̂0 ≤ r0(A), such that

(2.4) qφ(1/r̂0) < 1.

Then, σ(Ã) lies in the set ∪∞j=1Ω(λ̂j(A), r̂0). Indeed, assume that an eigenvalue λ̃ of Ã does not
belong to this set. Then for the eigenvalue λ̂j(A) ofA nearest to λ̃, we have t = |λ̃− λ̂j(A)| ≥ r̂j .
Thus

q‖Rλ̃(A)‖ ≤ qφ(1/t) ≤ qφ(1/r̂0) < 1.

According to [15, Theorem IV.1.16], λ̃ 6∈ σ(Ã). Hence, due to Lemma 2.1, we arrive at the
following result.
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Corollary 2.1. Let conditions (1.1) and (2.3) hold, and let there be a positive number r̂0 ≤ r0(A),
such that inequality (2.4) is fulfilled. Then, σ(Ã) lies in the set ∪∞j=1Ω(λ̂j(A), r̂0). Moreover, in each
Ω(λ̂j(A), r̂0) (j = 1, 2, ...) operator Ã has the eigenvalues, whose total algebraic multiplicity is equal to
νj(A), and therefore md(A, Ã) ≤ r̂0.

Denote by x(q) the unique positive root of the equation

(2.5) qφ(1/z) = 1.

Theorem 2.1. Let conditions (1.1) and (2.3) hold, and let x(q) < r0(A). Then

σ(Ã) ⊂ ∪∞j=1Ω(λ̂j(A), x(q)).

Moreover, the total algebraic multiplicity of the eigenvalues of Ã, lying in each Ω(λ̂j(A), x(q)) (j =

1, 2, ...) is equal to the algebraic multiplicity νj(A) of λ̂j(A), and consequently md(A, Ã) ≤ x(q).

Proof. Since φ is an increasing function, for any r̂0 ∈ (x(q), r0(A)), we have

qφ(1/r̂0) < qφ(1/x(q)) = 1.

So, inequality (2.4) is fulfilled. Now, making use of Corollary 2.1, we arrive at the required
result. �

3. OPERATORS ON THE TENSOR PRODUCT OF A HILBERT SPACE AND A FINITE DIMENSIONAL
ONE

Throughout this section, E is a separable Hilbert space with a scalar product 〈., .〉E and the
norm ‖.‖E =

√
〈., .〉E , Cn is the n-dimensional complex Euclidean space with a scalar product

〈., .〉n and the Euclidean norm ‖.‖n =
√
〈., .〉n. Recall the definition of the tensor product

H = E ⊗ Cn of E and Cn. To this end, consider the collection of all formal finite sums of the
form

u =
∑
j

yj ⊗ hj (yj ∈ E , hj ∈ Cn)

with the understanding that

λ(y ⊗ h) = (λy)⊗ h = y ⊗ (λh), (y + y1)⊗ h = y ⊗ h+ y1 ⊗ h,

y ⊗ (h+ h1) = y ⊗ h+ y ⊗ h1, y, y1 ∈ E ; h, h1 ∈ Cn; λ ∈ C.
On that collection define the scalar product as

〈h⊗ y, h1 ⊗ y1〉H = 〈y, y1〉E 〈h, h1〉n, y, y1 ∈ E ;h, h1 ∈ Cn

and the cross norm is defined by ‖.‖H =
√
〈., .〉H. Then, H is the completion of the considered

collection in the norm ‖.‖H. Besides, IH, IE and In are the unit operators in H, E and Cn,
respectively. From the theory of tensor products, we need only elementary facts which can be
found in [6].

Note that the class of operators with compact resolvents is closed under taking the tensor
product.

Everywhere below M is an n × n-matrix and S is a normal operator on E with a compact
resolvent. We will consider perturbations of the operator

(3.6) A = S ⊗ In + IE ⊗M.
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Let λ̂k(M) (k = 1, ...,m ≤ n) be the distinct eigenvalues of M with the algebraic multiplicities
νk(M) : λ̂k(M) 6= λ̂j(M) (j 6= k) and λ̂j(S) (j = 1, 2, ...) be the distinct eigenvalues of S with
multiplicities νj(S) :

S =

∞∑
j=1

λ̂j(S)Pj ,

where Pj are the (mutually orthogonal and finite dimensional) eigen-projections of S. Since

IE =

∞∑
k=1

Pk,

we have

A =

∞∑
k=1

λ̂k(S)Pk ⊗ In +M ⊗ IE =

∞∑
k=1

Pk ⊗ (λ̂k(S)In +M).

Hence

(A− zIH)−1 =

∞∑
k=1

Pk ⊗ ((λ̂k(S)− z)In +M)−1

and therefore,

(3.7) ‖(A− zIH)−1‖ = sup
k
‖((λ̂k(S)− z)In +M)−1‖n.

Here and below, ‖C‖n means the spectral matrix norm (the operator norm with respect to the
Euclidean vector norm) of a matrix C.

Any eigenvalue of A can be written as

λ̂jk(A) = λ̂j(S) + λ̂k(M), j = 1, 2...; k = 1, ...,m.

Assume that
r0(A) = inf{|λ̂j(S) + λ̂k(M)− λ̂j1(S)− λ̂k1(M)| :

(3.8) j 6= j1, k 6= k1; j, j1 = 1, 2, ...; k1, k = 1, ...,m} > 0.

Denote by ‖M‖F the Frobenius norm ofM : ‖M‖F := (trace M∗M)1/2. The following quantity
plays an essential role hereafter:

g(M) := [‖M‖2F −
m∑
k=1

νk(M)|λ̂k(M)|2]1/2.

The following properties of g(M) are checked in [10, Section 3.1]. If M is normal, then g(M) =
0. In addition,

(3.9) g(eitM + zIn) = g(M), t ∈ R; z ∈ C

and
g2(M) ≤ 2‖MI‖2F (MI = (M −M∗)/2i), and g2(M) ≤ ‖M‖2F − |trace M2|.

Due to [10, Theorem 3.2], for any n× n-matrix M , one has

(3.10) ‖Rλ(M)‖n ≤
n−1∑
k=0

gk(M)√
k!dk+1(M,λ)

, λ 6∈ σ(M).

This inequality is sharp: if M is normal, then g(M) = 0 and with 00 = 1 (3.10) is attained:
‖Rλ(M)‖n = 1

d(M,λ) .
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According to (3.7) and (3.10),

‖(A− zIH)−1‖H ≤ sup
j
‖((λ̂j(S)− z)In +M)−1‖n

≤ sup
j

n−1∑
k=0

gk(M)√
k!dk+1(M, z − λ̂j(S))

, z − λ̂j(S) 6∈ σ(M).

But
d(M, z − λ̂j(S)) ≥ inf

j,k
|z − λ̂jk(A)| = d(z,A).

Thus

(3.11) ‖(A− zIH)−1‖H ≤
n−1∑
k=0

gk(M)√
k!dk+1(A, z)

, z 6∈ σ(A).

So, we can take

φ(x) =

n−1∑
k=0

gk(M)xk+1

√
k!

.

Besides, equation (2.5) has the form

q

n−1∑
k=0

gk(M)

zk+1
√
k!

= 1.

This equation is equivalent to the equation

(3.12) zn = q

n−1∑
k=0

gk(A)√
k!

zn−k−1.

Now, Theorem 2.1 implies

Theorem 3.2. Let A be defined by (3.6), condition (3.8) hold and Ã be a closed operator onH satisfying
conditions (1.1). Let the unique positive root y(M, q) of (3.12) satisfy the inequality y(M, q) < r0(A),
where r0(A) is defined by (3.8). Then, md(A, Ã) ≤ y(A, q).

If M is normal, then g(M) = 0 and with 00 = 1, we have y(M, q) = q. Theorem 2.1 gives us
the inequality md(A, Ã) ≤ q, provided q < r0(A).

Now, let M be non-normal: g(M) 6= 0. Substitute z = g(M)w into (3.12). We obtain the
equation

(3.13) wn =
q

g(A)

n−1∑
k=0

1√
k!
wn−k−1.

Put

pn =

n−1∑
j=0

1√
k!
.

Due to [10, Lemma 3.17], the unique positive root w0 of equation (3.13) satisfies the inequality

w0 ≤
{ qpn

g(A) if qpn > g(A),

(qpn/g(A))1/n if qpn ≤ g(A).

But y(A, q) = w0g(A). This implies y(M, q) ≤ η(M, q), where

η(M, q) =

{
qpn if qpn > g(M),
g1−1/n(M)(qpn)1/n if qpn ≤ g(M).
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Now, Theorem 3.2 yields

Corollary 3.2. Let A be defined by (3.6), condition (3.8) hold and Ã be a closed operator on H, such
that (1.1) holds. If, in addition, η(M, q) < r0(A), then md(A, Ã) ≤ η(M, q).

Theorem 3.2 is based on the estimate (3.10). IfM is diagonalizable, i.e. there is a nonsingular
matrix W , such that W−1MW is a normal matrix, then

‖Rλ(M)‖ ≤ κ

d(M,λ)
,

where
κ = ‖W−1‖n‖W‖n, λ 6∈ σ(M).

According to (3.7), we obtain

‖Rλ(A)‖ ≤ κ

d(A, λ)
, λ 6∈ σ(A).

Equation (2.5) in the considered case takes the form qκ/z = 1 and thus x(q) = qκ. So, if M is
diagonalizable, then Theorem 2.1 implies

(3.14) md(A, Ã) ≤ qκ provided qκ < r0(A).

Some bounds for κ can be found, in particular, in [10, p.105].

4. DIFFERENTIAL OPERATORS WITH MATRIX COEFFICIENTS

Let L2
n = L2([0, 1],Cn) be the space of functions defined on [0, 1], with values in Cn and the

scalar product

〈f, h〉L2
n

=

∫ 1

0

〈f(x), h(x)〉ndx, f, h ∈ L2
n.

Let C(x) be an n× n-matrix continuously dependent on x. Consider the operators

(4.15) Ã = − d2

dx2
+ C(x)

and

(4.16) A = − d2

dx2
+M, x ∈ (0, 1)

with a constant n× n-matrix M and the domain

D(A) = D(Ã) = {u ∈ L2
n : u

′′
∈ L2

n : u(0) = u(1) = 0}.

For instance, one can take M = C(0) or M =
∫ 1

0
C(x)dx. Clearly,

q = ‖A− Ã‖L2
n
≤ sup

x
‖C(x)−M‖n.

Here, ‖A− Ã‖L2
n

is the operator norm in L2
n of A− Ã.

We haveL2
n = L2(0, 1)⊗Cn, whereL2(0, 1) is the standard complex space of scalar functions.

On D(S) = H2
0 (0, 1), i.e. on

D(S) = {u ∈ L2(0, 1) : u
′′
∈ L2(0, 1) : u(0) = u(1) = 0},

put S := − d2

dx2 . Since λ̂j(S) = π2j2 (j = 1, 2, ...) with νj(S) = 1, σ(A) consists of the eigenvalues
λjk(A) = π2j2 + λ̂k(M) (j = 1, 2, ... ; k = 1, ...,m), and the algebraic multiplicity of λ̂jk(A) is
equal to νk(M). Let

δ(M) := inf{|π2(j2 − j21) + λ̂k(M)− λ̂k1(M)| :
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j 6= j1, k1 6= k; j, j1 = 1, 2, ...; k, k1 = 1, ...,m} > 0.

Then, r0(A) = δ(M) > 0. Now, Corollary 3.2 yields

Corollary 4.3. Let Ã and A be defined by (4.16) and (4.15), δ(M) > 0 and η(M, q) < δ(M). Then,
md(A, Ã) ≤ η(M, q).

In particular, from this corollary, it follows that

σ(Ã) ⊂
⋃

j=1,2,...; k=1,...,m

Ω(π2j2 + λ̂k(M), η(M, q)),

provided η(M, q) < δ(M). If M is diagonalizable, then one can apply inequality (3.14).
For the recent results on the spectra of differential operators see, for instance, the works

[16, 17, 20] and the references given therein.

5. ELLIPTIC OPERATORS

Let ω = [0, 1]2 and L2(ω) be the space of complex-valued functions defined on ω, with the
scalar product

〈f, h〉L2(ω) =

∫ 1

0

∫ 1

0

f(x, y)h(x, y)dxdy, f, h ∈ L2(ω).

Let c(x, y) be a complex continuous function and

R :=
∂2

∂x2
+ a

∂2

∂y2
, 0 ≤ x, y ≤ 1, a ∈ C.

Consider the operators A and Ã defined by

(5.17) (Ãf)(x, y) = (Rf)(x, y) + c(x, y)f(x, y)

and

(5.18) (Af)(x, y) = (Rf)(x, y) + c0f(x, y), x, y ∈ (0, 1), f ∈ D(A)

with a constant c0 ∈ C and the domain

D(A) = {u ∈ L2(ω) : Ru ∈ L2(ω) : u(0, y) = u(1, y) = u(x, 0) = u(x, 1) = 0; 0 ≤ x, y ≤ 1}.
Clearly,

q = ‖A− Ã‖L2(ω) ≤ sup
x,y
|c(x, y)− c0|.

Here, ‖A − Ã‖L2(ω) is the operator norm in L2(ω) of A − Ã. The eigenfunctions of A are
sin(πjx) sin(πky) and σ(A) consists of the simple eigenvalues λjk(A) = π2(j2 + ak2) + c0
(j, k = 1, 2, ...). Assume that

δ(R) := inf{|π2(j2 + ak2 − j21 − ak21)| : j1 6= j, k1 6= k; j, j1, k, k1 = 1, 2, ...} > 0.

Then, r0(A) = δ(R) > 0. For example, if a is imaginary, then δ(R) ≥ 3π2(1 + |a|). Omitting
simple calculations, under consideration, we obtain

‖(A− λI)−1‖L2(ω) ≤
1

d(A, λ)
.

Now, Theorem 2.1 yields

Corollary 5.4. Let Ã and A be defined by (5.17) and (5.18), and δ(R)>q. Then, md(A, Ã) ≤ q.

Similarly, making use of Corollary 3.2, one can consider elliptic operators with matrix coef-
ficients.
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