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Abstract 

 

Running control software on limited computing resources is considered one of the toughest problems. In this study, an 

autonomous driving software has been developed that can safely complete the map by tracking the lanes and avoiding obstacles 

on a robot vehicle with limited hardware components. The data was simplified with the image processing technique and the 

neural network was trained. Overfitting was prevented by hyperparameter tuning and synthetic data augmentation. In order to 

avoid obstacles, optical flow was calculated by detecting corners every 4 seconds and was used to find the focus of expansion of 

the vehicle. Time-to-collision was found with the FOE and the distance between the previous position and the current position 

of the detected point. Optimization was made by averaging the values of close points. The balance mechanism was created 

according to the TTC difference calculated on the right and left parts of the vehicle. 

 

Keywords: Convolutional Neural Network, Overfitting, Hyperparameter Tuning, Data augmentation, Lane tracking, Optical 

Flow, Focus of Expansion, Time to Collision 

 

 

 

1. INTRODUCTION 

 

The autonomous driving system is one of the most popular 

smart autonomous systems recently. Nowadays, it is aimed 

to minimize driver-related errors with autonomous driving 

systems. Today, we can say that autonomous driving systems 

have speed control with radar and distance sensors, lane 

tracking, and lane change after cameras on the vehicle. 

Autonomous vehicles are one of the most effective use cases 

where hardware and software work together. The hardware 

enables the vehicle to move and communicate with a range 

of cameras, sensors, while the software processes 

information and provides control.   

 

Today, many automobile companies are attempting to 

produce cars with autonomous driving systems. We can say 

Tesla company as the leading company. The cars they 

produce have a full automation driving system. The data set 

is collected in real-time from approximately 1 million 

vehicles. 70,000 GPU’s are trained per hour. It is capable of 

semantic segmentation, object recognition, depth estimation. 

There are 1000 different estimates per step each time. Some 

companies use the LIDAR device to model depth prediction 

and 3D perception. Depth prediction is a fundamental task in 

perceiving the 3D environment around us [1].  
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In this study, lane tracking, which is one of the two most 

important abilities in autonomous vehicles, and the ability to 

avoid obstacles for the robot vehicle to drive freely without 

hitting any obstacle are discussed. The main purpose of this 

research was to develop lane tracking and obstacle avoidance 

capabilities with different methods and solutions for an 

autonomous driving system on an experimental vehicle.  

The robot vehicle, remote control module, and experimental 

map that constitute the hardware part of the project were 

prepared. Raspberry Pi module on the vehicle forms the 

brain of the vehicle. Raspberry PI communicates with the 

remote-control module via wireless network (RF24) and 

computer via embedded software. The Raspberry PI module, 

which plays the role of the brain of the system in the later 

stages of the project, was renewed with the Coral Dev Board 

[2] device developed by Google for artificial intelligence 

model’s due to its inadequate performance. 

Supervised Learning [3, 4] approach, which is one of the 

Machine Learning [5, 6, 30] techniques, was used for lane 

tracking. With the help of a remote-control device, the robot 

vehicle was moved along the track and dataset collection was 

carried out through the camera on the vehicle. This dataset 

created consists of images and action information taken at 
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the time of that image. Then, the images taken were 

simplified with image processing techniques, and the strip 

lines were brought to the fore. At this stage, Convolutional 

Neural Network [7] was used while creating an artificial 

intelligence model. CNN is a type of artificial neural network 

developed to solve problems such as image classification, 

object detection, and style transfer. Since the images are our 

main data source, it was decided to use CNN. 

The target problem for avoiding obstacles is the calculation 

of contact time or time to collision. The most important 

feature focused here was the calculation of the time until the 

collision, ie the contact time. In this direction, corner 

detection, optical flow focus of expansion, and collision time 

were calculated instantaneously on the image taken from the 

camera [8 - 10]. The balance calculation has been made for 

the right and left body of the robot vehicle and a decision 

mechanism has been created to avoid obstacles. The robot 

vehicle has been provided to move without hitting any 

obstacle.  

 

There are many studies on road lane tracking in the literature. 

Bounini and Farid [11] obtained a result by detecting corners 

on the data taken from the camera image. J. Han, D. KIM 

[12] using 2D Lidar sensors, they were able to gather 

information about the environment and keep the vehicle 

within the lane by performing road boundary extraction. 

There are a few studies investigating vehicle obstacle 

avoidance using only information extracted from the camera 

image. Kachluche Souhila and Achour Karim [13] measured 

the distance to objects using optical flow and corner 

detection. 

 

2. PROPOSED METHOD 

  

2.1. Lane Tracking 

 

In this section, simplification of lane information with 

computer vision techniques, and data set collection are given 

initially to enable the robot vehicle to move autonomously 

by following the lane information on the experimental map. 

Next, a detailed description of the designed network 

architecture and training is provided. To achieve the 

successful model, hyper parameter tuning and data 

augmentation, and finally, the testing process is explained. 

The dataset collection process will be performed by moving 

the robot vehicle over the experimental environment with the 

help of a remote control. The images taken from the camera 

correctly positioned on the vehicle will first be recorded in 

the filing system by simplifying the lane information with 

image processing techniques. At the same time, the action 

information of the car at the time the image is taken is 

recorded in the filing system simultaneously with the images. 

 

2.1.1. Simplifying Lane Information with Computer 

Vision Techniques 

 

Preparing the images in the data set that we will give to the 

neural network in accordance with the purpose is the most 

influential factor in the result of the developed neural 

network model. If the image is messy, difficult to 

understand, and the neural network is not able to distinguish 

the features in the image, the error values of the model will 

be high and the operation is nothing but a waste of time. For 

this purpose, the images taken from the camera on the robot 

vehicle were first simplified with image processing 

techniques. First, the color space change was perform It is 

planned to increase frames per second in the future and add 

new capabilities using 2D Lidar and Google Coral Dev 

Board. It is planned to increase frames per second in the 

future and add new capabilities using 2D Lidar and Google 

Coral Dev Board. It is planned to increase frames per second 

in the future and add new capabilities using 2D Lidar and 

Google Coral Dev Board. med on the image. Many color 

spaces are supported in the OpenCV library and you can 

convert between them. In the first step, the image was 

converted from RGB color space to grayscale color space 

[14]. 

 

Figure 1. Change from R.G.B. color space to grayscale color 

space 

Figure 1. shows the image obtained by converting the camera 

image taken on the robot vehicle from RGB colour space to 

grayscale colour space. In the image in the grayscale colour 

space obtained, the stripe lines are desired to be prominent. 

With the help of the Canny [15] edge detection algorithm, 

the strip lines required on the image were made more 

prominent. 

 

Figure 2. Transformation of grayscale image with Canny 

edge detection algorithm 

The image taken from the camera has been successfully 

simplified and made ready for the use of the neural network. 

If you pay attention to the upper left corner of the figure, you 

can see the angle and speed, which are the action information 

of the vehicle at the time the image is taken from the camera. 
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2.1.2. Data Set Collection and Editing 

 

The collection of the data set will be carried out by moving 

the robot vehicle over the experimental environment with the 

remote control. In the Supervised Learning machine learning 

approach we will use, the data to be trained should be given 

to the learner as x and y outputs. While the vehicle is 

controlled remotely on the experimental environment we 

have prepared before, the image from the camera, the current 

servo angle and engine speed are recorded in the filing 

system simultaneously. 

 

Figure 3. Experimental map on which the robot vehicle will 

be moved 

In the Supervised Learning approach, the data should be 

given to the trainer as x and y outputs. While the robot 

vehicle was being moved over the experimental 

environment, the servo angle information, which is the 

current action information, was recorded in the filing system 

along with the camera image. According to the general 

structure of the experimental map, the servo x angle values 

in the data collected vary between 1270 and 600. 

 

Figure 4. The angles the robot vehicle takes at the moment 

of movement. 

Angle data collected at this stage has a complex structure and 

needs to be simplified. For this purpose, while the robot 

vehicle is moving on the experimental map, the angle 

information as FLAT, MIDDLE, and SHARP is updated in 

the filing system by simultaneously looking at its location on 

the map and the instant angle information from the computer.  

Alternatively, the angle information, which is a parameter of 

the data set, can be compressed between 0 and 1 for linear 

regression [16, 17], allowing linear estimation.

 

2.1.3. CNN Neural Network Model 

While the robot vehicle is in motion, it should analyze the 

environmental conditions and make control predictions. 

Environmental conditions consist of data collected in the 

previous topic. The robot vehicle needs a system that can use 

this data and make predictions.  

Artificial neural networks are Artificial Intelligence 

structures that are trained with the given data and can make 

predictions according to the information they learn. 

 

In this subsection, the design of the architecture and the 

training of the model presented initially. Next, the hyper 

parameter tuning [18-19], and data augmentation [20], and 

finally the testing and result are explained in detail.  

 

2.1.4. Designing and Training the Model 

Before creating a neural network model, the neural network 

structure to be used is decided by considering the data set, 

project conditions and properties. The main source of data 

consists of images. The neural network is required to be 

predicted according to the images and action information 

taken from the camera. The neural network will distinguish 

the features in the images taken from the camera and perform 

the learning and prediction processes. Therefore, it was 

decided to use convolutional neural networks at this stage of 

the project. 

 

Data set consists of binary color pictures simplified with 

Canny edge detection algorithm and angle information, 

which is the action information at the time the picture is 

taken. The stored images were resized to 128 x 128 pixels 

before being transferred to the model. The action 

information, FLAT, MIDDLE and SHARP, are updated to 

correspond to 0, 1, and 2, respectively. Due to the general 

structure of neural networks, the complexity of the structure 

is directly proportional to the estimation time. Therefore, it 

is important that the model to be designed has a simple 

structure. On the other hand, the education period of the 

models with a simple structure is short and time saving is 

obtained. Another issue in neural networks is that there are 

no rules for establishing the best model. For this reason, until 

we find the model with which we have achieved high 

performance, the models have been designed by taking the 

available data into consideration.  

 

The steps to be taken during the training of our artificial 

neural network model are as follows. The first step is to read 

and store the data set and mix it randomly. The second step 

is to separate 70% of the data set as training data and 30% as 

test data. After separating the training and test data set, an 

image from the training data set is given to our model and 

the weights are updated according to the error value. Figure 

5. shows the flow chart representing the training process of 

the model. 

 

 

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 50



 

 

Figure 5. The algorithm flow chart representing the training 

process of neural network model.  

The first layer of the first model prepared is a convolution 

layer with 32 x 32 depth and 3 x 3 filter dimensions. Input 

data is 128 x 128 x 2 size simplified image with Canny edge 

detection algorithm. Relu, the next layer activation function, 

has been applied. Two Max-Pooling layers were then 

applied. Filter dimensions of the Max-Pooling layers are 

determined as 2 x 2. By applying Max-Pooling layers in 

succession, which yields a feature map of the 32 × 32 × 32 

size. Next, the Flatten and Dense layer added.[21]. 

 

 

Figure 6. First CNN model summary. 

Considering the Raspberry PI module performance, the first 

model was kept simple and the total number of calculated 

parameters was obtained as 98915. 

 

Figure 7. Loss graph of the first CNN model 

When the loss graph in Figure 7. is examined, it is seen that 

during the batch of 32 pictures each, it goes to overfitting 

quickly [22, 23]. It has been observed that the loss of the 

neural network model rapidly approaches zero at the end of 

one epoch. 

The result we will get here is that the dropout layer used to 

reduce overfitting is insufficient. In order to eliminate this 

problem caused by the fact that the dataset consists of few 

and similar images, data diversity will be increased by data 

augmentation. Thus, a more general model that can respond 

to real-life problems will be obtained by considering 

parameters such as lighting conditions and noise in the 

image. 

 

2.1.5. Hyperparameter Tuning and Data 

Augmentation 

While designing a model in artificial neural networks, there 

is no rule to reach a successful model. There is no rule to be 

followed in line with the information obtained from the 

studies conducted on this subject in the world so far. The 

improvement of the model is done by techniques such as 

trial-and-error method, hyperparameter tuning [18] and data 

augmentation [24].  

One of the hyperparameter adjustment is to prevent 

overfitting. The dropout layer which have been added with 

0.25 value to the model is a regularization approach [21] that 

helps reduce dependent learning between neurons. Another 

hyperparameter regulation is increase the computable 

parameter counts. The Max-Polling layer has been removed 

and a new convolution layer of 16 x 16 depth and 3 x 3 filter 

dimensions has been added. 

 

 

Figure 8. Third neural network with hyperparameters tuned. 

 

The total number of parameters calculated after tuning was 

obtained as 201843. The data given to the model were 

augmented by producing synthetic data with the data 

augmentation technique [24]. 

 

Figure 9. Synthetic image created through data 

augmentation. 

Figure 9. shows the synthetic image obtained after applying 

flip, shift, and zoom to the real image.  These variations in 

the data set enable the trained model to achieve a similar 

performance in different image conditions. Thus, a more 
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general solution will be achieved. The loss graph of the 

model trained after data augmentation is shown in Figure 10. 

 

 

Figure 10. Loss graph of the model trained after data 

augmentation 

There is an obvious improvement in overfitting [23] rate 

compared to previous training. It is seen that the loss ratio 

that converges rapidly to zero at the batch level before is now 

decreasing at the epoch level. At the end of 100 epoch, the 

lowest loss value was reached as 0.25 in the 90th epoch.  

New synthetic data were generated by making changes in the 

augmentation parameters to reduce the loss value even 

smaller. Zoom ratio decreased from 0.4 to 0.2, flip angle 

from 40 degrees to 10 degrees. The changes applied here will 

make less distortion of the lane information in the image and 

help achieve the goal of obtaining a more general model. The 

highest performing neural network model has been retrained 

with the new dataset, and the expected reduction in loss data 

occurred. 

Figure 11. Loss graph of the most successful CNN model. 

As seen in the graph, the 95th epoch has reached 0.17 loss 

value. Thus, it was observed that the change made in the data 

augmentation parameters had an effect on the decrease of the 

loss value. The final model was trained three times over 100 

epochs with synthetic data. The number of frames per 

second, which represents the reaction speed of the vehicle, 

reached the maximum 14 frames per second which is the best 

result of all time. 

2.2. Obstacle Avoidance with Optical Flow 

While an autonomous robot vehicle is moving in a constant 

velocity, the time until the collision can be found without any 

knowledge of the distance to be traveled or the velocity the 

robot is moving [8]. Calculating the time to collision is one 

of the practical optical flow uses. The optical flow 

knowledge is extracted from the image sequence taken from 

the Google camera placed in the robotic vehicle, and then the 

time until the robot reaches a particular area is determined. 

Calculated collision times are considered separately as 

collision times on the left and right of the image. Depending 

on whether the difference between the collision times of the 

left and right side is higher or lower than a certain threshold 

value, the vehicle is ordered to ignore the obstacle in front of 

it or to take action. 

 

Figure 12. The flow char representing obstacle avoidance 

procedure [26]. 

In this section, corner detection, and calculating optical flow 

are introduced in the first place. After, the focus of expansion 

and time to collision calculation procedures are explained. 

Next, the balance strategy and decision mechanism are 

explained in detail and the movement of the vehicle is 

presented according to the decision produced by the 

mechanism.  

 

2.2.1. Corner Detection with FAST (Features from 

Accelerated Segment Test) 

It is necessary to extract the optical flow information from 

the image sequence taken from the camera. To find the 

optical flow between consecutive frames, the motion of a 

pixel feature set should be tracked. Features in the image are 

points of interest that provide rich picture content 

information, and these points are not affected by intensity 

changes in the image [27].  

Using the FAST [26] algorithm, which is known for its high 

performance in real-time images, corner detection performed 

in the real-time image sequence. 

 

 

Figure 13. Corner detection on the image with FAST 

algorithm. 
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Figure 13. shows the image formed after applying the corner 

detection algorithm on the image. The corner detection 

process is run every 50th iteration of the runtime, which 

means that the corners are refreshed at approximately 3-4 

second intervals. The detected corners are stored on a vector 

for later use in calculating the optical flow. 

 

2.2.2. Calculating Optical Flow 

For the optical flow to be computable, a selected point on the 

first image must change its location on the next image. While 

the selected point is moving, the shape of the light reflected 

on that point is constantly changing and optical flow occurs. 

In other words, the vehicle must be moving in order to obtain 

optical flow with the robot vehicle. The most widely used 

Lucas-Kanade [27] method was used to calculate the optical 

flow between consecutive frames. The vector containing the 

vertices detected by the FAST corner detection algorithm is 

given to the function and it returns two vectors containing 

the (x, y) coordinates of the previous and next points. Now 

that the changing coordinates of a corner point in the 

previous and ongoing frame are known, an arrow can be 

drawn from the previous position to the next position. In 

other words, an arrow is drawn in the direction of the point's 

movement in consecutive frames if the tracked corner point 

exists (detected) in the next frame. Suppose (x2, y1) and (x2, 

y2) are the coordinates of the point in the previous and next 

squares.             𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦2−𝑦1

𝑥2−𝑥1
)                               (1) 

 

Figure 14. Arrows were drawn in the direction of movement 

of the points. 

 

𝑎𝑟𝑟𝑜𝑤𝑥 = 𝑥2 + 𝑙𝑒𝑛 ∗ 𝑐𝑜𝑠 (𝑎𝑛𝑔𝑙𝑒 +
3.14

180
)

𝑎𝑟𝑟𝑜𝑤𝑦 = 𝑦2 + 𝑙𝑒𝑛 ∗ 𝑠𝑖𝑛 (𝑎𝑛𝑔𝑙𝑒 +
3.14

180
)

              (2) 

2.2.3. Calculating Focus of Expansion 

The motions of objects moving around are projected to the 

eyes of the observer as two fundamental motions. An optical 

flow field is formed as a result of the projection of the 

translation and rotation fundamental motions into an image 

plane [8]. Rotational motion can be imagine as flow vectors 

produced as a result of the surrounding objects shifting left 

or right as the robot vehicle turns left or right.  

Translation motion occurs when the camera is moving 

forward or backward. If the camera moves backward, it 

creates an area called a focus of contraction (FOC) where the 

flow vectors converging around a point. On the contrary, if 

it moves forward, it creates an area called the focus of  

expansion (FOE) where the flow vectors diverge around 

from a central point.  

 

Figure 15.  Diverging flow vectors and focus of expansion 

during forward translation motion. 

Any two vectors are needed to calculate the focus of 

expansion. If the place where these two vectors meet can be 

determined, the focus of expansion is found. The least-

squares [28] solution of all available flow vectors was used 

to find focus of expansion. Each optical flow vector has a 

previous point and delta. Let pt = (x, y) be the x and y 

coordinates of the previous position of an optical flow 

vector. Let v = (u, v) be the x and y coordinate differences 

between the previous and current position of the optical flow 

vector. 

        𝐴 = [

𝑎00

. . .
𝑎𝑛0

𝑎01

. .
𝑎𝑛1

]       𝑏 = [
𝑏0

. .
𝑏𝑛

]                           (3) 

In matrix A it should be known as ai0 = -v and ai1 = u, and 

in matrix B, each value is obtained by bi = xv – yu. The focus 

of expansion is calculated using the least-squares method 

and inversion of the matrices. 

 

𝐹𝑂𝐸 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

= [
∑𝑎𝑖0 𝑏𝑖 ∑𝑎𝑗1

2 − ∑𝑎𝑗1 𝑏𝑖 ∑𝑎𝑗0 𝑎𝑗1

−∑𝑎𝑖0 𝑏𝑖 ∑𝑎𝑗0 𝑎𝑗1 + ∑𝑎𝑖1 𝑏𝑖 ∑𝑎𝑗0
2 ]

−  
1

∑ 𝑎𝑗0
2 𝑎𝑗1

2 −(∑𝑎𝑖0𝑎𝑖0)
2  (4) 

The OpenCV library has the necessary functionality for the 

matrix inversion method. The function is given matrices A 

and b and an empty matrix of 2x1 dimensions. Additionally, 

the DECOMP_QR flag was added for QR decomposition 

[29]. 

 

Figure 16.  Calculation of the focus of expansion on the 

image taken from the camera. The FOE is shown by the red 

circle in the image.  
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2.2.4. Calculating Time to Collision 

The most valuable information we can obtain for the robot 

vehicle to avoid obstacles is the determination of the contact 

time or the time until the collision. This information can be 

found without requiring any information about the distance 

to travel or the velocity the robot is moving [8]. 

The studies carried out up to this stage were to obtain 

information to be used in the TTC because when calculating 

the TTC, optical flow vectors and FOE are required. Let p = 

(x, y) be the x and y positions of an optical flow vector and 

FOE = (x, y) be the x and y positions of a focus of expansion. 

Let v = (u, v) be the x and y coordinate differences between 

the previous and current positions of the optical flow vector. 

          𝑇𝑇𝐶 = √(𝑝𝑥−𝑓𝑜𝑒𝑥)2+(𝑝𝑦−𝑓𝑜𝑒𝑦)
2

𝑢2+𝑣2                          (5) 

The locations of the detected points on the image vary 

according to the position and movement of the objects 

captured by the robot's camera. There are situations where 

the detected points on the image are not equably positioned 

in the whole image plane. This means there are more corners 

in some parts of the image and fewer corners in others.  This 

imbalance caused by the objects and movements in the frame 

can be avoided by using 16 x 16 dimensional matrices. 

 

Figure 17.  Drawing the matrix on the image. 

After calculating the TTC of each flow vector, it is collected 

at one of the closest A matrix points in the image. In matrix 

B, the number of TTCs collected at each matrix point is 

stored. 

𝐴 =

[
 
 
 
 
∑ 𝑡𝑡𝑐𝑖.

.

.
∑ 𝑡𝑡𝑐𝑖

 . . . .
.
. . . . 

∑ 𝑡𝑡𝑐𝑖.
.
.

∑ 𝑡𝑡𝑐𝑖]
 
 
 
 

16𝑥16

         𝑏 = [

𝑎00.
.
.

𝑎𝑛0

 . . . .
.
. . . . 

𝑎0𝑛.
.
.

𝑎𝑛𝑛

]

16𝑥16

  (6) 

ttci is the time until the collision of a flow vector, and a in 

matrix B is the number of flow vectors. Using matrices A 

and b, the average TTC for each matrix point can be 

calculated. 

                                      𝑇𝑇𝐶[𝑖] =
𝐴[𝑖]

𝑏[𝑖]
                                          (7) 

 

Figure 18.  Shows the average collision times. It seen that 

vectors with the large optical flow on the image have low 

TTC values. 

 

2.2.5. Balance Calculation and Decision Mechanism 

The basic idea is that when the robot is in motion, close 

objects move faster than farther objects on the retina. Also, 

closer objects cover the field of view more, causing greater 

optical flows. In the region where the optical flow is greater, 

the collision time is low and the robot vehicle must go to the 

other side and avoid from the obstacle. Kachluche Souhila  

and Achour Karim in their article [13], they present a 

different perspective in which the robot car moves away 

from the side where there is greater optical flow.  

The image taken from the camera is divided into two parts to 

give the vehicle balance. Balance can be achieved by 

minimizing the difference between collision times on the left 

and right side of the vehicle. 

 

Figure 19.  Dividing the image into two parts. 

The following control formula is used to calculate the 

difference between collision times on the left and right side 

of the vehicle. 

                 𝛥(𝐹𝐿 − 𝐹𝑅) =  
∑||𝑇𝑇𝐶𝐿|| − ∑||𝑇𝑇𝐶𝑅||

∑||𝑇𝑇𝐶𝐿|| + ∑||𝑇𝑇𝐶𝑅||
                    (8) 

Here (FL-FR) is the difference between the forces on both 

sides of the robot body and TTC is the average of the 

collision time in the visual half-field on one side. The 

difference between the forces calculated in equation 8 is a 

linear number and varies between 0 and 1.The balance 

mechanism was applied to the robot vehicle. Due to the 

environmental conditions of the experimental environment, 

the threshold value of the difference between the left and 

right TTC was determined as 0.5. In cases where the 
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threshold value is exceeded, the robot vehicle will be given 

the necessary rotation order. As shown in Figure 21, the left 

collision time is calculated as (3895.2), the right collision 

time (101820.7) and the difference in forces (0.9) were 

found. It is decided to turn right, because the left collision 

time is less than the right, and the difference in forces is 

greater than 0.5.  

 

Figure 20.  Avoiding the box to the left of the robot vehicle. 

In Figure 21, it can be seen that the robot vehicle is given a 

forward motion command. Left collision time (993.2), right 

collision time (339.8) and difference in forces (0.1) were 

found. 

 

Figure 21.  Robot vehicle is commanded to go forward. 

 

3. CONCLUSION 

This article presented develop lane tracking and obstacle 

avoidance capabilities with different methods and solutions 

for an autonomous driving system on an experimental 

vehicle.  

Considering the Raspberry PI module performance, the first 

model was kept simple and fast overfitting was observed due 

to the small dataset. In order to develop prediction of the 

model and prevent overfitting, the Dropout layer was added, 

the dataset was enlarged by generating synthetic data, and 

the number of computable parameters was increased. The 

final model has been trained three times over 100 epochs 

with synthetic data. 

Training of the neural network model was done with 

simplified images. During the test stage, the images taken 

from the camera should be similar to the images used in the 

training stage of the neural network. The similarity 

emphasized here is that the images are in the same colour 

space and simplified. For this reason, the images taken from 

the camera during the test stage are instantly simplified and 

then transmitted to the neural network. The prepared neural 

network model produces 0, 1, and 2 as output. These 

correspond to the values for FLAT, MEDIUM, and SHARP, 

respectively. Since these labels are obtained by simplifying 

the rotation angle of the servo, the rotational motion is 

provided by converting the predictions back to the servo 

angle with the help of an algorithm.      

In order to avoid obstacles, optical flow was calculated by 

detecting corners every 4 seconds by FAST algorithm and 

was used to find the focus of expansion of the vehicle. Time-

to-collision was found with the FOE and the distance 

between the previous position and the current position of the 

detected point. There are situations where the detected points 

on the image are not equably positioned in the whole image 

plane. For this reason, the values of the close points are 

averaged and placed in the 16x16 matrix. The balance 

mechanism was created according to the TTC difference 

calculated on the right and left parts of the vehicle.  

Frames per second, representing the vehicle's response 

speed, reached 14 frames per second when following the 

lane, 20 frames when avoiding obstacles, and 12 frames 

when both modules were working together. And the vehicle 

completed the map safely without hitting any obstacle.   

 It is planned to increase frames per second in the future and 

add new capabilities using 2D Lidar and Google Coral Dev 

Board. 
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