
Realization of the Autonomous Driving System on the Experimental Vehicle

*1Namig Aliyev, 2Mehmet Turan Guzel, 3Oguzhan Sezer

1Department of Computer Engineering, Sakarya University, Sakarya, Turkey,

namig.aliyev@ogr.sakarya.edu.tr
2 Department of Computer Engineering, Sakarya University, Sakarya, Turkey,

mehmet.guzel@ogr.sakarya.edu.tr
3 Department of Computer Engineering, Sakarya University, Sakarya, Turkey,

oguzhan.sezer1@ogr.sakarya.edu.tr

Abstract

Running control software on limited computing resources is considered one of the toughest problems. In this study, an

autonomous driving software has been developed that can safely complete the map by tracking the lanes and avoiding obstacles

on a robot vehicle with limited hardware components. The data was simplified with the image processing technique and the

neural network was trained. Overfitting was prevented by hyperparameter tuning and synthetic data augmentation. In order to

avoid obstacles, optical flow was calculated by detecting corners every 4 seconds and was used to find the focus of expansion of

the vehicle. Time-to-collision was found with the FOE and the distance between the previous position and the current position

of the detected point. Optimization was made by averaging the values of close points. The balance mechanism was created

according to the TTC difference calculated on the right and left parts of the vehicle.

Keywords: Convolutional Neural Network, Overfitting, Hyperparameter Tuning, Data augmentation, Lane tracking, Optical

Flow, Focus of Expansion, Time to Collision

1. INTRODUCTION

The autonomous driving system is one of the most popular

smart autonomous systems recently. Nowadays, it is aimed

to minimize driver-related errors with autonomous driving

systems. Today, we can say that autonomous driving systems

have speed control with radar and distance sensors, lane

tracking, and lane change after cameras on the vehicle.

Autonomous vehicles are one of the most effective use cases

where hardware and software work together. The hardware

enables the vehicle to move and communicate with a range

of cameras, sensors, while the software processes

information and provides control.

Today, many automobile companies are attempting to

produce cars with autonomous driving systems. We can say

Tesla company as the leading company. The cars they

produce have a full automation driving system. The data set

is collected in real-time from approximately 1 million

vehicles. 70,000 GPU’s are trained per hour. It is capable of

semantic segmentation, object recognition, depth estimation.

There are 1000 different estimates per step each time. Some

companies use the LIDAR device to model depth prediction

and 3D perception. Depth prediction is a fundamental task in

perceiving the 3D environment around us [1].

* Corresponding Author

In this study, lane tracking, which is one of the two most

important abilities in autonomous vehicles, and the ability to

avoid obstacles for the robot vehicle to drive freely without

hitting any obstacle are discussed. The main purpose of this

research was to develop lane tracking and obstacle avoidance

capabilities with different methods and solutions for an

autonomous driving system on an experimental vehicle.

The robot vehicle, remote control module, and experimental

map that constitute the hardware part of the project were

prepared. Raspberry Pi module on the vehicle forms the

brain of the vehicle. Raspberry PI communicates with the

remote-control module via wireless network (RF24) and

computer via embedded software. The Raspberry PI module,

which plays the role of the brain of the system in the later

stages of the project, was renewed with the Coral Dev Board

[2] device developed by Google for artificial intelligence

model’s due to its inadequate performance.

Supervised Learning [3, 4] approach, which is one of the

Machine Learning [5, 6, 30] techniques, was used for lane

tracking. With the help of a remote-control device, the robot

vehicle was moved along the track and dataset collection was

carried out through the camera on the vehicle. This dataset

created consists of images and action information taken at

Research Paper
Academic Platform Journal of Engineering and Smart Systems (APJESS) 10(1), 48-56, 2022

https://doi.org/10.21541/apjess.1060763
Received: 15-May-2021 Accepted: 22-Nov-2021
ISSN: 2822-2385

Attribution (CC BY) license https://creativecommons.org/licenses/by/4.0/ https://dergipark.org.tr/tr/pub/apjess

https://orcid.org/0000-0003-2021-8464
https://orcid.org/0000-0001-8566-0769
https://orcid.org/0000-0003-3324-7993

the time of that image. Then, the images taken were

simplified with image processing techniques, and the strip

lines were brought to the fore. At this stage, Convolutional

Neural Network [7] was used while creating an artificial

intelligence model. CNN is a type of artificial neural network

developed to solve problems such as image classification,

object detection, and style transfer. Since the images are our

main data source, it was decided to use CNN.

The target problem for avoiding obstacles is the calculation

of contact time or time to collision. The most important

feature focused here was the calculation of the time until the

collision, ie the contact time. In this direction, corner

detection, optical flow focus of expansion, and collision time

were calculated instantaneously on the image taken from the

camera [8 - 10]. The balance calculation has been made for

the right and left body of the robot vehicle and a decision

mechanism has been created to avoid obstacles. The robot

vehicle has been provided to move without hitting any

obstacle.

There are many studies on road lane tracking in the literature.

Bounini and Farid [11] obtained a result by detecting corners

on the data taken from the camera image. J. Han, D. KIM

[12] using 2D Lidar sensors, they were able to gather

information about the environment and keep the vehicle

within the lane by performing road boundary extraction.

There are a few studies investigating vehicle obstacle

avoidance using only information extracted from the camera

image. Kachluche Souhila and Achour Karim [13] measured

the distance to objects using optical flow and corner

detection.

2. PROPOSED METHOD

2.1. Lane Tracking

In this section, simplification of lane information with

computer vision techniques, and data set collection are given

initially to enable the robot vehicle to move autonomously

by following the lane information on the experimental map.

Next, a detailed description of the designed network

architecture and training is provided. To achieve the

successful model, hyper parameter tuning and data

augmentation, and finally, the testing process is explained.

The dataset collection process will be performed by moving

the robot vehicle over the experimental environment with the

help of a remote control. The images taken from the camera

correctly positioned on the vehicle will first be recorded in

the filing system by simplifying the lane information with

image processing techniques. At the same time, the action

information of the car at the time the image is taken is

recorded in the filing system simultaneously with the images.

2.1.1. Simplifying Lane Information with Computer

Vision Techniques

Preparing the images in the data set that we will give to the

neural network in accordance with the purpose is the most

influential factor in the result of the developed neural

network model. If the image is messy, difficult to

understand, and the neural network is not able to distinguish

the features in the image, the error values of the model will

be high and the operation is nothing but a waste of time. For

this purpose, the images taken from the camera on the robot

vehicle were first simplified with image processing

techniques. First, the color space change was perform It is

planned to increase frames per second in the future and add

new capabilities using 2D Lidar and Google Coral Dev

Board. It is planned to increase frames per second in the

future and add new capabilities using 2D Lidar and Google

Coral Dev Board. It is planned to increase frames per second

in the future and add new capabilities using 2D Lidar and

Google Coral Dev Board. med on the image. Many color

spaces are supported in the OpenCV library and you can

convert between them. In the first step, the image was

converted from RGB color space to grayscale color space

[14].

Figure 1. Change from R.G.B. color space to grayscale color

space

Figure 1. shows the image obtained by converting the camera

image taken on the robot vehicle from RGB colour space to

grayscale colour space. In the image in the grayscale colour

space obtained, the stripe lines are desired to be prominent.

With the help of the Canny [15] edge detection algorithm,

the strip lines required on the image were made more

prominent.

Figure 2. Transformation of grayscale image with Canny

edge detection algorithm

The image taken from the camera has been successfully

simplified and made ready for the use of the neural network.

If you pay attention to the upper left corner of the figure, you

can see the angle and speed, which are the action information

of the vehicle at the time the image is taken from the camera.

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 49

2.1.2. Data Set Collection and Editing

The collection of the data set will be carried out by moving

the robot vehicle over the experimental environment with the

remote control. In the Supervised Learning machine learning

approach we will use, the data to be trained should be given

to the learner as x and y outputs. While the vehicle is

controlled remotely on the experimental environment we

have prepared before, the image from the camera, the current

servo angle and engine speed are recorded in the filing

system simultaneously.

Figure 3. Experimental map on which the robot vehicle will

be moved

In the Supervised Learning approach, the data should be

given to the trainer as x and y outputs. While the robot

vehicle was being moved over the experimental

environment, the servo angle information, which is the

current action information, was recorded in the filing system

along with the camera image. According to the general

structure of the experimental map, the servo x angle values

in the data collected vary between 1270 and 600.

Figure 4. The angles the robot vehicle takes at the moment

of movement.

Angle data collected at this stage has a complex structure and

needs to be simplified. For this purpose, while the robot

vehicle is moving on the experimental map, the angle

information as FLAT, MIDDLE, and SHARP is updated in

the filing system by simultaneously looking at its location on

the map and the instant angle information from the computer.

Alternatively, the angle information, which is a parameter of

the data set, can be compressed between 0 and 1 for linear

regression [16, 17], allowing linear estimation.

2.1.3. CNN Neural Network Model

While the robot vehicle is in motion, it should analyze the

environmental conditions and make control predictions.

Environmental conditions consist of data collected in the

previous topic. The robot vehicle needs a system that can use

this data and make predictions.

Artificial neural networks are Artificial Intelligence

structures that are trained with the given data and can make

predictions according to the information they learn.

In this subsection, the design of the architecture and the

training of the model presented initially. Next, the hyper

parameter tuning [18-19], and data augmentation [20], and

finally the testing and result are explained in detail.

2.1.4. Designing and Training the Model

Before creating a neural network model, the neural network

structure to be used is decided by considering the data set,

project conditions and properties. The main source of data

consists of images. The neural network is required to be

predicted according to the images and action information

taken from the camera. The neural network will distinguish

the features in the images taken from the camera and perform

the learning and prediction processes. Therefore, it was

decided to use convolutional neural networks at this stage of

the project.

Data set consists of binary color pictures simplified with

Canny edge detection algorithm and angle information,

which is the action information at the time the picture is

taken. The stored images were resized to 128 x 128 pixels

before being transferred to the model. The action

information, FLAT, MIDDLE and SHARP, are updated to

correspond to 0, 1, and 2, respectively. Due to the general

structure of neural networks, the complexity of the structure

is directly proportional to the estimation time. Therefore, it

is important that the model to be designed has a simple

structure. On the other hand, the education period of the

models with a simple structure is short and time saving is

obtained. Another issue in neural networks is that there are

no rules for establishing the best model. For this reason, until

we find the model with which we have achieved high

performance, the models have been designed by taking the

available data into consideration.

The steps to be taken during the training of our artificial

neural network model are as follows. The first step is to read

and store the data set and mix it randomly. The second step

is to separate 70% of the data set as training data and 30% as

test data. After separating the training and test data set, an

image from the training data set is given to our model and

the weights are updated according to the error value. Figure

5. shows the flow chart representing the training process of

the model.

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 50

Figure 5. The algorithm flow chart representing the training

process of neural network model.

The first layer of the first model prepared is a convolution

layer with 32 x 32 depth and 3 x 3 filter dimensions. Input

data is 128 x 128 x 2 size simplified image with Canny edge

detection algorithm. Relu, the next layer activation function,

has been applied. Two Max-Pooling layers were then

applied. Filter dimensions of the Max-Pooling layers are

determined as 2 x 2. By applying Max-Pooling layers in

succession, which yields a feature map of the 32 × 32 × 32

size. Next, the Flatten and Dense layer added.[21].

Figure 6. First CNN model summary.

Considering the Raspberry PI module performance, the first

model was kept simple and the total number of calculated

parameters was obtained as 98915.

Figure 7. Loss graph of the first CNN model

When the loss graph in Figure 7. is examined, it is seen that

during the batch of 32 pictures each, it goes to overfitting

quickly [22, 23]. It has been observed that the loss of the

neural network model rapidly approaches zero at the end of

one epoch.

The result we will get here is that the dropout layer used to

reduce overfitting is insufficient. In order to eliminate this

problem caused by the fact that the dataset consists of few

and similar images, data diversity will be increased by data

augmentation. Thus, a more general model that can respond

to real-life problems will be obtained by considering

parameters such as lighting conditions and noise in the

image.

2.1.5. Hyperparameter Tuning and Data

Augmentation

While designing a model in artificial neural networks, there

is no rule to reach a successful model. There is no rule to be

followed in line with the information obtained from the

studies conducted on this subject in the world so far. The

improvement of the model is done by techniques such as

trial-and-error method, hyperparameter tuning [18] and data

augmentation [24].

One of the hyperparameter adjustment is to prevent

overfitting. The dropout layer which have been added with

0.25 value to the model is a regularization approach [21] that

helps reduce dependent learning between neurons. Another

hyperparameter regulation is increase the computable

parameter counts. The Max-Polling layer has been removed

and a new convolution layer of 16 x 16 depth and 3 x 3 filter

dimensions has been added.

Figure 8. Third neural network with hyperparameters tuned.

The total number of parameters calculated after tuning was

obtained as 201843. The data given to the model were

augmented by producing synthetic data with the data

augmentation technique [24].

Figure 9. Synthetic image created through data

augmentation.

Figure 9. shows the synthetic image obtained after applying

flip, shift, and zoom to the real image. These variations in

the data set enable the trained model to achieve a similar

performance in different image conditions. Thus, a more

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 51

general solution will be achieved. The loss graph of the

model trained after data augmentation is shown in Figure 10.

Figure 10. Loss graph of the model trained after data

augmentation

There is an obvious improvement in overfitting [23] rate

compared to previous training. It is seen that the loss ratio

that converges rapidly to zero at the batch level before is now

decreasing at the epoch level. At the end of 100 epoch, the

lowest loss value was reached as 0.25 in the 90th epoch.

New synthetic data were generated by making changes in the

augmentation parameters to reduce the loss value even

smaller. Zoom ratio decreased from 0.4 to 0.2, flip angle

from 40 degrees to 10 degrees. The changes applied here will

make less distortion of the lane information in the image and

help achieve the goal of obtaining a more general model. The

highest performing neural network model has been retrained

with the new dataset, and the expected reduction in loss data

occurred.

Figure 11. Loss graph of the most successful CNN model.

As seen in the graph, the 95th epoch has reached 0.17 loss

value. Thus, it was observed that the change made in the data

augmentation parameters had an effect on the decrease of the

loss value. The final model was trained three times over 100

epochs with synthetic data. The number of frames per

second, which represents the reaction speed of the vehicle,

reached the maximum 14 frames per second which is the best

result of all time.

2.2. Obstacle Avoidance with Optical Flow

While an autonomous robot vehicle is moving in a constant

velocity, the time until the collision can be found without any

knowledge of the distance to be traveled or the velocity the

robot is moving [8]. Calculating the time to collision is one

of the practical optical flow uses. The optical flow

knowledge is extracted from the image sequence taken from

the Google camera placed in the robotic vehicle, and then the

time until the robot reaches a particular area is determined.

Calculated collision times are considered separately as

collision times on the left and right of the image. Depending

on whether the difference between the collision times of the

left and right side is higher or lower than a certain threshold

value, the vehicle is ordered to ignore the obstacle in front of

it or to take action.

Figure 12. The flow char representing obstacle avoidance

procedure [26].

In this section, corner detection, and calculating optical flow

are introduced in the first place. After, the focus of expansion

and time to collision calculation procedures are explained.

Next, the balance strategy and decision mechanism are

explained in detail and the movement of the vehicle is

presented according to the decision produced by the

mechanism.

2.2.1. Corner Detection with FAST (Features from

Accelerated Segment Test)

It is necessary to extract the optical flow information from

the image sequence taken from the camera. To find the

optical flow between consecutive frames, the motion of a

pixel feature set should be tracked. Features in the image are

points of interest that provide rich picture content

information, and these points are not affected by intensity

changes in the image [27].

Using the FAST [26] algorithm, which is known for its high

performance in real-time images, corner detection performed

in the real-time image sequence.

Figure 13. Corner detection on the image with FAST

algorithm.

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 52

Figure 13. shows the image formed after applying the corner

detection algorithm on the image. The corner detection

process is run every 50th iteration of the runtime, which

means that the corners are refreshed at approximately 3-4

second intervals. The detected corners are stored on a vector

for later use in calculating the optical flow.

2.2.2. Calculating Optical Flow

For the optical flow to be computable, a selected point on the

first image must change its location on the next image. While

the selected point is moving, the shape of the light reflected

on that point is constantly changing and optical flow occurs.

In other words, the vehicle must be moving in order to obtain

optical flow with the robot vehicle. The most widely used

Lucas-Kanade [27] method was used to calculate the optical

flow between consecutive frames. The vector containing the

vertices detected by the FAST corner detection algorithm is

given to the function and it returns two vectors containing

the (x, y) coordinates of the previous and next points. Now

that the changing coordinates of a corner point in the

previous and ongoing frame are known, an arrow can be

drawn from the previous position to the next position. In

other words, an arrow is drawn in the direction of the point's

movement in consecutive frames if the tracked corner point

exists (detected) in the next frame. Suppose (x2, y1) and (x2,

y2) are the coordinates of the point in the previous and next

squares. 𝑎𝑛𝑔𝑙𝑒 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑦2−𝑦1

𝑥2−𝑥1
) (1)

Figure 14. Arrows were drawn in the direction of movement

of the points.

𝑎𝑟𝑟𝑜𝑤𝑥 = 𝑥2 + 𝑙𝑒𝑛 ∗ 𝑐𝑜𝑠 (𝑎𝑛𝑔𝑙𝑒 +
3.14

180
)

𝑎𝑟𝑟𝑜𝑤𝑦 = 𝑦2 + 𝑙𝑒𝑛 ∗ 𝑠𝑖𝑛 (𝑎𝑛𝑔𝑙𝑒 +
3.14

180
)

 (2)

2.2.3. Calculating Focus of Expansion

The motions of objects moving around are projected to the

eyes of the observer as two fundamental motions. An optical

flow field is formed as a result of the projection of the

translation and rotation fundamental motions into an image

plane [8]. Rotational motion can be imagine as flow vectors

produced as a result of the surrounding objects shifting left

or right as the robot vehicle turns left or right.

Translation motion occurs when the camera is moving

forward or backward. If the camera moves backward, it

creates an area called a focus of contraction (FOC) where the

flow vectors converging around a point. On the contrary, if

it moves forward, it creates an area called the focus of

expansion (FOE) where the flow vectors diverge around

from a central point.

Figure 15. Diverging flow vectors and focus of expansion

during forward translation motion.

Any two vectors are needed to calculate the focus of

expansion. If the place where these two vectors meet can be

determined, the focus of expansion is found. The least-

squares [28] solution of all available flow vectors was used

to find focus of expansion. Each optical flow vector has a

previous point and delta. Let pt = (x, y) be the x and y

coordinates of the previous position of an optical flow

vector. Let v = (u, v) be the x and y coordinate differences

between the previous and current position of the optical flow

vector.

 𝐴 = [

𝑎00

. . .
𝑎𝑛0

𝑎01

. .
𝑎𝑛1

] 𝑏 = [
𝑏0

. .
𝑏𝑛

] (3)

In matrix A it should be known as ai0 = -v and ai1 = u, and

in matrix B, each value is obtained by bi = xv – yu. The focus

of expansion is calculated using the least-squares method

and inversion of the matrices.

𝐹𝑂𝐸 = (𝐴𝑇𝐴)−1𝐴𝑇𝑏

= [
∑𝑎𝑖0 𝑏𝑖 ∑𝑎𝑗1

2 − ∑𝑎𝑗1 𝑏𝑖 ∑𝑎𝑗0 𝑎𝑗1

−∑𝑎𝑖0 𝑏𝑖 ∑𝑎𝑗0 𝑎𝑗1 + ∑𝑎𝑖1 𝑏𝑖 ∑𝑎𝑗0
2]

−
1

∑ 𝑎𝑗0
2 𝑎𝑗1

2 −(∑𝑎𝑖0𝑎𝑖0)
2 (4)

The OpenCV library has the necessary functionality for the

matrix inversion method. The function is given matrices A

and b and an empty matrix of 2x1 dimensions. Additionally,

the DECOMP_QR flag was added for QR decomposition

[29].

Figure 16. Calculation of the focus of expansion on the

image taken from the camera. The FOE is shown by the red

circle in the image.

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 53

2.2.4. Calculating Time to Collision

The most valuable information we can obtain for the robot

vehicle to avoid obstacles is the determination of the contact

time or the time until the collision. This information can be

found without requiring any information about the distance

to travel or the velocity the robot is moving [8].

The studies carried out up to this stage were to obtain

information to be used in the TTC because when calculating

the TTC, optical flow vectors and FOE are required. Let p =

(x, y) be the x and y positions of an optical flow vector and

FOE = (x, y) be the x and y positions of a focus of expansion.

Let v = (u, v) be the x and y coordinate differences between

the previous and current positions of the optical flow vector.

 𝑇𝑇𝐶 = √(𝑝𝑥−𝑓𝑜𝑒𝑥)2+(𝑝𝑦−𝑓𝑜𝑒𝑦)
2

𝑢2+𝑣2 (5)

The locations of the detected points on the image vary

according to the position and movement of the objects

captured by the robot's camera. There are situations where

the detected points on the image are not equably positioned

in the whole image plane. This means there are more corners

in some parts of the image and fewer corners in others. This

imbalance caused by the objects and movements in the frame

can be avoided by using 16 x 16 dimensional matrices.

Figure 17. Drawing the matrix on the image.

After calculating the TTC of each flow vector, it is collected

at one of the closest A matrix points in the image. In matrix

B, the number of TTCs collected at each matrix point is

stored.

𝐴 =

[

∑ 𝑡𝑡𝑐𝑖.

.

.
∑ 𝑡𝑡𝑐𝑖

.
. . . .

∑ 𝑡𝑡𝑐𝑖.
.
.

∑ 𝑡𝑡𝑐𝑖]

16𝑥16

 𝑏 = [

𝑎00.
.
.

𝑎𝑛0

.
. . . .

𝑎0𝑛.
.
.

𝑎𝑛𝑛

]

16𝑥16

 (6)

ttci is the time until the collision of a flow vector, and a in

matrix B is the number of flow vectors. Using matrices A

and b, the average TTC for each matrix point can be

calculated.

 𝑇𝑇𝐶[𝑖] =
𝐴[𝑖]

𝑏[𝑖]
 (7)

Figure 18. Shows the average collision times. It seen that

vectors with the large optical flow on the image have low

TTC values.

2.2.5. Balance Calculation and Decision Mechanism

The basic idea is that when the robot is in motion, close

objects move faster than farther objects on the retina. Also,

closer objects cover the field of view more, causing greater

optical flows. In the region where the optical flow is greater,

the collision time is low and the robot vehicle must go to the

other side and avoid from the obstacle. Kachluche Souhila

and Achour Karim in their article [13], they present a

different perspective in which the robot car moves away

from the side where there is greater optical flow.

The image taken from the camera is divided into two parts to

give the vehicle balance. Balance can be achieved by

minimizing the difference between collision times on the left

and right side of the vehicle.

Figure 19. Dividing the image into two parts.

The following control formula is used to calculate the

difference between collision times on the left and right side

of the vehicle.

 𝛥(𝐹𝐿 − 𝐹𝑅) =
∑||𝑇𝑇𝐶𝐿|| − ∑||𝑇𝑇𝐶𝑅||

∑||𝑇𝑇𝐶𝐿|| + ∑||𝑇𝑇𝐶𝑅||
 (8)

Here (FL-FR) is the difference between the forces on both

sides of the robot body and TTC is the average of the

collision time in the visual half-field on one side. The

difference between the forces calculated in equation 8 is a

linear number and varies between 0 and 1.The balance

mechanism was applied to the robot vehicle. Due to the

environmental conditions of the experimental environment,

the threshold value of the difference between the left and

right TTC was determined as 0.5. In cases where the

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 54

threshold value is exceeded, the robot vehicle will be given

the necessary rotation order. As shown in Figure 21, the left

collision time is calculated as (3895.2), the right collision

time (101820.7) and the difference in forces (0.9) were

found. It is decided to turn right, because the left collision

time is less than the right, and the difference in forces is

greater than 0.5.

Figure 20. Avoiding the box to the left of the robot vehicle.

In Figure 21, it can be seen that the robot vehicle is given a

forward motion command. Left collision time (993.2), right

collision time (339.8) and difference in forces (0.1) were

found.

Figure 21. Robot vehicle is commanded to go forward.

3. CONCLUSION

This article presented develop lane tracking and obstacle

avoidance capabilities with different methods and solutions

for an autonomous driving system on an experimental

vehicle.

Considering the Raspberry PI module performance, the first

model was kept simple and fast overfitting was observed due

to the small dataset. In order to develop prediction of the

model and prevent overfitting, the Dropout layer was added,

the dataset was enlarged by generating synthetic data, and

the number of computable parameters was increased. The

final model has been trained three times over 100 epochs

with synthetic data.

Training of the neural network model was done with

simplified images. During the test stage, the images taken

from the camera should be similar to the images used in the

training stage of the neural network. The similarity

emphasized here is that the images are in the same colour

space and simplified. For this reason, the images taken from

the camera during the test stage are instantly simplified and

then transmitted to the neural network. The prepared neural

network model produces 0, 1, and 2 as output. These

correspond to the values for FLAT, MEDIUM, and SHARP,

respectively. Since these labels are obtained by simplifying

the rotation angle of the servo, the rotational motion is

provided by converting the predictions back to the servo

angle with the help of an algorithm.

In order to avoid obstacles, optical flow was calculated by

detecting corners every 4 seconds by FAST algorithm and

was used to find the focus of expansion of the vehicle. Time-

to-collision was found with the FOE and the distance

between the previous position and the current position of the

detected point. There are situations where the detected points

on the image are not equably positioned in the whole image

plane. For this reason, the values of the close points are

averaged and placed in the 16x16 matrix. The balance

mechanism was created according to the TTC difference

calculated on the right and left parts of the vehicle.

Frames per second, representing the vehicle's response

speed, reached 14 frames per second when following the

lane, 20 frames when avoiding obstacles, and 12 frames

when both modules were working together. And the vehicle

completed the map safely without hitting any obstacle.

 It is planned to increase frames per second in the future and

add new capabilities using 2D Lidar and Google Coral Dev

Board.

Acknowledgement: This work was supported by the

Scientific and Technological Research Council of Turkey

(TÜBİTAK), Grant No: 1919B011903963

REFERENCES

[1] Casser, Vincent, et al. "Depth prediction without the

sensors: Leveraging structure for unsupervised learning

from monocular videos." Proceedings of the AAAI

Conference on Artificial Intelligence. Vol. 33. No. 01.

2019.

[2] Google LLC, “Get started with the Dev Board.” 2020.

[3] Caruana, Rich, and Alexandru Niculescu-Mizil. "An

empirical comparison of supervised learning algo-

rithms." Proceedings of the 23rd international confer-

ence on Machine learning. 2006.

[4] Zhu, Xiaojin, and Andrew B. Goldberg. "Introduction

to semi-supervised learning."Synthesis lectures on arti-

ficial intelligence and machine learning 3.1 (2009): 1-

130.

[5] Alpaydin, Ethem. “Introduction to machine learning.”

MIT press, 2020.

[6] Schalkoff, Robert J. "Pattern recognition." Wiley En-

cyclopedia of Computer Science and Engineering

(2007).

[7] Albawi, Saad, Tareq Abed Mohammed, and Saad Al-

Zawi. "Understanding of a convolutional neural net-

work."2017 International Conference on Engineering

and Technology (ICET). Ieee, 2017.

[8] O’Donovan, Peter. "Optical flow: Techniques and ap-

plications."International Journal of Computer Vision

(2005): 1-26.

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 55

[9] Beauchemin, Steven S., and John L. Barron. "The com-

putation of optical flow."ACM computing surveys

(CSUR) 27.3 (1995): 433-466.

[10] Barron, John L., and Neil A. Thacker. "Tutorial: Com-

puting 2D and 3D optical flow."Imaging science and

biomedical engineering division, medical school, uni-

versity of manchester 1 (2005).

[11] Bounini, Farid, et al. “Autonomous vehicle and real

time road lanes detection and tracking.” 2015 IEE Ve-

hicle Power and Propulsion Conference (VPPC). IEEE,

2015

[12] Han, J., et al. “Road boundary detection and tracking

for structured and unstructured roads using a 2D lidar

sensor.” International Journal of Automotive Technol-

ogy 15.4 (2014): 611-623

[13] Souhila, Kahlouche, and Achour Karim. "Optical flow

based robot obstacle avoidance."International Journal

of Advanced Robotic Systems 4.1 (2007): 2.

[14] Saravanan, C. "Color image to grayscale image conver-

sion."2010 Second International Conference on Com-

puter Engineering and Applications. Vol. 2. IEEE,

2010.

[15] Xu, Zhao, Xu Baojie, and Wu Guoxin. "Canny edge de-

tection based on Open CV. "2017 13th IEEE interna-

tional conference on electronic measurement & instru-

ments (ICEMI). IEEE, 2017.

[16] Edwards, Allen L. An introduction to linear regression

and correlation. No. 04; QA278. 2, E3 1984.. 1984

[17] Montgomery, Douglas C., Elizabeth A. Peck, and G.

Geoffrey Vining. Introduction to linear regression anal-

ysis. John Wiley & Sons, 2021.

[18] Bergstra, James, et al. "Algorithms for hyper-parameter

optimization."25th annual conference on neural infor-

mation processing systems (NIPS 2011). Vol. 24. Neu-

ral Information Processing Systems Foundation, 2011.

[19] Feurer, Matthias, and Frank Hutter. “Hyperparameter

optimization.” Automated Machine Learning.

Springer, Cham, 2019. 3-33.

[20] Mikołajczyk, Agnieszka, and Michał Grochowski.

"Data augmentation for improving deep learning in im-

age classification problem."2018 international interdis-

ciplinary PhD workshop (IIPhDW). IEEE, 2018.

[21] Srivastava, Nitish, et al. "Dropout: a simple way to pre-

vent neural networks from overfitting." The journal of

machine learning research 15.1 (2014): 1929-1958.

[22] Ciliberto, Carlo, Lorenzo Rosasco, and Alessandro

Rudi. "A consistent regularization approach for struc-

tured prediction." Advances in neural information pro-

cessing systems 29 (2016): 4412-4420.

[23] Hawkins, Douglas M. "The problem of overfitting.

"Journal of chemical information and computer sci-

ences 44.1 (2004): 1-12.

[24] Takahashi, Ryo, Takashi Matsubara, and Kuniaki

Uehara. "Data augmentation using random image crop-

ping and patching for deep cnns." IEEE Transactions

on Circuits and Systems for Video Technology 30.9

(2019): 2917-2931.

[25] Fleet, David, and Yair Weiss. "Optical flow estima-

tion." Handbook of mathematical models in computer

vision. Springer, Boston, MA, 2006. 237-257.

[26] Viswanathan, Deepak Geetha. "Features from acceler-

ated segment test (fast)." Proceedings of the 10th work-

shop on Image Analysis for Multimedia Interactive

Services, London, UK. 2009.

[27] Lucas, B. and Kanade, T. 1981. An iterative image reg-

istration technique with an application to stereo vi-

sion.In Proc. Seventh International Joint Conference on

Artificial Intelligence, Vancouver, Canada, pp. 674–

679.

[28] Levenberg, Kenneth. "A method for the solution of cer-

tain non-linear problems in least squares." Quarterly of

applied mathematics 2.2 (1944): 164-168.

[29] Gander, Walter. "Algorithms for the QR decomposi-

tion." Res. Rep 80.02 (1980): 1251-1268.

[30] Satti, Satish Kumar, et al. “A machine learning ap-

proach for detecting and tracking road boundary lanes.”

ICT Express 7.1 (2021): 99-103

Aliyev et al.
Realization of the Autonomous Driving System on the Experimental Vehicle

Academic Platform Journal of Engineering and Smart Systems 10(1), 48-56, 2022 56

