Corrigendum to “β–Menger and β–Hurewicz spaces”

Madhu Ram

Department of Mathematics, University of Jammu, Jammu 180006, India

Abstract
This corrigendum provides a correction to the paper entitled “β–Menger and β–Hurewicz spaces”.

1. Example of β–Menger space in [1]

Investigating the validity of results in [1], I realized that Example 4.2 on page 4 is incorrect. The explanation is as follows.

Take $X = \mathbb{R}$ and $p = \sqrt{2}$. Let τ be the topology on X as in Example 4.2 in [1]. Let $x \neq p$ be an irrational number. Consider the set $U_x = \{x\} \cup \mathbb{Q}$, where \mathbb{Q} denotes the set of rational numbers. Then $U_x \in \tau$.

Claim: $A = \{\sqrt{2}\} \cup \mathbb{Q}$ is β–open subset of \mathbb{R}.

Since $A \subseteq Cl(A)$, we have

$$\text{Int}(A) \subseteq \text{Int}(Cl(A)),$$

$$\Rightarrow \mathbb{Q} \subseteq \text{Int}(Cl(A)),$$

$$\Rightarrow Cl(\mathbb{Q}) \subseteq Cl(\text{Int}(Cl(A))).$$

Since $A \subseteq Cl(\mathbb{Q})$, $A \subseteq Cl(\text{Int}(Cl(A)))$. It completes the claim.

Consider the β–open cover $\mathcal{U} = \{U_x: x \in \mathbb{R}\setminus\mathbb{Q}\}$ of X. The cover \mathcal{U} has no countable subcover, so X is not β–Menger.

References