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Abstract

In this paper we study existence, uniqueness and other properties of solutions of Volterra type ABC frac-
tional integral equations. We have used Banach �xed point theorem with Bielecki type norm and Gronwall
inequality in the frame of ABC fractional integral for proving our results.
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1. Introduction

During last few decades many authors have studied the fractional di�erential and integral equations and
its properties by using various techniques. Due to wide applications of fractional calculus in various �elds its
study has become very interesting [4, 21]. In this paper we consider the Volterra fractional integral equation
of the form

x(t) = f(t, x(t), AB
a Iαk (t, τ, x (τ)) , (1.1)

for 0 < α < 1, where I = [a, b], k ∈ C(I × I × R,R) and f ∈ C(I × R× R× R,R).
Gronwall inequality plays very important role in studying the various properties such as estimates of solution,
continuous dependence and others of di�erential equation. Recently in [6, 25, 27] the authors have obtained
the fractional Gronwall inequality using various fractional de�nition. Fractional calculus is found to be
very interesting in modeling the real world situations. Due to the application of fractional calculus various
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de�nitions of fractional derivative and integral are obtained in the literature such as Generelized fractional
derivative and integral with respect to another function that is ψ fractional, Hadmard, Katungampola,
Caputo-Fabrizio, Hilfer and others [5, 9, 11, 15, 17]. Recently Atangana and Balaneu has introduced the
new de�nitions of fractional integral and derivative with Mittag-Le�er function [2] . Using these de�nitions
results on Taylors theorem existence, uniqueness and numerical solution have been obtained in [1, 3, 7, 8,
13, 14, 16, 20, 23]. In [12, 18, 19, 24, 26] authors have given various application of fractional calculus using
these de�nitions.

. Motivated by the above mentioned research work the main objective of this paper is to study the funda-
mental properties of solutions of (1.1). The well known Banach �xed point theorem with Bielecki type norm
and Gronwall type inequality given in [10] is used for presenting the results.

2. Preliminaries

Now in this we give some basic de�nitions and lemmas used in our discussions The left Riemann-Liouville
fractional integral of order α for α > 0 is de�ned as [15]:

(aI
αx) (t) =

1

Γ (α)

t∫
a

(t− s)α−1x (s) ds.

The Atagana-Baleanu fractional derivative and integral is de�ned as follows:

De�nition 2.1. [2] Let x ∈ H1 (a, b), a < b and α in [0, 1]. The Caputo Atangana-Baleanu(ABC) fractional
derivative of x of order α is de�ned by

(
ABC
a Dαx

)
(t) =

B (α)

1− α

t∫
a

x′ (s)Eα

[
−α(t− s)α

1− α

]
ds,

where Eα is the Mittag-Le�er function de�ned by Eα (z) =
∞∑
n=0

zn

Γ(nα+1) and B(α) is a normalizing positive

function satisfying B(0) = B(1) = 1.
The Riemann Atangana-Baleanu fractional derivative of x of order α is de�ned by

(
ABR
a Dαx

)
(t) =

B (α)

1− α

t∫
a

x (s)Eα

[
−α(t− s)α

1− α

]
ds.

The associated fractional integral is de�ned by:(
AB
a Iαx

)
(t) =

1− α
B (α)

x (t) +
α

B (α)
((aI

αx) (t)) .

where aI
α is the left Riemann-Liouville fractional integral.

Now we construct the appropriate metric space. Let ξ > 0 be a constant and consider the space of all
continuous function C(I,R) where I = [a, b]. We denote this special space by Cξ,α(I,R)

dξ,α (u, v) =
Sup
t ∈ I

|u(t)− v(t)|
Eα (ξ (t− a)α)

,

with norm de�ned by

|u|ξ,α = Sup
t∈I

|u(t)|
Eα (ξ (t− a)α)

,

where Eα : R → R is a one parameter Mittag-Le�er function. The above de�nitions dξ,α and |.|ξ,α are the
variants of Bielecki's metric and norm.

The Gronwall inequality in the frame of fractional integrals associated with the Atangana-Baleanu frac-
tional derivative is given in [10] as follows:
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Theorem 2.1.. [10] Suppose that α > 0, c(t)
(

1− 1−α
B(α)d (t)

)−1
is nonnegative, nondecreasing and locally

integrable function on [a, b), αd(t)
B(α)

(
1− 1−α

B(α)d (t)
)−1

is nonnegative and bounded on [a, b) and x(t) is non-

negative and locally integrable on [a, b) with

x (t) ≤ c (t) + d (t)
(
AB
a Iαx

)
(t) .

Then

x (t) ≤ c (t)B (α)

B (α)− (1− α) d (t)
Eα

(
αd (t) (t− a)α

B (α)− (1− α) d (t)

)
.

3. Existence of Solution

Now we give our result on the existence of solution of (1.1)

Theorem 3.1. Let P > 0, Q ≥ 0, ξ > 1 be constants. Suppose that the functions f, k in (1.1) satisfy the
conditions

|f (t, u, v)− f (t, u, v)| ≤ Q [|u− u|+ |v − v|] , (3.1)

|k (t, s, u)− k (t, s, u)| ≤ P |u− u| (3.2)

and

m1 = sup
t∈I

1

Eα (ξ (t− a)α)

∣∣f (t, 0,ABa Iαk (t, s, 0)
)∣∣ <∞. (3.3)

If Q
(

1 + P
ξ

)
< 1 then the integral equation (1.1) has a unique solution x ∈ Cξ,α (I,R)

Proof.. Consider the equivalent formulation of (1.1) we have

x (t) = f
(
t, x(t),ABa Iαk (t, τ, x(τ))

)
− f
(
t, 0,ABa Iαk (t, τ, 0)

)
+ f
(
t, 0,ABa Iαk (t, τ, 0)

)
, (3.4)

for t ∈ I. We shall show that (3.4) has unique solution and thus (1.1) must also have unique solution. Let
x ∈ Cξ,α (I,R) and de�ne the operator T by

(Tx) (t) = f
(
t, x(t),ABa Iαk (t, τ, x(τ))

)
− f
(
t, 0,ABa Iαk (t, τ, 0)

)
+ f
(
t, 0,ABa Iαk (t, τ, 0)

)
. (3.5)

Now we show that T maps Cξ,α (I,R) into itself. We have

|Tx|ξ,α = Sup
t∈I

|(Tx) (t)|
Eα (ξ (t− a)α)

≤ sup
t∈I

1

Eα (ξ (t− a)α)

∣∣f (t, x (t) ,ABa Iαk (t, τ, x(τ))
)

−f
(
t, 0,ABa Iαk (t, τ, 0)

)∣∣+ sup
t∈I

1

Eα (ξ (t− a)α)

∣∣f (t, 0,ABa Iαk (t, τ, 0)
)∣∣

≤ m1 + sup
t∈I

1

Eα (ξ (t− a)α)
Q
[
|x (t)|+ AB

a IαP |x (τ)|
]

= m1 +Q

[
sup
t∈I

|x (t)|
Eα (ξ (t− a)α)

+ P sup
t∈I

1

Eα (ξ (t− a)α)
AB
a IαEα (ξ (t− a)α)

|x (τ)|
Eα (ξ (t− a)α)

]
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≤ m1 +Q

[
|x|ξ,α + P |x|ξ,α sup

t∈I

1

Eα (ξ (t− a)α)
AB
a IαEα (ξ (t− a)α)

]
≤ m1 +Q

[
|x|ξ,α + P |x|ξ,α sup

t∈I

1

Eα (ξ (t− a)α)(
(1− α)

B (α)
Eα (ξ (t− a)α) +

α

B (α)
aI
αEα (ξ (t− a)α)

)]
≤ m1 +Q

[
|x|ξ,α + P |x|ξ,α sup

t∈I

1

Eα (ξ (t− a)α)(
(1− α)

B (α)
Eα (ξ (t− a)α) +

α

B (α)

Eα (ξ (t− a)α)− 1

ξ

)]
≤ m1 +Q |x|ξ,α

[
1 + P

1

B (α)

(
(1− α) +

α

ξ

)]
. (3.6)

Now we show that the operator T is a contraction map. Let v, w ∈ Cξ,α (I,R), from the hypotheses we
have

dξ,α (Tv,Tw) = sup
t∈I

|(Tv) (t)− (Tw) (t)|
Eα (ξ (t− a)α)

= sup
t∈I

1

Eα (ξ (t− a)α)

∣∣f (t, v (t) ,ABa Iαk (t, τ, v (τ))
)

−f
(
t, w (t) ,ABa Iαk (t, τ, w (τ))

)]
≤ sup

t∈I

1

Eα (ξ (t− a)α)
Q
[
|v(t)− w(t)|+ AB

a IαP |v(τ)− w(τ)|
]

≤ Q
[
sup
t∈I

|v(t)− w(t)|
Eα (ξ (t− a)α)

+ sup
t∈I

1

Eα (ξ (t− a)α)

PABa IαEα (ξ (t− a)α)
|v(τ)− w(τ)|
Eα (ξ (t− a)α)

]
≤ Q

[
dξ,α (v, w) + Pdξ,α (v, w) sup

t∈I

1

Eα (ξ (t− a)α)
AB
a IαEα (ξ (t− a)α)

]
= Qdξ,α (v, w)[
1 + pdξ,α (v, w) sup

t∈I

1

Eα (ξ (t− a)α)

(
Eα (ξ (t− a)α)− 1

ξ

)]
= Q |x| dξ,α (v, w)

1

B (α)

[
(1− α) +

α

ξ

]
. (3.7)

It follows from Banach �xed point theorem T has a unique �xed point.

4. Estimates of Solution

Now we obtain estimates on the solutions of equation (1.1) with some suitable assumptions

Theorem 4.1. Suppose that the functions f, k in (1.1) are continuous and satisfy the conditions

|f (t, u, v)− f (t, u, v)| ≤ G [|u− u|+ |v − u|] , (4.1)

|k (t, τ, u)− k (t, τ, v)| ≤ h (t) |u− v| , (4.2)

where 0 ≤ G < 1 is a constant

m2 = Sup
t∈I

∣∣f (t, 0,ABa Iαk (t, s, 0)
)∣∣ <∞. (4.3)
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If x(t) is any solution of (1.1) and H(t) = Sup
t∈I

h(t) then

|x(t)| ≤ m2

(1−G)

B(α)(
B(α)− (1− α)

(
G

1−G

)
H(t)

)Eα
 α G

1−GH(t) (t− a)α(
B(α)− (1− α)

(
G

1−G

)
H(t)

)
 . (4.4)

Proof. Since the solution x(t) of equation (1.1) satis�es the equation (3.4) and the hypothesis we have

|x(t)| ≤
∣∣f (t, 0,ABa Iαk (t, τ, 0)

)∣∣
+
∣∣f (t, x(t),ABa Iαk (t, τ, x(τ))

)
− f
(
t, 0,ABa Iαk (t, τ, 0)

)∣∣
≤ m2 +G

[
|x(t)|+ AB

a Iαh (τ) |x (τ)|
]
. (4.5)

From (4.5) and hypotheses 0 ≤ G < 1 we have

|x(t)| ≤ m2

(1−G)
+

G

1−G
H(t)ABa Iα |x (τ)| . (4.6)

Now applying the Gronwall inequality Theorem 2.1 to (4.6) we get (4.4).

5. Continuous dependence

Now in this section we study the continuous dependence of (1.1) and the functions involved therein. Now
consider the equation (1.1) and the corresponding equation

y (t) = f
(
t, y (t) ,ABa Iαk (t, τ, y (τ))

)
, (5.1)

for t ∈ I, τ ≤ t where k ∈ C(I × I × R,R) and f ∈ C(I × R× R,R) and y0 is a given constant in Rn.
Our next theorem deals with continuous dependence of solution of (1.1) and on functions involved therein.

Theorem 5.1. Suppose the functions f, k in (1.1) are continuous and satisfy the conditions (4.1) and (4.2).
Suppose that ∣∣f (t, y (t) ,ABa Iαk (t, τ, y (τ))

)
− f
(
t, y (t) ,ABa Iαk (t, τ, y (τ))

)∣∣ ≤ ε, (5.2)

where f, k and f, k are functions involved in (1.1) and (5.1), ε > 0 is small constant and y(t) is given solution
of (5.1). Then the solution x(t), t ∈ I of (1.1) depends continuously on the functions involved on the right
hand side of (1.1).

Proof. Let v(t) = |x(t)− y(t)| for t ∈ I. Since x(t) and y(t) are solutions of equations (1.1), (5.1) and given
conditions we have

v (t) ≤
∣∣f (t, x(t),ABa Iαk (t, τ, x (τ))

)
− f
(
t, y(t),ABa Iαk (t, τ, y (τ))

)∣∣
+
∣∣f (t, y(t),ABa Iαk (t, τ, y (τ))

)
− f
(
t, y(t),ABa Iαk (t, τ, y (τ))

)∣∣
≤ ε+G

[
|v (t)|+ AB

a Iαh (τ) |v (τ)|
]
. (5.3)

From (5.3) and assumption 0 ≤ G < 1 we have

v (t) ≤ ε

1−G
+

G

1−G
H (t)ABa Iα |v (τ)| . (5.4)

Now by Gronwall's Inequality Theorem 2.1 we have

|x (t)− y (t)| ≤ ε

1−G
B (α)[

B (α)− (1− α) G
1−GH (t)

]Eα( α G
1−GH (t)

B (α)− (1− α) G
1−GH (t)

)
. (5.5)
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From (5.5) it follows that the solution of equation (1.1) depends continuously on the functions involved on
the right hand side of equation (1.1).

Consider the system of fractional Volterra integral equation

w (t) = g
(
t, w (t) ,ABa Iαl (t, τ, w (τ)) , µ

)
(5.6)

and
w (t) = g

(
t, w (t) ,ABa Iαl (t, τ, w (τ)) , µ0

)
, (5.7)

for t ∈ I where l ∈ C(I × I × R,R) and g ∈ C(I × R× R× R,R).
Now in our next theorem we give the dependence of solution of equation (5.6)-(5.7) on parameters.

Theorem 5.2. Suppose that the functions g, l in equation (5.6)− (5.7) satisfy the conditions

|g (t, v1, v2, µ)− g (t, v1, v2, µ)| ≤ G [|v1 − v1|+ |v2 − v2|] , (5.8)

|g (t, v1, v2, µ0)− g (t, v1, v2, µ0)| ≤ d(t) |µ− µ0| , (5.9)

|l (t, s, v)− l (t, s, r)| ≤ h (t) |v − r| , (5.10)

where 0 ≤ G < 1 is a constant and d ∈ C(I,R) such that d(t) ≤ D <∞, D is a constant and h(t) ∈ C(I,R).
Let w1(t) and w2(t) be the solutions of (5.6) and (5.7) respectively then

|w1 (t)− w2 (t)| ≤ D |µ− µ0|
1−G

B (α)[
B (α)− (1− α) G

1−GH (t)
]

Eα

 α G
1−GH (t) (t− a)α

B (α)− (1− α) G
1−GH (t)

 . (5.11)

Proof. Let w(t) = |w1(t)−w2(t)|, t ∈ I. Since w1(t) and w2(t) are solution of equation (5.6) and (5.7) and
given conditions we have

|w (t)| ≤
∣∣g (t, w1 (t) ,ABa Iαl (t, τ, w1 (τ)) , µ

)
−g
(
t, w2 (t) ,ABa Iαl (t, τ, w2 (τ)) , µ0

)∣∣
+
∣∣g (t, w2 (t) ,ABa Iαl (t, τ, w2 (τ)) , µ

)
−g
(
t, w2 (t) ,ABa Iαl (t, τ, w2 (τ)) , µ0

)∣∣
≤ G

[
w (t) + AB

a Iαh (τ)w (τ)
]
. (5.12)

From (5.12) and using the assumption 0 ≤ G < 1 we have

|w (t)| ≤ D |µ− µ0|
1−G

+
G

1−G
H (t)ABa Iα |w (τ)| . (5.13)

Now an application of Gronwall inequality Theorem 2.1 to (5.13) we get (5.11).

Example. In order to ilustrate our results we give the following example:
Consider the Volterra type ABC fractional integral equation

x(t) =
1

10 (t+ 1)
x(t) +

1

10
AB
a Iαe−2tx (τ) , (5.14)

for t ∈ [0, 1]
Set

f(t, x(τ),Xx(τ)) =
1

10 (t+ 1)
x(t) +

1

10
AB
a Iαe−2tx (τ) ,
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Xx(τ) = AB
a Iαe−2tx (τ) .

From above it can be easy to see that

|f(t, u(τ),Xu(τ))− f(t, v(τ),Xv(τ))| ≤ 1

10
[|u− v|+ |Xu−Xv|] ,

|Xu−Xv| ≤ 1

10e2t
AB
a Iαx (τ) .

Thus from above equation the conditions (3.1) − (3.2) holds we have Q = 1
10 and P = 1

10e2t
then for ξ = 2

we have

Q

(
1 +

P

ξ

)
∼= 0.10067 < 1.

Thus the assumptions of the Theorem 3.1 are satis�ed and thus the integral equation (5.14) has a unique
solution.
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