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Abstract

This study aims to establish a numerical solution of time fractional Fisher equation with small delay by utilizing residual power series
method (RPSM). First of all, replacing the term including small delay by in Taylor series expansion of it, we reduce the problem into a
fractional Fisher equation without delay. Secondly, applying RPSM, the coefficients of the series are determined which converges to the
solution of the equation rapidly. Effectiveness and accuracy of this algorithm are illustrated by presented examples.
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1. Introduction

Last couple of decades fractional differential equations draw immense interest of researchers from various branches of science. Therefore, it
is used to model many problems in different branches such as bioengineering, thermodynamics, visco-elasticity, control theory, aerodynamics,
electro-magnetics, signal processing, chemistry, finance [1, 2, 3, 4, 5, 6, 7]. Consequently, different methods have been developed to
establish the solution of fractional differential equations in various senses such as Riemann-Liouville , Caputo-Fabrizio, Caputo sense etc.
[6, 7, 8, 9, 10, 11, 12].
Since delay is a natural part of almost all processes, in the modelling delay differential equations (DDE’s) play a significant role especially
in the modelling of physical systems with memory such as kinetics, controllers, signal processing and damping behaviour of viscoelastic
materials[13, 14, 15, 16, 17].
RPSM is a common method to solve various kinds of differential equations such as [18, 19, 20, 21, 22, 23, 34, 25]. By this method, the
approximate solutions of the mathematical models including differential equations are constructed in the form of Maclaurin series.
In this study, we propose a new algorithm including RPSM to construct an approximate solution of time-fractional Fisher equation with
small delay in Caputo sense. By this algorithm, the approximate solutions is established for time fractional Fisher equation with small delay
ε which is in the neighbourhood of zero

Dα
t u(x, t) = Dxxu(x, t)+6u(x, t− ε)(1−u(x, t)), x ∈ R, t > 0, 0 < α 6 1 (1.1)

subject to initial condition

u(x,0) = A1(x) (1.2)

which was originally proposed by Fisher [26]. The time-fractional Fisher equation have been solved analytically and numerically by various
methods [27, 28, 29, 30, 31].
The mathematical problem including Fisher equation have been used in the modelling of diverse processes such as chemical and biological
processes. In this study, by applying RPSM, series solution of the time-fractional Fisher equation with small delay is constructed. Since
delay ε is small, expanding the term including small delay in Taylor series, the problem is reduced into a perturbation problem. Making use
of RPSM, the solutions of the equations which is the obtained by means of the coefficients of ε are determined. A approximate solution of
the problem are established in terms of these solutions in the form of Taylor series. The rest of the paper is organized as follows: In Section
2, fundamental notions are given. The implementation of RPSM for time fractional Fisher equation with small delay is presented in Section
3. Numerical results are illustrated in Section 4. In Section 5, concluded results are explained.
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2. Preliminaries

In this section, the basic definitions and various features of fractional calculus theory are given [6, 32, 33, 34].

Definition 2.1. The Riemann-Liouville fractional integral of order α (α ≥ 0) is given as [18, 21]

Jα f (x) =
1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, α > 0, x > 0

J0 f (x) = f (x)

Definition 2.2. The Caputo fractional derivative with order α is given as [18, 21]

Dα f (x) = Jm−α Dm f (x) =
∫ x

0
(x− t)m−α−1 dm

dtm f (t)dt, m−< α < m, x > 0

where Dm is the classic differential operator with order m.

By the Caputo derivative in terms of Gamma function [6], we have

Dα xβ = 0, β < α

Dα xβ =
Γ(β +1)

Γ(β +1−α)
xβ−α , β ≥ α

Definition 2.3. The Caputo’s time fractional derivative of order α for u(x, t) is defined as [18, 21]

Dα
t u(x, t) =


1

Γ(m−α)

∫ t
0(t− ς)m−α−1 ∂ mu(x,ς)

∂ tm dς , m−1 < α < m

∂ mu(x,t)
∂ tm ,α = m ∈ N

Definition 2.4. A power series expansion of the form

∞

∑
m=0

cm(t− t0)mα = c0 + c1(t− t0)α + c2(t− t0)2α + ..., 0≤ m−1 < α ≤ m, t ≥ t0

is called fractional power series about t = t0 [35].

Definition 2.5. A power series expansion of the form

∞

∑
m=0

fm(x)(t− t0)mα = f0(x)+ f1(x)(t− t0)α + f2(x)(t− t0)2α + ..., 0≤ m−1 < α ≤ m, t ≥ t0

is called multiple fractional power series about t = t0 [35].

Theorem 2.6. Suppose that u(x, t) has a multiple fractional power series representation at t = t0 of the following form

u(x, t) =
∞

∑
m=0

fm(x)(t− t0)mα , x ∈ I, t0 ≤ t ≤ t0 +R

If Dmα
t u(x, t), m = 0,1,2, ... are continuous on I× (t0, t0 +R), then fm(x) =

Dmα
t u(x,t0)

Γ(mα+1) .

3. RPSM of the time-fractional Fisher equation with small delay

Let us consider the following time-fractional Fisher equation with small delay

Dα
t u(x, t) = Dxxu(x, t)+6u(x, t− ε)(1−u(x, t)), x ∈ R, t > 0, 0 < α 6 1 (3.1)

subject to initial condition

u(x,0) = A1(x) (3.2)

Since the delay term is very small, we replace u(x, t− ε) Eq.(1.1) by the following Taylor series expansion

u(x, t− ε) = u(x, t)− εDtu(x, t)+O(ε2) (3.3)

where we ignore the higher order terms, which leads to

Dα
t u(x, t) = Dxxu(x, t)+6u(x, t)(1−u(x, t))−6ε(1−u(x, t))Dtu(x, t) (3.4)

and assuming that nα = 1, we obtain

Dα
t u(x, t) = Dxxu(x, t)+6u(x, t)(1−u(x, t))−6ε(1−u(x, t))Dnα

t u(x, t) (3.5)
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In order to construct the solution of time-fractional Fisher equation with small delay for n = 2, we use the following equation

Dα
t u(x, t)−Dxxu(x, t)−6u(x, t)(1−u(x, t))+6ε(1−u(x, t))D2α

t u(x, t) = 0, (3.6)

Using (3.3) in (3.1) leads the problem to a perturbation problem. Using Poincare’s expansion [36, 37, 38, 39, 40, 41] which is the asymptotic
expansion of functions h(x) to h(x,ε) leads to the solution in the following series form

u =
∞

∑
k=0

ε
kuk (3.7)

for the solution of Eq.(3.5). Substituting (3.7) into (3.6) leads to the following equation:

Dα
t

( ∞

∑
k=0

ε
kuk

)
−Dxx

( ∞

∑
k=0

ε
kuk

)
−6
( ∞

∑
k=0

ε
kuk

)(
1−
( ∞

∑
k=0

ε
kuk

))
+6ε(1−

( ∞

∑
k=0

ε
kuk

)
)D2α

t

( ∞

∑
k=0

ε
kuk

)
= 0, (3.8)

Hence, we obtain the following equations by making the coefficients of ε terms equal to zero

Dα
t u0−Dxxu0−6u0 +6u2

0 = 0, (3.9)

Dα
t u1−Dxxu1−6u1 +12u0u1 +6D2α

t u0−6u0D2α
t u0 = 0, (3.10)

Dα
t u2−Dxxu2−6u2 +6u2

1 +12u0u2 +6D2α
t u1−6u0D2α

t u1−6u1D2α
t u0 = 0, (3.11)

Dα
t u3−Dxxu3−6u3 +12u0u3 +12u1u2 +6D2α

t u2−6u0D2α
t u2−6u1D2α

t u1−6u2D2α
t u0 = 0, (3.12)

and so on. We apply the RPSM to find out series solution for these equations subjected to given initial conditions by replacing its fractional
power series expansion with its residual function. From each equation, a recurrence relation for the calculation of coefficients is supplied,
while coefficients in fractional power series expansion can be calculated by repeatedly fractional differentiation of the residual function
[18, 19, 20, 21, 22, 23, 24, 25]. The RPSM is proposed for the solutions for Eq. (3.9)-(3.12) in the form of a fractional power series about
the initial point t = 0 [18]

ui(x, t) =
∞

∑
k=0

fi,k(x)
tkα

Γ(kα +1)
, i = 0,1,2,3, ...x ∈ I,0≤ t < R (3.13)

To obtain the numerical values from this series, let um(x, t) denotes the mth truncated series of u(x, t). That is

ui,m(x, t) =
m

∑
k=0

fi,k(x)
tkα

Γ(kα +1)
, i = 0,1,2,3, ...x ∈ I,0≤ t < R (3.14)

By the initial condition, the 0th residual power series approximate solution of u(x, t) can be written as follows:

u0(x, t) = f0(x) = u(x,0) = A1(x) (3.15)

Eq.(3.13) can be written as

um(x, t) = A1(x)+
m

∑
k=2

Ak(x)
tkα

Γ(kα +1)
, 0 < α ≤ 1, x ∈ I, 0≤ t, k = 2,3, ... (3.16)

Define the residual function for Eq.(3.8) as

Res0(x, t) = Dα
t u0−Dxxu0−6u0 +6u2

0 (3.17)

and the mth residual function can be expressed as

Resm(x, t) = Dα
t um−Dxxum−6um +6u2

m (3.18)

By making use of some results such as Res(x, t) = 0, lim
m→∞

Resm(x, t) for each x ∈ I and t ≥ 0 and Drα
t Res(x,0) = Drα

t Resm(x,0) = 0, r =

0,1,2, ...,m are used to obtain the solution [18, 19, 20, 21, 22, 23, 24, 25],.
Substituting the mth truncated series of u(x, t) into Eq. (3.8), calculating the fractional derivative D(m−1)α

t of Res(x, t),m = 1,2,3, ... at t = 0
and solving the following obtained algebraic system

D(m−1)α
t Resm(x,0) = 0,0 < α ≤ 1,m = 1,2,3, ... (3.19)

the required coefficients Ak(x),k = 2,3, ...,m in Eq.(3.15) are determined.
In order to determine A2(x), the 1st residual function in Eq. (3.17) can be written as follows:

Res0,1(x, t) = Dα
t u0,1−Dxxu0,1−6u0,1 +6u2

0,1 (3.20)
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where u0,1(x, t) = A1(x)+A2(x) tα

Γ(1+α)
. Therefore, we have

Res0,1(x, t) = A2−
(

A′′1 +A′′2
tα

Γ(1+α)

)
−6
(

A1 +A2
tα

Γ(1+α)

)
+6
(

A1 +A2
tα

Γ(1+α)

)2
. (3.21)

From Eq.(3.18), we deduce that Res1(x,0) = 0, which leads to

A2(x) = A′′1 +6A1−6A2
1. (3.22)

Similarly, to obtain A3(x), the 2nd residual function in Eq. (3.17) can be written in the following form

Res0,2(x, t) = Dα
t u0,2−Dxxu0,2−6u0,2 +6u2

0,2 (3.23)

where u0,2(x, t) = A1(x)+A2(x) tα

Γ(1+α)
+A3(x) t2α

Γ(1+2α)
. Therefore,

Res0,2(x, t) =
(

A2(x)+A3(x)
tα

Γ(1+α)

)
−
(

A′′1 +A′′2
tα

Γ(1+α)
+A′′3

t2α

Γ(1+2α)

)
−6
(

A1 +A2
tα

Γ(1+α)
+A3

t2α

Γ(1+2α)

)
+6
(

A1 +A2
tα

Γ(1+α)
+A3

t2α

Γ(1+2α)

)2
(3.24)

The operator Dα
t is applied to both sides of Eq.(3.23) as follows:

Dα
t Res0,2(x, t) = A3−

(
A′′2 +A′′3

tα

Γ(1+α)

)
−6
(

A2 +A3
tα

Γ(1+α)

)
+6
(

A2 +A3
tα

Γ(1+α)

)(
A1 +A2

tα

Γ(1+α)
+A3

t2α

Γ(1+2α)

)
+6
(

A1 +A2
tα

Γ(1+α)
+A3

t2α

Γ(1+2α)

)(
A2 +A3

tα

Γ(1+α)

)
(3.25)

From Eqs. (3.18) and (3.24),

A3(x) = A′′2 +6A2−12A1A2. (3.26)

The same manner is repeated as above, the following recurrence results are obtained

A4(x) = A′′3 +6A3−12A1A3−12A2
2 (3.27)

and so on.
Thus, we have

u0(x, t) = A1 +
(

A′′1 +6A1−6A2
1

) tα

Γ(1+α)
+
(

A′′2 +6A2−12A1A2

) t2α

Γ(1+2α)
+
(

A′′3 +6A3−12A1A3−12A2
2

) t3α

Γ(1+3α)
+ ... (3.28)

Define the residual function for Eq.(3.9) as

Res1(x, t) = Dα
t u1−Dxxu1−6u1 +12u0u1 +6D2α

t u0−6u0D2α
t u0. (3.29)

Suppose that u1(x, t) has the following form

u1(x, t) = B1(x)+B2(x)
tα

Γ(1+α)
+B3(x)

t2α

Γ(1+2α)
+B4(x)

t3α

Γ(1+3α)
+ .... (3.30)

By the initial condition, the 0th truncated solution of u(x, t) can be written as follows:

u1(x,0) = 0 = B1(x) (3.31)

We apply the RPSM to find out Bk(x),k = 1,2,3, ...,m in Eq. (9). Thus, we have

u1(x, t) = B1 +
(

B′′1 +6B1−12A1B1−6A3 +6A1A3

) tα

Γ(1+α)
+
(

B′′2 +6B2−12A2B1−12A1B2−6A4 +6A2A3 +6A1A4

) t2α

Γ(1+2α)

+
(

B′′3 +6B3−12A3B1−12A1B3 +6A2
3−24A2B2 +12A2A4

) t3α

Γ(1+3α)
+ ...(3.32)

Define the residual function for Eq.(10)

Res2(x, t) = Dα
t u2−Dxxu2−6u2 +6u2

1 +12u0u2 +6D2α
t u1−6u0D2α

t u1−6u1D2α
t u0. (3.33)

Suppose that u2(x, t) has the following form

u2(x, t) =C1(x)+C2(x)
tα

Γ(1+α)
+C3(x)

t2α

Γ(1+2α)
+C4(x)

t3α

Γ(1+3α)
+ .... (3.34)

By the initial condition, the 0th truncated solution of u2(x, t) can be written as follows:

u2(x,0) = 0 =C1(x). (3.35)
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We apply the RPSM to find out Ck(x),k = 1,2,3, ...,m in Eq. (10).
Thus, we have

u2(x, t) =C1 +
(

C′′1 +6C1−6B2
1−12A1C1−6B3 +6A1B3 +6A3B1

) tα

Γ(1+α)
+
(

C′′2 +6C2−12B1B2−12A2C1−12A1C2−6B4

+6A2B3 +6B2A3 +6A4B1 +6A1B4

) t2α

Γ(1+2α)
+
(

C′′3 +6C3−12B3B1−12B2
2−12A3C1−12A1C3 +12A3B3 +12A2B4

+12A4B2−24A2C2

) t3α

Γ(1+3α)
+ ... (3.36)

Define the residual function for Eq.(11) as

Res3(x, t) = Dα
t u3−Dxxu3−6u3 +12u0u3 +12u1u2 +6D2α

t u2−6u0D2α
t u2−6u1D2α

t u1−6u2D2α
t u0 (3.37)

Suppose that u3(x, t) has the following form

u3(x, t) = D1(x)+D2(x)
tα

Γ(1+α)
+D3(x)

t2α

Γ(1+2α)
+D4(x)

t3α

Γ(1+3α)
+ ... (3.38)

By the initial condition, the 0th truncated solution of u3(x, t) can be written as follows:

u3(x,0) = 0 = D1(x) (3.39)

We apply the RPSM to find out Dk(x),k = 1,2,3, ...,m in Eq. (11). Thus, we have

u3(x, t) = D1 +
(

D′′1 +6D1−12A1D1−12B1C1−6C3 +6A1C3 +6B1B3 +6C1A3

) tα

Γ(1+α)
+
(

D′′2 +6D2−12A2D1−12A1D2

−12B2C1−12B1C2−6C4 +6A2C3 +6A3C2 +6B2B3 +6C1A4 +6A1C4 +6B1B4

) t2α

Γ(1+2α)
+
(

D′′3 +6D3−12A3D1−12A1D3

−24A2D2−12B3C1−12B1C3−24B2C2 +12A3C3 +12A2C4 +12A4C2 +6B2
3 +12B2B4

) t3α

Γ(1+3α)
+ ... (3.40)

4. Numerical Results

Consider the following time fractional Fisher equation with small delay

Dα
t u(x, t) = Dxxu(x, t)+6u(x, t)(1−u(x, t))+6ε(1−u(x, t))D2α

t u(x, t)

subject to initial condition

u(x,0) =
1

(1+ ex)2

Then, the exact solution of Eq.(11) for α = 1 is given by

u(x, t) =
1

(1+ ex−5t)2

Based on the obtained results, we construct the 4th RPSM approximate solution. In Fig 4.1, we give the RPSM approximate solution u0(x, t)
which is the exact solution of Fisher equation without delay as the fractional order α increases to one. As it can be seen from Figs. 4.2-4.5
that convergence of the approximate solution depends on the order of the fractional derivative and the delay.
In Tables 1-4, we constitute values of numerical solution uk(x, t) for k = 0,1,2,3 and α = 0.5,0.7,0.9,1. The values of numerical solutions
uk(x, t),k = 0 in Table 1 and 4 are the same as the values of the uRPSM solutions for α = 1 and α = 0.5 in Table 2 and 3 in [42]. We constitute
values of numerical solutions u(x, t), obtained by using RPSM, in Table 5. This table presents that as the delay term ε approaches to zero and
fractional derivative α approaches to one, approximate solution approaches to the exact solution of Fisher equation without delay for α equal
to one. Therefore, it is concluded that the approximate solution converges to the exact solution.
Figs. 4.6-4.9, we plot the RPSM solution u(x, t) for α = 0.7,1 and ε = 0.001 as it can be seen from this figures that as the amount of α

enlarges to one, the approximate solution converges to exact solution. It can also be seen in Figs.4.6-4.9, no matter how small delay we have
the effect of delay term becomes more clear as time t enlarges.

5. Conclusion

In this research, the combination of Taylor series expansion and RPSM is utilized to establish the solution of the time-fractional Fisher
equation with small delay. By expanding the time fractional Fisher equation in powers of ε , the solution is constructed in the rapidly
convergent series form . Illustrative examples verify that the implemented algorithm is very effective and accurate. In the future works, the
term including small delay will be added to the other mathematical models of scientific processes to analyze their behaviour by establishing
approximate solutions by RPSM or other methods.
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Table 1: The values of RPSM solution with α = 0.5 and x = 0.5 for several values t.

t u0 u1 u2 u3
0.1 0.86888 0.46622 281.71110 -9885.89950
0.2 1.43047 14.20107 891.69290 -29658.84397
0.4 2.51465 60.07964 2764.97866 -83876.24503
0.6 3.59378 123.73322 5303.10485 -152424.01898
0.8 4.68138 201.48099 8381.42026 -232397.44369
1 5.78130 291.28413 11927.08012 -322169.27398

Table 2: The values of RPSM solution with α = 0.7 and x = 0.5 for several values t.

t u0 u1 u2 u3
0.1 0.46448 -3.79142 34.76128 -434.27630
0.2 0.80075 -2.83548 162.29522 -5973.66810
0.4 1.58529 11.51386 837.35198 -29626.07359
0.6 2.50398 43.13349 2145.79613 -69770.83693
0.8 3.54332 92.75059 4136.53246 -126505.71658
1 4.69440 160.93458 6841.51018 -200011.32213

Table 3: The values of RPSM solution with α = 0.9 and x = 0.5 for several values t.

t u0 u1 u2 u3
0.1 0.29555 -2.69972 11.22176 856.90753
0.2 0.48919 -4.54462 27.85582 -1.24970
0.4 1.00924 -3.66668 200.11633 -8110.94966
0.6 1.70357 6.66826 705.87023 -27164.15471
0.8 2.57096 30.04098 1695.38097 -59850.80871
1 3.61195 69.68132 3301.69296 -108655.22740

Table 4: The values of RPSM solution with α = 1 and x = 0.5 for several values t.

t u0 u1 u2 u3
0.1 0.25067 -2.07699 9.85944 840.53652
0.2 0.39384 -4.03984 15.88454 804.56154
0.4 0.81646 -5.76976 90.68394 -3414.86454
0.6 1.40528 -1.48314 372.90270 -15694.16140
0.8 2.17322 12.52664 1011.04533 -39069.21223
1 3.12867 39.96619 2153.61633 -76575.90018

Table 5: The values of RPSM solution with t = 0.5 and x = 0.5 for several values α .

ε α = 0.5 α = 0.7 α = 0.9 α = 1
0.1 6.15328 -0.00133 0.99471 0.98211

0.01 0.89183 0.42961 0.27053 0.23173
0.001 0.86962 0.46072 0.29286 0.24861
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Figure 4.1: The figure of u0 for α = 0.5,0.7,0.9,1, t = 0.1 and −5≤ x≤ 5.

Figure 4.2: The figure of u1 for α = 0.5,0.7,0.9,1, t = 0.1 and −5≤ x≤ 5.

Figure 4.3: The figure of u2 for α = 0.5,0.7,0.9,1, t = 0.1 and −5≤ x≤ 5.

Figure 4.4: The figure of u3 for α = 0.5,0.7,0.9,1, t = 0.1 and −5≤ x≤ 5.
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Figure 4.5: An approximate solution for α = 1, t = 0.01 and for delay ε = 0.1,0.01,0.001.

Figure 4.6: An approximate solution for α = 0.7 ,ε = 0.001 and 0≤ t ≤ 0.4.

Figure 4.7: An approximate solution for α = 0.7,ε = 0.001 and 0≤ t ≤ 1
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Figure 4.8: An approximate solution for α = 1,ε = 0.001 and 0≤ t ≤ 0.4.

Figure 4.9: An approximate solution for α = 1,ε = 0.001 and 0≤ t ≤ 1.
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