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Abstract 

The Symmetric Regularized Long Wave (SRLW) equation is solved numerically by using the meshless 

kernel based method of lines. This method is a way of approximating partial differential equations by 

ordinary differential equations. This used method is trully a meshless method. In computations, 

Multiquadric and Gaussian radial basis functions and Wendland’s compactly supported radial basis 

functions are used as kernel functions. To test the applicality and reliability of the method different test 

problems which are single solitary wave motion, the interaction of two positive solitary waves and the 

clash of waves are studied. For single solitary wave motion whose analytical solution is known the root 

mean square error norm 𝐿2 and maximum error norm 𝐿∞ are calculated to test the efficiency and accuracy 

of the method. Also, the numerical values of invariants for all test problems are obtained to show the 

conservation properties. Simulations of waves for test problems are figured. Obtained numerical results 

are compared with the numerical results of some earlier papers in the literature. Obtained results are 

compeletely satisfactory and it is seen that values of invariants are preserved very well during the 

computations.  It is shown that used method is an effective method with high accuracy. 

Keywords - Kernel Based, Meshless Method, Method of Lines, Radial Basis Function, Symmetric RLW 

Equation  

Ağsız Çekirdek Tabanlı Çizgiler Metoduyla Simetrik RLW 

Denkleminin Çözümü 
 

Özet 

Simetrik Regularized Long Wave (SRLW) denklemi ağsız çekirdek tabanlı çizgiler metodu ile sayısal 

olarak çözülür. Bu metot adi diferansiyel denklemlerle kısmi diferansiyel denklemlere yaklaşıldığı bir 

yöntemdir. Kullanılan bu metot tamamen ağsız bir metottur.  Hesaplamalarda Multiquadric ve Gaussian 

radyal taban fonksiyonlarıyla Wendland’ın kompakt destekli radyal taban fonksiyonları çekirdek 

fonksiyonları olarak kullanılır. Farklı test problemleri olan tek solitari dalga hareketi, iki pozitif solitari 

dalganın etkileşimi ve dalgaların çarpışması problemleri metodun uygulanabilirliliğini ve güvenilirliğini 

test etmek için incelenir. Tek solitari dalga hareketinin analitik çözümü bilindiği için metodun etkinliğini 

ve doğruluğunu test etmek için ortalama karesel hata normu 𝐿2  ve maksimum hata normu 𝐿∞ 

hesaplanır. Ayrıca, bütün test problemleri için invaryantların sayısal değerleri elde edilir ve korunum 

özellikleri gösterilir. Test problemleri için dalgaların simulasyonu şekilde gösterilir. Elde edilen sayısal 

sonuçlar literatürde ki bazı makalelerin sayısal sonuçları ile karşılaştırılır. Elde edilen sonuçlar tamamen 

tatmin edicidir ve invaryant değerlerinin hesaplamalar boyunca çok iyi bir şekilde korunduğu 

görülmektedir. Kullanılan metodun yüksek doğruluklu etkili bir metot olduğu görülür.  

Anahtar Kelimeler - Çekirdek Taban,  Ağsız Metot,  Çizgiler Metodu, Radyal Taban Fonksiyonu, Simetrik 

RLW denklem 
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1 Introduction 

SRLW equation is written as first order system form 
 

𝑢𝑥𝑥𝑡 − 𝑢𝑡 = 𝜌𝑥 + 𝑢𝑢𝑥

𝜌𝑡 + 𝑢𝑥 = 0
    (1.1) 

 

where subscripts 𝑡  and 𝑥 denote the partial 

derivatives with respect to these independent 

variables. In this system, 𝜌 and 𝑢 are the 

dimensionless electron charge density and the fluid 

velocity, respectively. Where, it is seen that derivative 

of 𝑢 with respect to 𝑡 is first order. Seyler and 

Fenstermacher [1] introduced this equation for the 

first time to describe as a model of the propagation of 

weakly nonlinear ion acoustic and space charge 

waves.  Also the SRLW equation is used in [2,3,4,5]. 
The physical boundary conditions for the system 
require 𝑢 → 0 as 𝑥 → ∓∞. To find the numerical 
solution, boundary conditions for the system (1.1) are 
given as follows: 

 
𝑢(𝑎, 𝑡) = 𝑢(𝑏, 𝑡) = 0, 𝜌(𝑎, 𝑡) = 𝜌(𝑏, 𝑡) = 0,

  
𝑥 ∈  [𝑎, 𝑏], 𝑡 ∈ [0, 𝑇]

     (1.2) 

and initial conditions 
𝑢(𝑥, 0) = 𝑓(𝑥), 𝜌(𝑥, 0) = 𝑔(𝑥)     (1.3) 

 
The SRLW equation is a symmetric version of the 
regularized long wave (RLW) equation which was 
proposed by Peregrine to describe the undular bore 
development [6]. The SRLW equation is explicitly 
symmetric in the 𝑥 and 𝑡 derivatives and it is very 
similar to RLW equation. Actually, eliminating 𝜌 from 
the system (1.1) it is obtained following form SRLW 
equation: 
 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 +
1

2
(𝑢2)𝑥𝑡 − 𝑢𝑥𝑥𝑡𝑡 = 0, 𝑥𝜖ℝ, 𝑡 > 0    (1.4) 

 
Solving of the SRLW equation has attracted the 
attention of scientists. Therefore, in the literature 
various theoretical and numerical studies have been 
presented. We have listed some of them. 
 
In the reference [2] indicated that interactions of 
solitary waves were inelastic, thus the solitary wave of 
the SRLW equation is not soliton.  The orbital stability 
and instability of solitary wave solutions of the 
generalized SRLW equations was studied in [7]. Also 
in [8], the influence of the interaction of the nonlinear 

terms on the orbital stability for the generalized SRLW 
equation was studied. The existence, uniqueness and 
regularity of numerical solutions for the periodic 
initial value problem of the generalized SRLW 
equations was investigated by spectral method in [9] 
and the error estimates were obtained.  
 
A Fourier pseudo-spectral method with a restraint 
operator for the SRLW equation was presented in [10], 
and proved the stability and the optimal error 
estimates. In [11], the initial boundary value problem 
for SRLW equations with non homogenous boundary 
value was considered. In [12], conservative finite 
difference methods for the SRLW equation was 
presented and numerical solutions by using two-level 
and nonlinear implicit scheme, three-level and linear-
implicit scheme and an uncoupled linear-implicit 
conservative scheme based on the finite difference 
methods were given. 
 
Radial basis functions collocation method which is a 
meshless method was applied to the SRLW equation 
in order to find numerical solutions for different test 
problems in [13]. Some numerical results for the 
SRLW equation was presented in [14] by using the 
trigonometric integrator pseudospectral discretization 
method. 
 
Application of Exp-function method to the SRLW 
equation was presented in [15] and generalized 
solution and periodic solution with some free 
parameters for the SRLW equation was obtained. 
Exact solutions of the SRLW equation was obtained in 
[16]. Analysis of Chebyshev pseduspectral method for 
multi-dimensional generalized SRLW equations was 
considered in [17] and fully discrete Chebyshev 
pseduspectral scheme was constructed.  
 
A linear difference scheme for dissipative SRLW 
equations with damping term was studied in [18]. 
Therein a linear three-level implicit finite difference 
scheme was designed and some numerical results 
pubslished. Numerical simulation and convergence 
analysis of a high-order conservative difference 
Scheme for SRLW Equation was presented in [19]. 
Crank-Nicolson difference schemes for dissipative 
SRLW equations with damping terms was studied 
and nonlinear-implicit finite difference scheme was 
designed in [20]. Numerical solutions are obtained by 
using collocation of cubic B-splines finite element in 
[21]. 
 
In this study, the numerical solutions of the SRLW 
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equations are calculated by means of the meshless 
kernel based method of lines (MKBMOL). In 
algorithms different kernel functions which are 
Multiquadric, Gaussian and Wendland's compactly 
supported radial basis functions are used. Therefore 
solitary wave solutions will be obtained for the 
different test problems. 
 
The rest of this paper is organized as follows: in 
Section 2, we will explain the method. In Section 3, 
used kernel functions will be given. Then, in Section 4 
several obtained numerical results, figures and 
comparisons are given and finally in Section 5 
conclusion is given. 
 

2 Numerical Method 

In this study MKBMOL approach is used. This meth-
od is a way of approximating partial differential equa-
tions by ordinary differential equations. First of all, to 
solve the given equation a system of ordinary differ-
ential equations will be obtained by using the 
MKBMOL. Therefore there will no time discretization 
and artificial linearization of the differential equation 
as different from other numerical methods such as 
finite element, finite differences and radial basis func-
tion collocation method. So the problem will be auto-
matically solved by using any ODE solver. The meth-
od uses time dependent coefficients for a linear com-
bination of spatial trial functions [22] as follow: 
 

𝑢(𝑥, 𝑡) = ∑ 𝜆𝑗(𝑡)𝜈𝑗(𝑥)

𝑛

𝑗=1

    (2.1) 

 
with smooth functions 𝜆𝑗 on [0, 𝑇], 1 ≤ 𝑗 ≤ 𝑁. Where 

𝜆𝑗(𝑡) is unknown time dependent function to be de-

termined at each time level as a column vector and 
𝜈𝑗(𝑥) is an invertible matrix for kernel functions. This 

function is differentiated with respect to time and 
space variable easilly. 
 
Now, we will show the implementation of the 
MKBMOL to the SRLW equation. The approximate 
values of functions 𝑢(𝑥, 𝑡) and 𝜌(𝑥, 𝑡) in the equations 
system (1.1) are approached as follows: 
 

𝑢(𝑥, 𝑡) = ∑ 𝛼𝑗(𝑡)𝜈𝑗(𝑥)

𝑛

𝑗=1

,   𝜌(𝑥, 𝑡) = ∑ 𝛽𝑗(𝑡)𝑤𝑗(𝑥)

𝑛

𝑗=1

   (2.2) 

 
Functions 𝑢(𝑥, 𝑡), 𝜌(𝑥, 𝑡) and their derivative 
functions are substituted in to the equation system 
(1.1) following simplified system is obtained: 

 

∑ 𝛼𝑗
′(𝑡)𝜈𝑗

′′(𝑥)

𝑛

𝑗=1

− ∑ 𝛼𝑗
′(𝑡)𝜈𝑗(𝑥)

𝑛

𝑗=1

= ∑ 𝛽𝑗(𝑡)𝑤𝑗
′(𝑥) + ∑ 𝛼𝑗(𝑡)𝜈𝑗(𝑥)

𝑛

𝑗=1

∑ 𝛼𝑗(𝑡)𝜈𝑗
′(𝑥),

𝑛

𝑗=1

𝑛

𝑗=1

    (2.3)

∑ 𝛽𝑗
′(𝑡)𝑤(𝑥)

𝑛

𝑗=1

+ ∑ 𝛼𝑗(𝑡)𝜈𝑗
′(𝑥) = 0

𝑛

𝑗=1

 

 
For brevity, this equations system (2.3) are written in 
MATLAB notation as follows: 
 

𝑉′′ ∗ 𝛼′(𝑡) − 𝑉 ∗ 𝛼′(𝑡) = 𝑊′ ∗ 𝛽(𝑡) +  (𝑉 ∗ 𝛼(𝑡)).∗

                                          (𝑉′ ∗ 𝛼(𝑡)) ,  (2.4) 

𝑊 ∗ 𝛽′(𝑡) + 𝑉′ ∗ 𝛼(𝑡) = 0 
 
where the symbol * means the pointwise product. 
Also, 𝑉, 𝑉′, 𝑉′′, W and W’ are invertible matrices con-
sisted of 𝜈𝑗(𝑥), 𝑤𝑗(𝑥) and their derivatives with re-

spect to 𝑥.  𝛼(𝑡), 𝛼′(𝑡),  𝛽(𝑡) and 𝛽′(𝑡) are vectors con-
sisted of 𝛼𝑗(𝑡) and its derivatives with respect to 𝑡. 

Therefore this obtained system can be written as fol-
lows: 
 
𝛼′(𝑡) = (𝑉′′ − 𝑉)−1

∗ (𝑊′ ∗ 𝛽(𝑡) + (𝑉 ∗ 𝛼(𝑡)).∗ (𝑉′ ∗ 𝛼(𝑡))) 

𝛽′(𝑡) = −𝑊−1 ∗ (𝑉′ ∗ 𝛼(𝑡))                                      (2.5) 

 
This equations system is solved by using any ODE 
solver. 
 

3 Kernel Functions 

In our algorithms as kernel functions we used Multi-
quadric [23], Gaussian which are globally supported 
and Wendland's compactly supported radial basis 
functions [24]. Definitions of mentioned kernel func-
tions as follows: 
 

𝑀𝑄:   ϕ(𝑟) = √(𝜀𝑟)2 + 1 

𝐺:      ϕ(𝑟) = exp (−
𝑟2

𝜀2
) 

𝑊: ϕ(𝑟) = (1 − 𝑟)+
𝑛 𝑝(𝑟) 

 

where 𝑟 = |𝑥 − 𝑥𝑗|  is the Euclidean distance between 

collocation points 𝑥 and 𝑥𝑗 and 𝜀 is shape parameter. 

To obtain the optimal value of shape parameter we 
calculated the condition number of the kernel matrix 
as in [25]. In the Wendland's compactly supported 
radial basis functions 𝑝 is a prescribed polynomial and 
following form of polynomial is used in our algo-
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rithms: 
 

ϕ7,5(𝑟) = (1 − 𝑟)+
12(9 + 108𝑟 + 566𝑟2 + 1644𝑟3

+ 2697𝑟4 + 2048𝑟5) 

 

4 Numerical Examples and Comparisons 

In this section, some numerical examples will be pre-
sented for the SRLW equation by using MKBMOL. An 
efficient numerical scheme must keep the the conser-
vation properties. Therefore it will be demostrated 
that the used method is conservative. In order to 
study this property we will evaluate the numerical 
values of invariants. The four invariants and some 
numerical results have been obtained in [1].  De-
scribed the four invariants for the equation as follows: 

𝐼1 = ∫ 𝑢(𝑥, 𝑡)𝑑𝑥

∞

−∞

 

 

𝐼2 = ∫ 𝜌(𝑥, 𝑡)𝑑𝑥

∞

−∞

 

  (4.1) 

𝐼3 = ∫(𝑢2(𝑥, 𝑡) + 𝑢𝑥
2(𝑥, 𝑡) + 𝜌2(𝑥, 𝑡))𝑑𝑥

∞

−∞

 

 

𝐼4 = ∫ (𝑢(𝑥, 𝑡)𝜌(𝑥, 𝑡) +
1

6
𝑢3(𝑥, 𝑡)) 𝑑𝑥

∞

−∞

 

 
The single solitary wave motion of the SRLW equation 
has a known analytical solution, therefore to measure 
the accuracy of the method the difference between the 
analytic and numerical solutions will be computed. 
These computations will be done by using the follow-
ing error norms:  
 

𝐿2 = √ℎ ∑|𝑢𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑗

𝑛𝑢𝑚.|
2

𝑁

𝑗=0

    (4.2)

𝐿∞ = max
0≤𝑗≤𝑁

|𝑢𝑗
𝑒𝑥𝑎𝑐𝑡 − 𝑢𝑗

𝑛𝑢𝑚.|       (4.3)

 

 
The accuracy and performance of the method has been 
tested by following test problems. 
 

 4.1 Single solitary wave motion 

The solitary wave solutions of the SRLW equations are 

defined as follows [1]: 

𝑢(𝑥, 𝑡) =
3(𝑐2 − 1)

𝑐
sec ℎ2 (√

𝑐2 − 1

4𝑐2
(𝑥 − 𝑐𝑡))    

𝜌(𝑥, 𝑡) =
3(𝑐2 − 1)

𝑐2
sec ℎ2 (√

𝑐2 − 1

4𝑐2
(𝑥 − 𝑐𝑡))    

(4.4) 

where 𝑐 is the velocity and 𝑐2 > 1, therefore the SRLW 

equation has the bidirectional propagation as depends 

upon sign of the its velocity. The simulation is carried 

out over the domain −20 ≤ 𝑥 ≤ 80 in the time period 

0 ≤ 𝑡 ≤ 40 with time step ∆𝑡 = 0.05, space step ℎ = 0.5 

for value 𝑐 = √2. A comparison with the earlier results 

of the computed values is shown in Tables 1 and 2. 
The motion of the single solitary wave at some times 
is depicted in Figure 1. It is seen that solitary wave 
moves to the right almost with unchanged in form. As 
seen from the Table 1, the invariants remained as 
unchanged at acceptable rate while time increases for 
all kernel functions. It is seen that the computed error 
norms in Table 2 are very acceptable when compared 
with other results in the literature. Comparisons 
showed that the method is very reliable for all kernel 
functions.  

Table 1: Invariant values for a single wave motion 

 
Method 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 

analytic 12.000000 8.4852755 27.1529000 16.800000 

G 11.9999928 8.4852763 27.1529004 16.799999 

W 11.9999928 8.4852763 27.1529004 16.800000 

MQ 11.9999928 8.4852277 27.1529003 16.799999 

[13] 11.997488 8.487162 27.144679 16.794166 

[14] 12.0000166 8.4852811 27.1529533 16.8000374 

 

Table 2: Computed Error norms for a single wave motion 

 
Method 𝑳𝟐 𝑳∞ 

G 0.00000273 0.00000114 

W 0.00000111 0.00000032 

MQ 0.00538742 0.00115856 

[13] 0.001770 0.000964 

 



 
 
CBÜ Fen Bil. Dergi., Cilt 12, Sayı 2, 179-185 s                                                                               CBU J. of Sci., Volume 12, Issue 2, p 179-185 

183 
 

 

Figure 1: Motion of the single solitary wave 

 

 4.2 Interaction of Two Solitary Waves 

Secondly, let us consider the initial condition 
 

𝑢(𝑥, 0) = 𝑢1(𝑥 − 𝑥0, 0) + 𝑢2(𝑥 + 𝑥0, 0)

𝑢1(𝑥 − 𝑥0, 0) =
3(𝑐1

2 − 1)

𝑐1

sec ℎ2 (√
𝑐1

2 − 1

4𝑐1
2

(𝑥 − 𝑥0))

𝜌(𝑥 + 𝑥0, 0) =
3(𝑐2

2 − 1)

𝑐2

sec ℎ2 (√
𝑐2

2 − 1

4𝑐2
2

(𝑥 − 𝑥0)) 

   (4.5) 

 
and boundary conditions 𝑢(−30, 𝑡) = 𝑢(120, 𝑡) = 0. 
The initial condition for the 𝜌(𝑥, 0) is calculated in a 
similar manner the initial value of 𝑢(𝑥, 0). At this test 
problem, the interaction of two positive solitary waves 
is observed when time is increasing. The numerical 
constans are chosen as ∆𝑡 = 0.05, ℎ = 0.5, 𝑐1 = 2,       
𝑐2 = 6 and 𝑥0 = 12 and the program is run until the 
time 𝑡 ≤ 16. Initially the larger wave was placed on 
the left side of smaller one. Amplitudes of the larger 
wave and smaller wave were 17.5 and 4.5 and 
coordinates of peak positions were 𝑥 = −12 and 
𝑥 = 12, respectively. 
After, two solitary waves move to right with velocities 
depend upon their magnitudes. While time increasing 
the larger wave catches up the smaller one and has 
passed through. The distances between waves will be 
become longer as time increases because of their 
magnitudes. At the end of the running time, waves 
regained their original amplitudes.  
 
Simulations of two solitary waves profiles are 
depicted in Figure 2. The computed values of 

invariants for all kernel functions are given in Table 3. 
For initial time, analytical values of invariants are 
given in the same table. Evaluated values of invariants 
at the end time are consistent with analytical values at 
the initial time. From this calculated results show that 
invariants are satisfactorily preserved. 
 
Table 3: Invariant values for a single wave motion 

 
Method 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 

analytic 91.777566 22.2244642 1099.60235 2139.21715 

G 91.7775660 22.2244642 1099.60235 2139.21754 

W 91.7775660 22.2244642 1099.59270 2339.21754 

MQ 91.7775660 22.2244642 1099.55932 2139.21715 

[13] 89.7537827 22.2229073 1043.77440 1974.03372 

 

Figure 2: Simulation of interaction ot twowaves 

 

4.3 The clash of two solitary waves 

As a final test problem, we consider the clash of two 

solitary waves. Where two solitary waves are of 

exactly the same form but different signs move 

towards each other. For these problem we choose the 

solution domain as −90 ≤ 𝑥 ≤ 90 and calculations 

will done up to 𝑡 = 12 with time step ∆𝑡 = 0.05 and 

space step ℎ = 0.5. Initially, amplitude of the wave 

with positive is 44.8 and located at 𝑥 = −20 and other 

one is located to 𝑥 = 20 with amplitude −44.8. The 

clash of waves occurs time increases and new wave 

pairs areoccurred at the opposite directions.  

The program is run up to time 𝑡 = 12 and three wave 

pairs which were the same form but different signs 
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were observed. In Figure 3, profiles of the clash of 

waves are plotted. Computed invariants values are 

given in Table 4.  Also at the same table analytical 

values of invariant were given for the initial time.  The 

invariants for different types of kernel functions are 

satisfactorily preserved. 

 
Table 4: Invariants for the clash of two solitary waves  

 
Method 𝑰𝟏 𝑰𝟐 𝑰𝟑 𝑰𝟒 

analytic 0 23.9466073 12911.84035 0 

G -6.113e-13 23.9466073 12911.84035 -5.264e-10 

W -3.467e-06 23.9466073 12911.84028 -4.516e-04 

MQ -3.180e-07 23.9466073 12911.83302 -9.587e-06 

[13] -0.0000087 23.9766076 12911.83791 -0.0073622 

 

 

 

 

 

Figure 3: Simulation of the clash of two solitary waves 

 

5 Conclusion 

In this work, the meshless kernel based method of 

lines was used for the solution of the SRLW equation. 

Multiqaudric, Gaussian and Wendland's compactly 

supported radial basis functions were used as kernel 

functions in the algorithms. The efficiency of the 

method tested by three different test problems which 

were single solitary wave motion, the interaction of 

two positive solitary waves and the clash of waves 

were studied. The accuracy of the method was 

examined by the error norms for the single solitary 

wave motion. It was seen that computed error norms 

were very acceptable and reasonably small. The 

numerical values of invariants were calculated for all 

test problems. At the end of running time invariants 

remained almost unchanged. The numerical method 

successfully provides very accurate solutions. The 

numerical results showed that the meshless kernel 
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based method of lines is very effective and can be 

applied to these kinds of nonlinear partial differential 

equations systems. 
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