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• This paper focuses on detection of synthetic speech under additive noise. 

• Denoising autoencoder (DAE) network is used to obtain clean estimates of i-vectors. 

• DAE – i-vector combination has not been applied to spoof detection previously. 
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Abstract 

Spoofed speech detection is recently gaining attention of the researchers as speaker verification 

is shown to be vulnerable to spoofing attacks such as voice conversion, speech synthesis, replay, 

and impersonation. Although various different methods have been proposed to detect spoofed 

speech, their performances decrease dramatically under the mismatched conditions due to the 

additive or reverberant noises. Conventional speech enhancement methods fail to recover the 

performance gap, hence more advanced techniques seem to be necessary to solve the noisy 

spoofed speech detection problem. In this work, Denoising Autoencoder (DAE) is used to obtain 

clean estimates of i-vectors from their noisy versions. ASVspoof 2015 database is used in the 

experiments with five different noise types, added to the original utterances at 0, 10, and 20 dB 

signal-to-noise ratios (SNR). The experimental results verified that the DAE provides a more 

robust spoof detection, where the conventional methods fail. 
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1. INTRODUCTION 

 

Speaker recognition systems, which verifies or identifies users from their utterances, achieved high 

performances with methods such as Gaussian mixture model – universal background model (GMM-UBM) 

[1], i-vectors [2], and x-vectors [3]. Usually, speaker verification systems’ performances are examined by 

using the utterances from the real user and many other zero-effort imposter utterances. Using spoofing 

attacks instead of zero-effort imposters, the verification accuracy decreases rapidly [4–6]. 

 

Besides the spoofing attacks, environmental mismatch is another issue that affects the recognition 

performance. This type of mismatch usually occurs when the training data is obtained in a controlled 

environment such as a studio, office, etc., but the operating environment is different. Possible mismatch 

sources are the channel noises due to the different recording devices, additive noises such as car noises at 

outdoors, and reverberation [7–9].  

 

The aforementioned problems, i.e. spoof detection and noise robustness, are addressed separately in general 

as the spoof detection is a relatively new research area, and none of the developed methods are effective 

against diverse spoofing attack types yet. Studies on the spoof detection gained momentum with the recent 

challenges and publicly available datasets of those challenges [5], [10–12]. The early investigations about 

spoof detection focused on the well-known features and classifiers used in speech processing literature 

[13,14]. Magnitude-based features dominate the speech/speaker recognition, but it is found that phase-

based features are also effectively capturing spoofing information. For the classifiers, the i-vector approach, 

which provides state-of-the-art performance for text-independent speaker recognition, failed to compete 

with the conventional GMM method [15]. Besides the known features, several new features are also 

introduced for spoof detection. One of the most successful methods is the constant-Q cepstral coefficients   

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0002-8680-0636


1554  Gokay DISKEN / GU J Sci, 36(4): 1553-1561 (2023) 

 
 

(CQCC) [16], which becomes a de facto standard. For the backend, deep learning based methods are used 

with various different architectures [17–21].  

 

Only a few studies have considered noisy spoof detection [15,21,22]. In [15], several different features and 

classifiers are used for noise robust spoof detection on ASVspoof 2015 database, which includes synthetic 

speech attacks. Speech enhancement methods [23] such as spectral subtraction, Wiener filtering, minimum 

mean square error (MMSE), logarithmic MMSE are reported to further deteriorate the performance 

compared to the baseline GMM system without any enhancement. Therefore, the results of [15] proves the 

need of more advanced systems for robust spoof detection. In fact, [21,22] have shown that deep learning 

architectures incorporated with noise aware training and signal-to-noise masks are highly effective 

solutions, except their computational loads. Nevertheless, those deep architectures are used to extract 

identity vectors, which are then sent to the classifiers such as GMM, support vector machine, etc. Hence, 

they are highly specialized systems for spoof detection, and cannot share the same feature/classifier with a 

speaker recognition system. 

 

In this work, i-vectors are used for noise robust spoof detection, where a Denoising Autoencoder (DAE) 

network is hired to estimate clean (denoised) i-vectors from their noisy counterparts. A similar approach is 

used in [24] for robust speaker recognition. To the best of the author’s knowledge, robustness of the i-

vectors has not been examined for spoof detection. Since the classical speech enhancement methods are not 

suitable for this task, and the deep learning solutions are not directly applicable within a speaker recognition 

system, it is worth exploring the performance of the proposed i-vector based system. The same i-vector can 

be used for both spoof detection and speaker recognition, without excessive increment on the computational 

load. Following the limited literature on the robust spoof detection, ASVspoof 2015 dataset is used in this 

study.  

 

2. PROPOSED ROBUST SYSTEM 

 

In this section, the conventional i-vector framework is briefly described. Then, the DAE network used in 

the experiments is introduced. All necessary parameters of the proposed system are also given in this section 

for completeness. 

 

2.1. I-vector 

 

I-vectors are fixed dimensional representation of variable length utterances. This property gives the 

opportunity of applying different normalization/enhancement technique in a low dimensional space. 

Following the conventional framework of [2], i-vector extraction mainly requires training of a UBM and a 

total variability matrix, T. A speaker and channel independent GMM supervector can be defined as 

 

𝑀 = 𝑚+ 𝑇𝜔   (1) 

 

where m is the mean supervector taken from the UBM, and 𝜔 is a random vector with normal distribution. 

The i-vector is obtained by the maximum a posterior estimate of 𝜔 for each utterance. Once the i-vectors 

are extracted, various compensation and dimensionality reduction techniques may applied such as within-

class covariance normalization (WCCN), linear discriminant analysis (LDA), nuisance attribute projection 

(NAP) [2], length normalization [25]. For the scoring part, support vector machines, cosine distance, 

probabilistic LDA (PLDA), and two-covariance-based scoring are among the alternatives [2,26,27]. 

 

The proposed i-vector system follows the recipe of [10], where 19 dimensional CQCC features are extracted 

from each utterance, delta and acceleration coefficients are also appended. A UBM with 64 mixtures is 

trained using the train partition of ASVspoof 2015 data. The partitions of the database are given in Table 

1, and further details are given in Section 3. Total variability matrix, T, has 100 factors. The extracted i-

vectors are mean normalized, whitened, and WCCN is applied. Single i-vectors are constructed for human 

and spoofed speech by averaging the respective i-vectors of each class. Length normalization is also 

included. 
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For the scoring part, cosine distance scoring is employed. It can be computed using a target and a test i-

vector. In this case, two target classes are available as human (𝜔ℎ𝑢𝑚) and spoof (𝜔𝑠𝑝𝑜), as described 

previously. A final score for a given test i-vector (𝜔𝑡𝑒𝑠𝑡) is calculated as 

 

𝑠𝑐𝑜𝑟𝑒 = cos(𝜔ℎ𝑢𝑚, 𝜔𝑡𝑒𝑠𝑡) − cos⁡(𝜔𝑠𝑝𝑜, 𝜔𝑡𝑒𝑠𝑡)   (2) 

 

where cos is the cosine distance given below, and the denominator will be equal to one due to the length 

normalization 

 

𝑐𝑜𝑠(𝜔𝑎 , 𝜔𝑏) =
〈𝜔𝑎,𝜔𝑏〉

‖𝜔𝑎‖‖𝜔𝑏‖
  . (2) 

 

2.2. Denoising i-vector 

 

As stated in [24], the i-vector extraction process is a non-linear process. Hence, to overcome the non-linear 

effects of the noise in i-vector space, neural networks can be used. Although different approaches have been 

proposed to reduce the noise effects in the i-vector space [27,28], they require a lot of computational power, 

and do not perform well for utterances with short duration, which is the case for ASVspoof 2015 database. 

Therefore, a DAE network is preferred in this work, as it was proven to increase the robustness of speaker 

recognition systems [24]. The DAE network estimates a clean output based on the corrupted input, by 

learning a non-linear mapping between them [29].  

 

The proposed DAE consists of two fully connected hidden layer with ReLU activation functions. Each 

hidden layer has 500 units, and dropout with 0.5 probability is added to each hidden layer to prevent 

overfitting. The inputs of the network are the noisy i-vectors, and the outputs are the denoised versions. 

Hence, both the input and the output dimensions are 100. The output layer is a regression layer, and the 

objective function of the network is to minimize the mean square error between the original clean i-vector 

and the denoised i-vector. 

 

Following the related literature on noisy spoof detection [15,22,30], babble, car, and white noises are chosen 

from the Noisex-92 database [31], and street and café noises are chosen from the QUT-NOISE database 

[32]. Each utterance of the training data is corrupted with one of the noises from the Noisex-92 database 

chosen randomly. SNR levels are also selected randomly in the range of 0 to 20 dB with 5 dB steps. Street 

and café noises are only used in the test stage to simulate unseen environments. Also, in order to minimize 

the effects of unbalanced distribution of the training data, each of the utterances in the human partition is 

corrupted three times with a random noise type and SNR level as mentioned. As a result, a total of 11250 

clean-noisy pairs are created for the human data, and 12625 clean-noisy pairs are created for the spoof data. 

 

As the outputs of the DAE are assumed to be clean, the final scores are computed with the Equation 2, 

where i-vectors representing each class are observed by averaging, as discussed in the previous subsection. 

Since the noise effects are handled in the DAE, any kind of scoring process for i-vectors can be used without 

any modifications. In this work, the cosine distance is preferred because it is one of the basic methods that 

does not require training or any other information about the data. Hence, the robustness of the proposed 

system can be mainly attributed to the DAE. Therefore, whether the i-vector/DAE system increases the 

robustness of the spoof detection or not will be verified experimentally, without any support from front-

end or back-end.   
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Table 1. Partitions of ASVspoof 2015 database 

Subset 
Number of utterances 

Human Spoof 

Train 3750 12625 

Development 3497 49875 

Evaluation 9404 184000 

 

3. EXPERIMENTAL RESULTS 

 

The spoof attack types of ASVspoof 2015 database are divided into 10 sub-parts. Five of them (S1–S5) are 

available in each partition, hence named as known attacks. The remaining parts (S6–S10) are only available 

in the evaluation partition, so called as unknown attacks. The generalization capacity of the spoof detection 

systems is also important to capture those unknown attacks. Attacks named as S1, S2, S5, S6, S7, S8, and 

S9 are voice conversion attacks. S3, S4, and S10 are speech synthesis attacks. S4 and S10 methods are 

trained with 40 utterances, and the other attacks are trained with 20 utterances. The sampling frequency of 

the dataset is 16 kHz. Also, there is no speaker overlap within training, development, and evaluation 

partitions. Average utterance duration is about 3.5 seconds, which is a drawback for the i-vectors as they 

tend to perform better with longer utterances. The original data do not include channel or background noise. 

Further details about the dataset (such as the algorithms of spoof attacks) can be found in [11]. 

 

The proposed DAE network was trained using the clean-corrupted pairs of the training data and validated 

on the development data. The baseline method to compare the results of the proposed approach is the 

CQCC–GMM method reported in [22]. The reasons for choosing this baseline are as follows; 

 

- The proposed system shares the same feature type (CQCC).  

- The GMM method is known to be superior to the i-vectors for spoof detection [15,22]. 

- Several speech enhancement methods such as spectral subtraction, Wiener filtering, MMSE, etc. 

are reported to be further detrimental than no enhancement at all for the GMM [15]. 

- Multi-condition training (i.e. pooling all noisy data in the training set) was used in the baseline 

system, which is similar to the proposed DAE network. 

 

For completeness, CQCC – i-vector with cosine scoring [15] results for the development set are also given 

in order to verify the DAE’s functionality. Comparison with the deep learning based methods are neglected 

due to the reasons mentioned in the Introduction section. In fact, the state-of-the-art system [21] consist of 

two feature sets (magnitude and phase based), a separately trained CNN for signal-to-noise mask 

estimation, gated recurrent convolutional neural networks for each feature set, and finally a PLDA 

classifier. This highly specialized system achieved impressive performances even under low SNR 

conditions. On the other hand, the proposed system in this study aims to increase the robustness of the i-

vectors, as the same i-vectors can be used for both spoof detection and speaker recognition simultaneously. 

Therefore, it is conservative compared to the state-of-the-art.  

 

The performance metric used in this study is equal error rate (EER). EER is the standard metric for assessing 

the performance of automatic speaker verification systems. It is also commonly used in spoof detection. 

EER is the point where false acceptance rate (misclassified spoof attacks) and false rejection rate 

(misclassified human speech) are equal. Lower EER value indicates higher accuracy. Once the scores for 

the test utterances are obtained, Bosaris Toolkit within the baseline codes for the ASVspoof 2015 data is 

used to calculate the EER, providing the labels for each utterance.  

 

In Table 2, results for the development data are given in terms EER, which was computed by considering 

each individual attack type, then averaged over all attacks and shown under the Avg. column. Note that the 

street and café noises are unseen conditions for the proposed system, as they were not included in the DAE 



1557  Gokay DISKEN / GU J Sci, 36(4): 1553-1561 (2023) 

 
 

training. Nevertheless, they perform relatively similar to the seen noise conditions. The best performance 

was achieved under the presence of car noise, due to the fact that it is a stationary noise and hence easier to 

detect noise statistics. Average results for the conventional CQCC – i-vector system are given in the last 

column. Note that café and street noises were not available for the conventional system. Comparing the 

average EERs, it is clear that the DAE network increased the robustness of the i-vectors.  

 

Table 2. EER (%) results for the development set under different noise configurations 

Noise Type 
SNR 

(dB) 
S1 S2 S3 S4 S5 Avg. 

CQCC – i-vector 

[15] 

Babble 

20 9.75 16.22 10.16 10.58 8.61 11,06 27.63 

10 21.87 28.76 16.35 16.75 16.19 19,98 39.21 

0 38.05 42.95 27.12 27.74 28.38 32,85 46.20 

White 

20 15.75 26.98 15.98 16.15 25.75 20,12 41.55 

10 22.26 34.37 19.58 19.4 29.73 25,07 44.76 

0 30.29 44.62 24.4 24.03 41.79 33,03 48.27 

Car 

20 0.55 2.24 1.88 1.75 1.28 1,54 13.46 

10 2.47 6.65 4.04 4.11 2.87 4,03 25.53 

0 6.4 13.75 7.2 6.94 5.43 7,94 37.84 

Cafe 

20 14.95 22.38 14.8 15.46 16.83 16,88 - 

10 25.06 31.05 20.68 21.21 25.07 24,61 - 

0 37.52 41.23 29.83 29.63 34.62 34,56 - 

Street 

20 11.9 18.03 10.91 11.04 11.3 12,63 - 

10 23.22 28.68 17.83 18.51 19.87 21,62 - 

0 33.27 37.66 23.83 24.09 28.27 22,77 - 

 

Table 3 shows the results for the evaluation set, and the results for the baseline method. It should be 

reminded that for the baseline method, car and street noises were the unseen conditions, to examine the 

performance under unseen stationary noise (i.e. car). However, eliminating the stationary noises are much 

easier than the non-stationary noises as seen in both Table 2 and Table 3. Comparing the performances 

under the non-stationary street noise, which was an unseen condition for the proposed system, and a seen 

condition for the baseline, it can be observed that the proposed DAE network is more robust even the noise 

statistics were not present in the training data. In general, the proposed system performed superior to 

baseline except for the car noises at 10 and 20 dB SNRs. 

 

Table 3. EER (%) results for the evaluation set under different noise configurations 

 Proposed System 

CQCC-

GMM 

[22] 

Noise 

Type 

SNR 

(dB) 
S1 S2 S3 S4 S5 S6 S7 

S8 S9 S10 Average 

Babble 

20 10.38 16.57 9.97 9.96 9.06 13.15 7.99 17.97 10.68 22.86 12,85 18.3 

10 21.74 27.75 14.87 14.75 15.86 22.09 17.84 20.62 23.68 28.8 20,8 33.8 

0 35.83 38.63 23.77 24.09 25.56 31.17 31.37 27.68 34.37 34.98 30,74 44.3 

White 

20 14.84 26.12 13.72 13.59 24.19 27.8 16.73 23.94 20.25 18.25 19,64 45.7 

10 23.06 32.77 17.44 17.2 28.8 33.35 22.95 25.65 26.53 21.81 24,96 48.5 

0 28.64 40.5 21.53 21.43 37.87 41.22 31.13 31.42 36.89 26.35 31,69 49.1 

Car 

20 0.78 2.54 1.96 1.78 1.19 1.46 0.32 7.52 0.79 14.42 3,27 1.8 

10 2.94 7.74 4.23 4.06 2.89 4.26 1.73 10.84 3.62 17.04 5,93 4.9 

0 7.92 16.21 7.26 7.23 5.98 9.69 5.61 13.46 8.76 23.01 10,51 13.0 

Cafe 

20 14.21 21.49 13.51 13.36 15.35 19.3 11.61 22.94 15.55 24.39 17,17 30.4 

10 24.13 30.18 19.07 19.16 23.55 27.82 18.32 26.18 26.07 30.52 24,5 41.7 

0 35.18 38.79 26.72 27.19 32.46 35.17 29.41 31.55 35.18 36.68 32,83 47.3 

Street 

20 12.05 18.84 10.39 10.01 11.04 14.55 9.33 20.76 13.21 23.8 14,4 22.5 

10 23.21 29.45 17.6 17.92 19.83 25.51 18.26 26.54 26.92 31.2 23,64 36.9 

0 32.37 37.72 22.58 22.84 27.87 32.39 28.21 31.82 35.91 36.2 30,8 45.8 
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4. DISCUSSION 

 

The proposed i-vector/DAE based system is proven to be more robust than the CQCC-GMM baseline. One 

of the most important outcomes of this work is that even the GMMs are favored over the i-vectors for spoof 

detection, the presence of the additive noise may affect this preference. As the conventional speech 

enhancement methods are not adding any robustness to the GMM systems, their practical usage will be 

limited. The i-vectors, on the other hand, has the advantage of representing the variable utterances as fixed 

dimensional vectors. Using this property, the DAE network is effectively reducing the additive noise 

artifacts, as verified using the ASVspoof 2015 database.  

 

Although the proposed system outperformed the baseline, its performance was not comparable to the more 

advanced deep learning architectures such as [21,22]. The main reason for that is the short duration of the 

utterances in the database, where the average is about 3.5 seconds [18]. Considering the fact that i-vectors 

perform better with long utterances (e.g. 30 seconds) [33], the performance of the proposed method 

becomes more impressive. Yet, more investigation is needed to further increase the performance, and close 

the gap between the deep learning based systems. Then, the same i-vectors can be used for both spoof 

detection and speaker verification under additive noise.   

 

5. CONCLUSION 

 

Robustness of the spoof detection systems against noise is an important issue for practical implementations 

and for the security of speaker recognition systems. The i-vectors fail to provide sufficient performance for 

spoof detection, especially due to the short duration utterances in the available databases. Contrary, in the 

presence of the noise, the performance of the conventional systems decreases rapidly as the SNR decreases, 

and classical speech enhancement methods make the situation even worse.  

 

In this work, a DAE network is used to provide clean estimates from the noisy i-vectors. The proposed 

system is tested against five different additive noise types at three different SNR levels. Two of these noises 

were not present in the training data to simulate unseen conditions at the test stage. Out of 15 different noise 

configurations, the proposed system performed superior than the CQCC-GMM baseline except two cases. 

It is experimentally proved that the i-vector/DAE combination is more robust than the conventional speech 

enhancement methods with a GMM classifier. Future research efforts will focus on achieving a competitive 

performance compared to the advanced deep learning architectures. 
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