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1. INTRODUCTION

Let Tn be the family of all trigonometric polynomial of degree non greater than n and C2π

the space of 2π-periodic continuous functions f with the norm ‖f‖ = sup{|f(x)| : x ∈ [−π, π]}.
We denote by Cr2π the space of r-times continuously differentiable functions. For f ∈ Cr2π we
set Drf = f (r).

For f ∈ C2π , r ∈ N and t > 0, the modulus of smoothness of order r is defined by

ωr(f, t) = sup
0<h≤t

‖∆r
hf‖, where ∆r

hf(x) =

r∑
k=0

(−1)r−k
(
r

k

)
f(x+ kh).

For the approximation of continuous periodic functions several convolution operators have
been used. From the computational point of view, it is more useful to work with operators
defined discretely (they are given in terms of a finite family of values of the functions). Some
authors have employed Riemann sums to replace the integrals in the convolution by discrete
sums (see [1]).

For r ∈ N and k ∈ Z, throughout the paper we set

xr,k =
2kπ

(r + 1)
.

The Dirichlet kernel is given by (see [3, p. 42])

(1.1) Dn(x) = 1 + 2

n∑
k=1

cos(kx) =
sin((2n+ 1)x/2)

sin(x/2)
, x 6= 2jπ, j ∈ Z,

and Dn(x) = 2n+ 1, x = 2jπ, j ∈ Z. We also set

Dn(x) =
1

2n+ 1
Dn(x)
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for the normalized Dirichlet kernel. It follows from (1.1) that |Dn(x)| ≤ 2n + 1 and equality
holds if x = 0. That is the reason why we prefer the normalization given by Dn(x).

For f ∈ C2π the interpolating polynomial of degree n at the equidistant points x2n,k can be
written as

(1.2) Ln(f, x) =

2n∑
k=0

Dn(x− x2n,k)f(x2n,k).

The operator Ln is a Riemann sum approximation of the partial sum of the Fourier series of f
given by

1

2π

∫ π

−π
f(t)Dn(x− t)dx.

Notice that for 0 ≤ j < k ≤ 2n

Dn(x2n,j − x2n,k) =
1

2n+ 1

sin((j − k)π)

sin((j − k)π/(2n+ 1))
= 0.

Since for every i ∈ N, Din(0) = 1, each operator

Ln,i(f, x) =

2n∑
k=0

Din(x− x2n,k)f(x2n,k),

interpolates the function f at the points x2n,k. It is clear that the new polynomials are of degree

non greater than ni. Moreover, if the real numbers a1, a2, . . . , am satisfy
m∑
i=1

ai = 1, then the

linear combination

(1.3) Mnm(f, x) =

m∑
i=1

aiLn,i(f, x)

provides an interpolation process. The operatorsMnm are useful when we want to approxi-
mate properties better than the one provided by Ln,1.

For instance, Kis and Vértesi studied in [9] the operators

K4n(f, x) = 4L2n,3(f, x)− 3L2n,4(f, x),

while the arguments given by Saxena and Srivastava in [7] can be used to consider the opera-
tors

S6n(f, x) =
25

3
L2n,4(f, x)− 32

3
L2n,5(f, x) +

10

3
L2n,6(f, x).

In [7] only a modification to non-periodic was included. Notice that, in both cases, the sum of
the coefficients is one. Thus, they are interpolating operators of the form (1.3).

It was proved in [9] that there exists a constant C such that, for each f ∈ C2π and n ∈ N,

(1.4) ‖f −K4n(f)‖ ≤ Cω
(
f,

1

n

)
.

Another approach to improve the rate of convergence of a linear approximation process
considers iterative combinations. For instance, for a linear operator L : C2π → Tn, we construct
the new operator

L̃(f) = 2L(f)− L2(f),

where L2(f) = L(L(f)). But, for linear interpolation operators this approach is not useful. In
particular, if Ln is given by (1.2), then L2

n(f) = Ln(f). We can avoid this inconvenience by
using other Riemann sums in the discretization of a convolution operator.
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For n,m ∈ N and f ∈ C2π , in this paper we study the polynomial operators defined by

(1.5) Mmn,2(f, x) =
1

(2n+ 1)(mn+ 1)

mn∑
k=0

f(xmn,k)D2
n(x− xmn,k),

(1.6) Mmn,3(f, x) =
1

(3n2 + 3n+ 1)

1

(mn+ 1)

mn∑
k=0

f(xmn,k)D3
n(x− xmn,k),

and

(1.7) Q3n(f, x) = Cn

4n∑
k=0

f(x4n,k)
(
D2
n(x− x4n,k) +D3

n(x− x4n,k)
)
,

where

Cn =
(2n+ 1)3

(7n2 + 7n+ 2)(4n+ 1)
.

We will prove in Section 5 that

(1.8) ‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 14ω2

(
f,

2π

n+ 1

)
.

There are some differences between (1.4) and (1.8). Our polynomials are of a lower degree and
the rate of convergence is given in terms of the second order modulus of smoothness, but we
need more nodes.

Since, for m ∈ N, Dm
n is an even trigonometric polynomial of degree nm, there are unique

real numbers %n,m(i), 0 ≤ i ≤ mn, such that

(1.9) Dm
n (x) =

mn∑
i=0

%n,m(i) cos(ix).

In particular, for 1 ≤ i ≤ mn,

(1.10) %n,m(i) =
1

π

∫ π

−π
Dm
n (x) cos(ix)dx.

For our approach we need explicit expressions of the coefficients %n,2(i) and %n,3(i), but only
for 0 ≤ i ≤ n. This will be accomplished in Section 3. In Section 4 we study the behavior of
the operators (1.5) and (1.6) for polynomials of lower degree. The main results are presented in
Section 5. Finally, in the last section we investigate the case of approximation of non-periodic
functions.

A strong converse result, as well as the saturation class, will be given in the second part of
the paper.

2. AUXILIARY RESULTS

Recall that the Fejér kernel is defined by (see [3, p. 43])

Fn(x) =
1

n+ 1

n∑
k=0

Dk(x) = 1 + 2

n∑
k=1

(
1− k

n+ 1

)
cos(kx).

If sin(x/2) 6= 0, then

(2.11) Fn(x) =
1

(n+ 1)

( sin((n+ 1)x/2)

sin(x/2)

)2
.
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For f ∈ C2π the associated Fejér operator is defined by

σn(f, x) =
1

2π

∫ π

−π
f(x+ t)Fn(t)dt.

Lemma 2.1. If g ∈ C1
2π and n ∈ N, then D(σn(f)) = σn(Df).

Proof. It is known that (see [3, Proposition 1.1.14]) if g ∈ C2π and f ∈ C1
2π , then f ∗ g ∈ C1

2π and
D(f ∗ g) = (g ∗D(f)). �

The following quadrature formula is known.

Proposition 2.1. ([5, p. 20]) If x ∈ R, n ∈ N and T ∈ Tn, then

1

2π

∫ π

−π
T (t)dt =

1

n+ 1

n∑
k=0

T
(
x+

2kπ

n+ 1

)
.

If

(2.12) T (x) = a0 +

n∑
j=1

(aj cos(jx) + bj sin(jx) =

n∑
j=0

Aj(T, x),

the conjugate of T is given by T̃ (x) =
∑n
j=1(−bj cos(jx) + aj sin(jx)). Simple equations related

with the conjugate polynomials are presented in Lemma 2.2.

Lemma 2.2. If T ∈ Tn is given by (2.12) and W = DT̃ , then

DT̃ =

n∑
j=1

jAj(T ), D2T = −
n∑
j=1

j2Aj(T ),

DW̃ = −D2(T ) and D(D̃2T ) = D3T̃ .

Lemma 2.3. If n ∈ N, σn is the Fejér operator and T ∈ Tn, then

(I − σn)T =
1

(n+ 1)
DT̃ and D3T̃ = (n+ 1)(I − σn)(D2T ).

Proof. The first equation is well known (for instance see [2]). For the second one we write

(I − σn)(D2T ) =
1

(n+ 1)
D(D̃2T ) =

1

(n+ 1)
D3T̃ ,

where we use Lemma 2.2. �

Theorem 2.1 (Stechkin, [8]). If r, n ∈ N and T ∈ Tn, then

(2.13) ‖DrT‖ ≤
( n

2 sin(nh/2)

)r
‖∆r

hT‖

for any h ∈ (0, 2π/n).

We will use the Stechkin theorem in a more convenient form for our purposes.

Proposition 2.2. If r, n ∈ N, f ∈ C2π , and T ∈ Tn, then

(2.14)
1

nr
‖DrT‖ ≤ 1

2r
ωr

(
f,
π

n

)
+ ‖f − Tn‖ .

Proof. It follows directly from Theorem 2.1 with h = π/n and the inequality ‖∆r
hT‖ ≤ 2r‖f −

T‖+ ‖∆r
hf‖. �
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We will use Proposition 2.2 in the case when T is the polynomial of the best approximation
for f in Tn. It is known that, for every f ∈ C2π and n ∈ N0, there exists an unique polynomial
T ∈ Tn (called the polynomial of the best approximation) such that

En(f) = inf
Tn∈Tn

‖Tn − f‖ = ‖T − f‖.

Proposition 2.3. If f ∈ C2π , T ∈ Tn and En(f) = ‖T − f‖, then

‖D2T‖ ≤ n2
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

‖D4T‖ ≤ n4
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

and

‖D3T̃‖ ≤ 2n2(n+ 1)
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
.

Proof. It follows from Proposition 2.2 that

‖D2T‖ ≤ n2
(1

4
ω2

(
f,
π

n

)
+ En(f)

)
‖D4T‖ ≤ n4

( 1

24
ω4

(
f,
π

n

)
+ En(f)

)
≤ n4

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
,

because ω4(f, t) ≤ 4ω2(f, t). The last inequality is a consequence of Lemma 2.3. In fact

‖D3T̃‖ = (n+ 1)‖(I − σn)(D2T )‖ ≤ 2(n+ 1)‖D2T‖.

�

3. EXPANSION OF DIRICHLET KERNELS

Proposition 3.4. For each n ∈ N, one has

D2
n(x) = 2n+ 1 + 2

2n∑
k=1

(2n+ 1− k) cos(kx).

That is, %n,2(0) = 2n+ 1 and %n,2(j) = 2(2n+ 1− j), for 1 ≤ j ≤ 2n (see (1.9)).

Proof. The computation of D2
n is simple, because taking into account (1.1) and (2.11) one has

(for sin(x/2) 6= 0)

D2
n(x)

2n+ 1
=

sin2((2n+ 1)x/2)

(2n+ 1) sin2(x/2)
= F2n(x) = 1 + 2

n∑
k=1

(
1− k

2n+ 1

)
cos(kx).

�

For D3
n we need some preparatory computations.

Lemma 3.4. For each n, k ∈ N,

cos(kx)Dn(x) =


n+k∑
i=1

cos(ix) +
n−k∑
i=0

cos(ix), if 1 ≤ k ≤ n
n+k∑
i=k−n

cos(ix), if k > n.
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Proof. If k ≤ n,

cos(kx)Dn(x) = cos(kx) + 2

n∑
j=1

cos(kx) cos(jx)

= cos(kx) +

n∑
j=1

(cos((k + j)x) + cos((k − j)x))

= cos(kx) +

n+k∑
i=k+1

cos(ix) +

k−1∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix)

=

n+k∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix).

If k > n, then

cos(kx)Dn(x) =

n+k∑
i=k

cos(ix) +

n∑
j=1

cos((k − j)x)

=

n+k∑
i=k

cos(ix) +

k−1∑
i=k−n

cos(ix) =

n+k∑
i=k−n

cos(ix).

�

Proposition 3.5. If n ∈ N, n ≥ 3, and D3
n is given as in (1.9), then

%n,3(0) = 3n2 + 3n+ 1,

and
%n,3(i) = 2(3n2 + 3n+ 1− i2), for 1 ≤ i ≤ n.

Proof. Let Πn : T3n → Tn be the projection given by (see (2.12))

Πn(T ) = Πn

( 3n∑
j=0

Aj(T, x)
)

=

n∑
j=0

Aj(T, x).

In this proof (for a fixed n) we denote %(k) = %n,2(k) and consider the expansion ofD2
n given

in Proposition 3.4. Hence

D3
n(x) = (D2

n(x))Dn(x) =
( 2n∑
k=0

%(k) cos(kx)
)
Dn(x)

= %(0)Dn(x) +Dn(x)

n∑
k=1

%(k) cos(kx) +Dn(x)

2n∑
k=n+1

%(k) cos(kx)

= A1(x) +A2(x) +A3(x).

For A2(x) one has

1

2π

∫ π

−π
A2(x)dx =

1

2π

n∑
k=1

%(k)

∫ π

−π
Dn(x) cos(kx)dx

=
1

2π

n∑
k=1

%(k)

∫ π

−π

(
cos(kx) + 2

n∑
i=1

cos(ix) cos(kx)
)
dx =

n∑
k=1

%(k),
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and, for 1 ≤ j ≤ n, taking into account Lemma 3.4,

1

π

∫ π

−π
A2(x) cos(jx)dx =

1

π

∫ π

−π

n∑
k=1

%(k)
( n+k∑
i=1

cos(ix) +

n−k∑
i=0

cos(ix)
)

cos(jx)dx

=
1

π

∫ π

−π

(
cos2(jx)

n∑
k=1

%(k) + cos(jx)

n−1∑
i=0

cos(ix)
( n−i∑
k=1

%(k)
)
dx.

Hence

Πn(A2)(x) =

n∑
k=1

%(k) +

n−1∑
j=1

( n∑
k=1

%(k) +

n−j∑
k=1

%(k)
)

cos(jx) + cos(nx)

n∑
k=1

%(k).

For j = 0,

1

2π

∫ π

−π
A3(x)dx =

1

2π

∫ π

−π
Dn(x)

2n∑
k=n+1

%(k) cos(kx)dx = 0,

and, for 1 ≤ j ≤ n,

1

π

∫ π

−π
A3(x) cos(jx)dx =

1

π

∫ π

−π

(
Dn(x)

2n∑
k=n+1

%(k) cos(kx)
)

cos(jx)dx

=
1

π

∫ π

−π

( 2n∑
k=n+1

%(k)
( n+k∑
i=k−n

cos(ix)
))

cos(jx)dx

=
1

π

∫ π

−π

( n∑
i=1

cos(ix)
( n+i∑
k=n+1

%(k)
))

cos(jx)dx

=
1

π

∫ π

−π

( n+j∑
k=n+1

%(k)
)

cos2(jx)dx =

n+j∑
k=n+1

%(k).

Hence

Πn(A3)(x) =

n∑
j=1

( n+j∑
k=n+1

%(k)
)

cos(jx).

Therefore

Πn(D3
n)(x) =

n∑
k=0

%(k) +

n−1∑
j=1

( n∑
k=0

%(k) +

n−j∑
k=0

%(k) +

n+j∑
k=n+1

%(k)
)

cos(jx)

+
(

2%(0) +

n∑
k=1

%(k) +

2n∑
k=n+1

%(k)
)

cos(nx)

= 3n2 + 3n+ 1 + 2

n∑
j=1

(3n2 + 3n+ 1− j2) cos(jx).

�
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4. THE OPERATORS Mmn,2 , Mmn,3 AND POLYNOMIALS OF LOWER DEGREE

In order to proof the estimate announced in (1.8) we follow a method used in [2]. In parti-
cular, for T ∈ Tn, in Proposition 5.9 we will find a representation of Q3n(T ) in terms of the
some derivatives of the polynomials.

As Proposition 4.6 shows, the operators Mmn,2(f) reproduce the constant functions. But,
unfortunately, they are not uniformly bounded. Moreover, if we increase the number of points
of interpolation the result does not change. That is the reason why we consider only m = 3 for
the operators Q3n.

Proposition 4.6. If m > 2, T ∈ Tn and Mmn,2 is defined by (1.5), then

Mmn,2(T, x) = T (x)− 1

(2n+ 1)
DT̃ (x).

Proof. If Tn ∈ Tn, then TnD2
n ∈ T3n and, taking into account Proposition 2.1, one has

mn∑
k=0

T (xmn,k)

(mn+ 1)
D2
n(x− xmn,k) =

1

2π

∫ π

−π
Tn(t)D2

n(x− t)dt =
1

2π

∫ π

−π
Tn(x+ t)D2

n(t)dt.

If T is written as in (2.12), then

1

(2n+ 1)(mn+ 1)

mn∑
k=0

T (xmn,k)D2
n(x− xmn,k)

=
a0

(2n+ 1)

1

2π

∫ π

−π
D2
n(t)dt+

n∑
j=1

1

2π

∫ π

−π

Aj(T, x)

(2n+ 1)
cos(jt)D2

n(t)dt

=a0 +

n∑
j=1

1

2π

Aj(T, x)

(2n+ 1)

∫ π

−π
2(2n+ 1− j) cos2(jt)dt

=a0 +
1

(2n+ 1)

n∑
j=1

Aj(T, x)(2n+ 1− j)

=T (x)− 1

(2n+ 1)

n∑
j=1

jAj(T, x)

=T (x)− 1

(2n+ 1)
DT̃ (x),

where Proposition 3.4 and Lemma 2.2 were used. �

Proposition 4.7. If m > 3, T ∈ Tn, and Mmn,3 is defined by (1.6), then

Mmn,3(T, x) = T (x) +
1

(3n2 + 3n+ 1)
D2T (x).

Proof. Set u(n) = 3n2 + 3n+ 1. As before, if Tn ∈ Tn, then TnD3
n ∈ T4n and, taking into account

Proposition 2.1, one has

1

(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k) =

1

2π

∫ π

−π
Tn(x+ t)D2

n(t)dt.
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If T is written as in (2.12), then

1

(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k)

=a0
1

2π

∫ π

−π
D3
n(t)dt+

n∑
j=1

1

2π

∫ π

−π

Aj(T, x)

(2n+ 1)
cos(jt)D3

n(t)dt.

Taking into account Proposition 3.5

1

u(n)(mn+ 1)

mn∑
k=0

T (xmn,k)D3
n(x− xmn,k)

=a0 +
1

u(n)

n∑
j=1

Aj(T, x)(3n2 + 3n+ 1− j2)

2π

∫ π

−π
2 cos2(jt)dt

=a0 +
1

u(n)

n∑
j=1

Aj(T, x)(3n2 + 3n+ 1− j2)

=T (x)− 1

u(n)

n∑
j=1

j2Aj(T, x) = T (x) +
1

u(n)
D2T (x),

here we use Lemma 2.2. �

5. MAIN RESULTS

In the first result of this section we estimate the norms of the operators.

Proposition 5.8. If n ∈ N, Q3n is defined by (1.7) and f ∈ C2π , then

‖Q3n(f)‖ ≤ ‖f‖
and

‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 4‖f‖.

Proof. Since |Dn(x)| ≤ 1, 1 +Dn(x) ≥ 0. Therefore

D2
n(x) +D3

n(x) = D2
n(x)(1 +Dn(x)) ≥ 0.

It is sufficient to verify that Q3n is a positive operator. Moreover

Q3n(f, x) = Cn

4n∑
k=0

f(x4n,k)(D2
n(x4n,k) +D3

n(x− x4n,k))

=
(2n+ 1)

(7n2 + 7n+ 2)(4n+ 1)

4n∑
k=0

f(x4n,k)D2
n(x− x4n,k)

+
1

(7n2 + 7n+ 2)(4n+ 1)

4n∑
k=0

f(x4n,k)D3
n(x− x4n,k))

=
(2n+ 1)2

(7n2 + 7n+ 2)
M4n,2(f, x) +

(3n2 + 3n+ 1)

(7n2 + 7n+ 2)
M4n,3(f, x).

It follows from Propositions 4.6 and 4.7 that

Q3n(1, x) =
(2n+ 1)2

(7n2 + 7n+ 2)
+

(3n2 + 3n+ 1)

(7n2 + 7n+ 2)
= 1.
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If f ∈ C2π and x ∈ [−π, π), then

|Q3n(f, x)| ≤ ‖f‖Q3n(1, x) = ‖f‖.

The second assertion is a simple consequence of the first one. �

Proposition 5.9. If n ∈ N, Q3n is defined by (1.7) and T ∈ Tn, then

Q2
3nT − 2Q3nT + T =

−(2n+ 1)2D2T − 2(2n+ 1)D3T̃ +D4T

(7n2 + 7n+ 2)2
.

Proof. It follows from Propositions 4.6 and 4.7 that (we set u(n) = 3n2+3n+1 v(n) = 7n2+7n+2

and W = DT̃ )

Q3nT =
(2n+ 1)2

v(n)
M4n,2T +

(3n2 + 3n+ 1)

v(n)
M4n,3T

=
(2n+ 1)2

v(n)

(
T − 1

(2n+ 1)
DT̃
)

+
(3n2 + 3n+ 1)

v(n)

(
T +

1

u(n)
D2T

)
= T +

1

v(n)

(
D2T − (2n+ 1)W

)
.(5.15)

Hence

Q2
3nT =

(2n+ 1)2

v(n)
M4n,2

(
T +

D2T − (2n+ 1)W

v(n)

)
+
u(n)

v(n)
M4n,3

(
T +

D2T − (2n+ 1)W

v(n)

)
= Q3nT +

(2n+ 1)2

v2(n)
M4n,2

(
D2T − (2n+ 1)W

)
+

u(n)

v2(n)
M4n,3

(
D2T − (2n+ 1)W

)
= Q3nT +

(2n+ 1)2

v2(n)

(
D2T − D(D̃2T )

(2n+ 1)
− (2n+ 1)W +DW̃

)
+

u(n)

v2(n)

(
D2T +

D4T

u(n)
− (2n+ 1)W − (2n+ 1)D2W

u(n)

)

(recall D(D̃2T ) = D3T̃ and DW̃ = −D2T )

= Q3nT +
1

v(n)
D2T − (2n+ 1)

v2(n)
D3T̃ − (2n+ 1)

v(n)
W − (2n+ 1)2

v2(n)
D2T

+
1

v2(n)
D4T − (2n+ 1)

v2(n)
D3T̃

= Q3nT +
D2T

v(n)
− (2n+ 1)DT̃

v(n)
− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

D4T

v2(n)
.
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Taking into account (5.15) we conclude that

Q2
3n(T )− 2Q3n(T ) + T = T −Q3n(T ) +

D2T

v(n)
− (2n+ 1)

v(n)
DT̃

− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T

= − 1

v(n)

(
D2T − (2n+ 1)DT̃

)
+
D2T

v(n)
− (2n+ 1)

v(n)
DT̃

− (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T

= − (2n+ 1)2D2T

v2(n)
− 2(2n+ 1)

v2(n)
D3T̃ +

1

v2(n)
D4T.

�

Theorem 5.2. If n ∈ N (n ≥ 3), Q3n is defined by (1.7), and f ∈ C2π , then

‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 5En(f) + ω2

(
f,
π

n

)
.

Proof. Fix f ∈ C2π and, for each n ∈ N, let Tn ∈ Tn be the polynomial of the best approximation
for f in Tn.

If we setMn(f) = Q2
3n(f)−2Q3n(f) and v(n) = 7n2+7n+2, taking into account Propositions

5.8, 5.9, and 2.3 one has

‖Mn(f) + f‖ = ‖Mn(f − Tn) + f − Tn +Mn(Tn) + Tn‖
≤ 4‖f − Tn‖+ ‖Mn(Tn) + Tn‖

≤ 4En(f) +
‖D4T‖+ 2(2n+ 1)‖D3T̃‖+ (2n+ 1)2‖D2T‖

v2(n)

≤ 4En(f) +
n4 + 4n2(n+ 1)(2n+ 1) + n2(2n+ 1)2

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
= 4En(f) +

n2(13n2 + 16n+ 5)

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 4En(f) +

n2(14n2 + 14n+ 4)

v2(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
= 4En(f) +

2n2

v(n)

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 4En(f) +

2

7

(1

4
ω2

(
f,
π

n

)
+ En(f)

)
≤ 5En(f) + ω2

(
f,
π

n

)
.

�

Remark 5.1. The term En(f) in Theorem 5.2 can be estimate as (see [6, Theorem 2.5])

En(f) ≤ 5

2
ω2

(
f,

2π

n+ 1

)
.

Therefore

(5.16) ‖Q2
3n(f)− 2Q3n(f) + f‖ ≤ 25

2
ω2

(
f,

2π

n+ 1

)
+ ω2

(
f,
π

n

)
≤ 14ω2

(
f,

2π

n+ 1

)
.
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6. APPROXIMATION OF NON-PERIODIC FUNCTIONS

Let C[−1, 1] the space of continuous functions f : [−1, 1] → R provided with the sup norm
‖f‖∞ = sup{|f(x)| : x ∈ [−1, 1]}. In this section we follow a known procedure to pass from
approximation by trigonometric polynomials to approximation by algebraic polynomials (see
Proposition 6.10 below).

For f ∈ C[−1, 1] and x, h ∈ [−1, 1] define

(τhf)(x) =
1

2

(
f
(
xh+

√
(1− x2)(1− h2)

)
+ f

(
xh−

√
(1− x2)(1− h2)

))
and

ωT (f, t) = sup
t≤h≤1

‖f − τhf‖.

We also set
En(f)∞ = inf

P∈Pn

‖f − P‖∞,

where Pn be the family of all algebraic polynomial of degree not greater than n.
We introduce operators similar to Q3n by setting

R3n(f, x) = Cn

4n∑
k=0

f(cosx4n,k)(D2
n(arccosx− x4n,k) +D3

n(arccosx− x4n,k))

for f ∈ C[−1, 1] and x ∈ [−1, 1]. Notice that Dn(arccosx − x4n,k) can be written in terms of
the Chebyshev polynomials. Hence R3n(f, x) is an algebraic polynomial of degree not greater
than 3n (see Proposition 6.10 below).

Theorem 6.3. If n ∈ N (n ≥ 3) and f ∈ C[−1, 1], then

‖R2
3n(f)− 2R3n(f) + f‖ ≤ 14ωT

(
f, cos

2π

n+ 1

)
.

Proof. Fix f ∈ C[−1, 1] and set F (t) = f(cos t). It is known that (see [4, Lemma 3]), for t ∈
[−1, 1],

(6.17) ωT (f, t) = ω2(F, arccos t).

If x ∈ [−1, 1] and x = cos t (0 ≤ t ≤ π), it follows from Theorem 5.2 and (6.17) that

|R2
3n(f, x)− 2R3n(f, x) + f(x)| = |R2

3n(f, cos t)− 2R3n(f, cos t) + f(cos t)|
=
∣∣Q2

3n(F, t)− 2Q3n(F, t) + F (t)
∣∣

≤ 14ω2

(
F,

2π

n+ 1

)
= 14ωT

(
f, cos

2π

n+ 1

)
.

�

Remark 6.2. Here we only consider estimates in norm, pointwise estimates require another approach.

Remark 6.3. Let X1[−1, 1] be the family of f ∈ C[−1, 1] for which there exists g ∈ C[−1, 1] such that

lim
h→1−

∥∥∥τhf − f
1− h

− g
∥∥∥
∞

= 0.

If f ∈ X1[−1, 1], then ωT (f, t) ≤ C(1− t) (see [4, Lemma 6]). Hence, for f ∈ X1[−1, 1],

‖R2
3n(f)− 2R3n(f) + f‖ ≤ C

(
1− cos

2π

n+ 1

)
≤ 2Cπ2

(n+ 1)2
.
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The following result is known, but we include a proof for the benefit of the reader.

Proposition 6.10. For each n,m ∈ N, f ∈ C[−1, 1] and x ∈ [−1, 1], the function
4n∑
k=0

f(cosx4n,k)Dm
n (arccosx− x4n,k)

is an algebraic polynomial of degree not greater than mn.

Proof. For k ∈ N0, let Tk(x) = cos(k arccosx) be the Chebyshev polynomial of degree k.
Since

Dn(arccosx) = 1 + 2

n∑
k=1

cos(k arccosx) = 1 + 2

n∑
k=1

Tk(x),

one has f(1)Dm
n (arccosx) is an algebraic polynomial.

For 1 ≤ j, k ≤ 2n, we consider the trigonometric identities

cos(jx4n,4n+1−k) = cos
2j(4n+ 1− k)π

4n+ 1
= cos

2kjπ

4n+ 1
= cos(x4n,jk),

sin(jx4n,4n+1−k) = − sin
2jkπ

4n+ 1
= − sinx4n,jk

and

cos j(arccosx− x4n,k) + cos j(arccosx− x4n,4n+1−k)

=Tj(x)
(

cos(jx4n,k) + cos(jx4n+1−k,k)
)

+ sin(j arccosx)
(

sin(jx4n,k) + sin(jx4n+1−k,k)
)

=2 cos(jx4n,k)Tj(x),

to obtain
4n∑
k=1

f(cosx4n,k)Dm
n (arccosx− x4n,k)

=

2n∑
k=1

f(cosx4n,k)
(
Dm
n (arccosx− x4n,k) +Dm

n (arccosx− x4n,4n+1−k)
)

=

2n∑
k=1

f(cosx4n,k)

mn∑
j=0

%n,m(j)
(

cos(j(arccosx− x4n,k))

+ cos(j(arccosx− x4n,4n+1−k))
)

=2

2n∑
k=1

f(cosx4n,k)

mn∑
j=0

%n,m(j) cos(jx4n,k)Tj(x).

�
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