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ABSTRACT

A surface of revolution is a surface that can be generated by rotating a planar curve, the directrix,
around a straight line, the axis, in the same plane. Using the mathematics of quaternions, we
provide a parametric equation of a surface of revolution generated by rotating a directrix about
an axis by quaternion multiplication of the parametric representations of the directrix curve and
the line of axis. Then, we describe an algorithm to determine whether a parametric surface is a
surface of revolution, and identify the axis and the directrix. Examples are provided to illustrate
our algorithm.
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1. Introduction

Quaternions were discovered by Sir William Rowan Hamilton [6] as an extension of the complex numbers in
1843. An important property of quaternions is that every unit quaternion represents a rotation and this plays a
special role in the study of rotations in three dimensional spaces. Quaternions are used in both theoretical and
applied mathematics, especially in the areas involving calculations of three dimensional rotations, such as in
three dimensional computer graphics, computer vision, animations, and aerospace applications.

A surface of revolution is a surface that can be generated by rotating a planar curve (the directrix) around a
straight line (the axis) in the same plane. Surfaces of revolution are everywhere in our daily life. For example,
tubes, wheels, vases, footballs, doorknobs and light bulbs are all surfaces of revolution. They are common
in computer-aided geometric design (CAGD) and computer graphics, and can be used to create 3D digital
surfaces for automotive and industrial design [12]. In particular, the use of surfaces of revolution is essential
for digital designs for the applications in the fields of physics and engineering, since the areas of these surfaces
can be determined without measuring the length and radius of the objects being designed. Because of it’s
abundant properties and applications, the surface of revolution is a fundamental topic extensively studied in
calculus and analytic geometry [11], differential geometry [9], engineering mathematics [10], and physics [8].

A parametric surface is a surface in the Euclidean 3-space which is defined by a parametric equation with
two parameters. Parametric representations are used to study the properties of the surfaces. For instance, a
surface is given in parametric form to prove Stokes’ theorem and divergence theorem - two main theorems
in the vector calculus [11]; and to compute the geometric invariants such as first and second fundamental
forms, Gaussian curvature, mean curvature, and principal curvature in differential geometry [9]. Parametric
surfaces are widely used in CAGD projects since it is easy to describe the points of the surface by means of
the parameters values. To assure the simplicity of the design for CAGD, it is essential to describe parametric
surfaces in a geometrically intuitive and easy to understand manner, although the underlying mathematics
may be quite sophisticated.

In this paper, we first formulate the parametric representation of a surface of revolution from space curves
using quaternion multiplication. Then, we provide an algorithm for determining whether or not a parametric
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surface is a surface of revolution, and identify the rotation axis and directrix. Examples are provided to
illustrate our algorithm.

Our approach here is to employ quaternion operations to study surfaces of revolution. To be specific, we
internally consider the rotation axis and the directrix curve of a surface of revolution as quaternions, and
provide a parametric representation of this surface by quaternion multiplication of these two curves. Our
parametric description of surfaces of revolution makes it simple to construct and intuitive for design. This type
of construction is initiated by [5], but their ultimate goal is to find the implicit equations of the parametric
surfaces generated by two curves by quaternion products. In this paper, we emphasize on determine whether
a parametric surface is a surface of revolution by using the properties of this quaternion construction of the
surfaces of revolution, which to our knowledge has not been studied in the literature.

In Section 2 of this paper, we start with a brief review of some basic facts about quaternions, and then show
that a surface of revolution is in fact a surface generated from two curves by quaternion multiplication. Using
this insight, in Section 3 we provide a theorem for determining whether or not a parametric surface is a surface
of revolution, and identify the rotation axis and directrix. Examples are provided to illustrate our results.

2. Quaternions and Surfaces of Revolution

2.1. Quaternions.

Quaternions can be used to represent and compute rotations in 3-dimensions. Therefore quaternions have
applications in many contemporary areas of computational science and engineering, including computer
graphics, computer vision, classical mechanics, and robotics [1], [2], [3], [4], [7]. We are going to generalize
the easy to understand idea of using a line and a planar curve to represent a classical surface of revolution by
taking advantage of the fact that quaternions give a natural way to represent rotations.

2.1.1. Quaternion Algebra. An arbitrary quaternion has the form q = sq + vq, where sq is a scalar and vq =
v1i+ v2j + v3k is a vector in R3. The conjugate of q is denoted by q∗ = sq − vq = sq − v1i− v2j − v3k. Addition
of one quaternion q1 = sq1 + vq1 to another quaternion q2 = sq2 + vq2 is defined by:

q1 + q2 = (sq1 + sq2) + (vq1 + vq2).

Multiplication of two quaternions is carried out as follows:

q1 q2 = (sq1 + vq1) (sq2 + vq2) = sq1sq2 − vq1 · vq2 + sq1 vq2 + sq2 vq1 + vq1 × vq2 ,

where · and × are the usual dot and cross product of vectors in R3. Notice that qq∗ = s2q + v21 + v22 + v23 = |q|2 is
a non-negative scalar; |q| is called the norm of q; qq∗ = 0 if and only if q is a zero quaternion. If |q| = 1, then q is
called a unit quaternion.

2.1.2. Quaternion Geometry. A pure quaternion is a quaternion q whose scalar part sq = 0. A pure quaternion
vq = v1i+ v2j + v3k is interpreted geometrically as the vector from the origin to the point located at (v1, v2, v3)
in R3. Similarly, if sq ̸= 0, the quaternion q = sq + vq = sq + v1i+ v2j + v3k is interpreted geometrically as
the mass-point with mass sq located at (v1/sq, v2/sq, v3/sq) in R3. With this interpretation the quaternion
q = sq + v1i+ v2j + v3k is akin to the homogeneous coordinate representation (sq, v1, v2, v3) for points and
vectors in 3-dimensions. Notice, in particular, that with this interpretation the quaternion q = 1 represents the
origin in R3, and the quaternion q = 1 + vq represents the point in affine space located at the tip of the vector
vq. Quaternions are widely used in computer graphics when a 3-dimensional character rotation is involved [4].
Theorem 2.1 (below) recalls a well-known quaternion formula for rotation in 3-dimensions [4].

Theorem 2.1. (Quaternion Rotation Theorem) Let vq = v1i+ v2j + v3k be a pure unit quaternion and set

R = cos(θ/2) + sin(θ/2)vq.

Then R is a unit quaternion and the sandwiching map x → RxR∗ rotates points and vectors in R3 by the angle θ around
the line through the origin in the direction of the vector vq in R3.
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Remark 2.1. It is known [4] that if q = sq + q1i+ q2j + q3k is a unit quaternion and p = (p1, p2, p3) a point in R3,
then a quaternion rotation

qpq∗ = R

p1p2
p3

 , R =

1− 2(q22 + q23) 2(q1q2 − q3sq) 2(q1q3 + q2sq)
2(q1q2 + q3sq) 1− 2(q21 + q23) 2(q2q3 − q1sq)
2(q1q3 − q2sq) 2(q2q3 + q1sq) 1− 2(q21 + q22)

 is the rotation matrix.

Furthermore,
RTR = RRT = I, where I is the identity matrix.

2.2. Parametric Representation of Surfaces of Revolution by Quaternion Multiplication

We shall formulate the parametric representation of a surface of revolution from curves by taking advantage
of the fact that quaternions provide a natural way to represent rotations in 3-dimensions.

Theorem 2.2. Let a line f and a curve g be given as the following parametric representations:

f(s) = (f1(s), f2(s), f3(s)) = (a1s+ b1, a2s+ b2, a3s+ b3), g(t) = (g1(t), g2(t), g3(t)) .

Then, the surface of revolution generated by rotating the directrix curve g(t) around the axis line f(s) has a parametric
representation with parameters t, θ in the matrix form:

h(θ, t) = b+R(θ)(g(t)− b)R∗(θ) =

b1b2
b3

+R(θ)

g1(t)− b1
g2(t)− b2
g3(t)− b3

 , where (2.1)

R(θ) = cos(θ/2) + sin(θ/2)
a1i+ a2j + a3k√

a21 + a22 + a23
, and

R(θ) =


a2
1+(a2

2+a2
3) cos(θ)

a2
1+a2

2+a2
3

−a3 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a2 sin2(θ/2)
a2
1+a2

2+a2
3

a2 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a3 sin2(θ/2)
a2
1+a2

2+a2
3

a3 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a2 sin2(θ/2)
a2
1+a2

2+a2
3

a2
2+(a2

1+a2
3) cos(θ)

a2
1+a2

2+a2
3

−a1 sin(θ)√
a2
1+a2

2+a2
3

+ 2a2a3 sin2(θ/2)
a2
1+a2

2+a2
3

−a2 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a3 sin2(θ/2)
a2
1+a2

2+a2
3

a1 sin(θ)√
a2
1+a2

2+a2
3

+ 2a2a3 sin2(θ/2)
a2
1+a2

2+a2
3

a2
3+(a2

1+a2
2) cos(θ)

a2
1+a2

2+a2
3

 . (2.2)

Proof. Since the parametric representation of the axis line f(s) is:

f(s) = (f1, f2, f3) = (a1s+ b1, a2s+ b2, a3s+ b3), where ai, bi ∈ R, 1 ≤ i ≤ 3

the line f(s) has the direction vector ⟨a1, a2, a3⟩, and passes through the point b = (b1, b2, b3) ∈ R3.
First, perform a linear change of coordinates (X,Y, Z) = (x− b1, y − b2, z − b3), which transforms the point

b = (b1, b2, b3) in the original xyz-coordinate system to the origin (0, 0, 0) in the new XY Z-coordinate system.
In this new XY Z-coordinate system, the image of the line f(s) is a line through the origin with direction vector
a1i+ a2j + a3k, and the image of the directrix curve g(t) is parametrized as g(t)− b.

Now, let vq = a1i+a2j+a3k√
a2
1+a2

2+a2
3

be a pure unit quaternion, and set R(θ) = cos(θ/2) + sin(θ/2)vq. By quaternion

rotation Theorem 2.1, R(θ)(g(t)− b)R∗(θ) rotates points g(t)− b by the angle θ around the vector vq through
the origin. Therefore, in the new XY Z-coordinate system, the quaternion product R(θ)(g(t)− b)R∗(θ) is the
image of rotating the shifted directrix curve g(t) by angle θ about the shifted axis line f(s).

Finally, in the original xyz-coordinate system, the surface generated by rotating the curve g(t) by angle θ
about the axis f(s) is the composition of a rotation in the new coordinate, i.e., R(θ)(g(t)− b)R∗(θ) followed
by a translation (x, y, z) = (X,Y, Z) + b. Thus, the parametrization of the surface of revolution generated by
rotating the curve g(t) about the axis f(s) can be written as:

h(θ, t) = b+R(θ)(g(t)− b)R∗(θ), where R(θ) = cos(θ/2) + sin(θ/2)
a1i+ a2j + a3k√

a21 + a22 + a23
.

Since R(θ) = cos(θ/2) + sin(θ/2)a1i+a2j+a3k√
a2
1+a2

2+a2
3

, by setting

qs = cos(θ/2), q1 =
a1 sin(θ/2)√
a21 + a22 + a23

, q2 =
a2 sin(θ/2)√
a21 + a22 + a23

, q3 =
a3 sin(θ/2)√
a21 + a22 + a23

,
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the rotation matrix R in Remark 2.1 can be expressed as

R(θ) =


a2
1+(a2

2+a2
3) cos(θ)

a2
1+a2

2+a2
3

−a3 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a2 sin2(θ/2)
a2
1+a2

2+a2
3

a2 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a3 sin2(θ/2)
a2
1+a2

2+a2
3

a3 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a2 sin2(θ/2)
a2
1+a2

2+a2
3

a2
2+(a2

1+a2
3) cos(θ)

a2
1+a2

2+a2
3

−a1 sin(θ)√
a2
1+a2

2+a2
3

+ 2a2a3 sin2(θ/2)
a2
1+a2

2+a2
3

−a2 sin(θ)√
a2
1+a2

2+a2
3

+ 2a1a3 sin2(θ/2)
a2
1+a2

2+a2
3

a1 sin(θ)√
a2
1+a2

2+a2
3

+ 2a2a3 sin2(θ/2)
a2
1+a2

2+a2
3

a2
3+(a2

1+a2
2) cos(θ)

a2
1+a2

2+a2
3

 .

Hence, by Remark 2.1, the surface of revolution generated by rotating the directrix curve g(t) along the axis
f(s) has a parametric representation with parameters t, θ in the matrix form:

h(θ, t) = b+R(θ)(g(t)− b)R∗(θ) =

b1b2
b3

+R(θ)

g1(t)− b1
g2(t)− b2
g3(t)− b3

 .

We will use following example to illustrate Theorem 2.2.

Example 2.1. In this example, we provide a parametric representation for the surface of revolution generated
by rotating the unit circle (x− 4)2 + y2 = 1 around the line x = −1. First, we parametrize the axis f(s) and
directrix g(t)

f(s) = (−1, s, 0), where a1 = 0, a2 = 1, a3 = 0, b1 = −1, b2 = 0, b3 = 0;

g(t) =

(
3t2 + 5

t2 + 1
,

2t

t2 + 1
, 0

)
.

Hence, the parametric equation for this surface of revolution is

h(θ, t) = b+R(θ)(g(t)− b)R∗(θ) =

−1
0
0

+

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 3t2+5
t2+1 + 1

2t
t2+1

0

 =

 cos θ(4t2+6)
t2+1 − 1

2t
t2+1

− sin θ(4t2+6)
t2+1

 .

In fact, the surface of revolution given in Example 2.1 is a torus. A torus is a surface of revolution generated
by a circle of radius r2 rotating about an axis that is at a distance r1 away from the center of the circle. If the
axis is z-axis, then the parametric equation of a torus can be written in terms of r1, r2 and angle α and β as

(x(α, β), y(α, β), z(α, β)) = ((r1 + r2 cosα) cosβ, (r1 + r2 cosα) sinβ, r1 sinα).

That is, this torus is generated by rotating a circle (x− r1)
2 + z2 = r22 in the xz-plane around the z-axis. This

parametric representation of a torus requires that z-axis is the axis of rotation, and cannot be applied to a torus
with other rotation axis. The parametrization of surfaces of revolution via quaternion multiplications proposed
in this section has the advantage, since the parametric representation of the surface of revolution depends only
on the rotation axis and the directrix curve. Therefore, given the rotation axis and the directrix of a surface of
revolution, using quaternion multiplication is a much intuitive and direct approach to provide a parametric
representation of a surface of revolution.

3. Determine when a parametric surface is a surface of revolution

In this section, we will discuss how to determine whether or not a given parametric surface is a surface of
revolution, and how to identify the rotation axis and the directrix. We will first discuss some properties of the
surfaces of revolution.

Proposition 3.1. Given a surface of revolution expressed in Equation (2.1)

h(θ, t) = (h1, h2, h3) = b+R(θ)(g(t)− b)R∗(θ) =

b1b2
b3

+R(θ)

g1(t)− b1
g2(t)− b2
g3(t)− b3

 ,
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then

|ht(θ, t)|2 =

3∑
i=1

(
∂hi(θ, t)

∂t

)2

= G1(t), for some single variable function G1(t);

|hθ(θ, t)|2 =

3∑
i=1

(
∂hi(θ, t)

∂θ

)2

= G2(t), for some single variable function G2(t).

Proof. Since
ht(θ, t) = R(θ)g′(t), where g′(t) is the derivative of g(t) with respect to t,

|ht(θ, t)|2 = ht(θ, t) · ht(θ, t) = (R(θ)g′(t))T (R(θ)g′(t)) = (g′(t))T (RT (θ)R(θ))g′(t)

= (g′(t))T Ig′(t) this equality holds since by Remark 2.1, RTR = I,

= |g′(t)|2 = G1(t), for some function G1(t).

Similarly, since

hθ(θ, t) = R′(θ)(g(t)− b), where R′(θ) is the matrix resulted by taking each entry of R(θ) with respect to θ,

R′(θ) =


−(a2

2+a2
3) sin(θ)

a2
1+a2

2+a2
3

a1a2 sin(θ)
a2
1+a2

2+a2
3
− a3 cos(θ)√

a2
1+a2

2+a2
3

a1a3 sin(θ)
a2
1+a2

2+a2
3
+ a2 cos(θ)√

a2
1+a2

2+a2
3

a1a2 sin(θ)
a2
1+a2

2+a2
3
+ a3 cos(θ)√

a2
1+a2

2+a2
3

−(a2
1+a2

3) sin(θ)

a2
1+a2

2+a2
3

a2a3 sin(θ)
a2
1+a2

2+a2
3
− a1 cos(θ)√

a2
1+a2

2+a2
3

a1a3 sin(θ)
a2
1+a2

2+a2
3
− a2 cos(θ)√

a2
1+a2

2+a2
3

a2a3 sin(θ)
a2
1+a2

2+a2
3
+ a1 cos(θ)√

a2
1+a2

2+a2
3

−(a2
1+a2

2) sin(θ)

a2
1+a2

2+a2
3

 ,

|hθ(θ, t)|2 = hθ(θ, t) · hθ(θ, t) = (R′(θ)(g(t)− b))T (R(θ)(g(t)− b)) = (g(t)− b)T (R′T (θ)R′(θ))(g(t)− b)

= (g(t)− b)T


a2
2+a2

3

a2
1+a2

2+a2
3

−a1a2

a2
1+a2

2+a2
3

−a1a3

a2
1+a2

2+a2
3

−a1a2

a2
1+a2

2+a2
3

a2
1+a2

3

a2
1+a2

2+a2
3

−a2a3

a2
1+a2

2+a2
3

−a1a3

a2
1+a2

2+a2
3

−a2a3

a2
1+a2

2+a2
3

a2
1+a2

2

a2
1+a2

2+a2
3

 (g(t)− b) = G2(t), for some function G2(t).

Therefore, the following corollary is a direct consequence of Proposition 3.1, that is, by taking the partial
derivatives of a given parametric surface, we can eliminate the parametrization which is not a surface of
revolution.

Corollary 3.1. Given a parametric surface H(θ, t) = (H1, H2, H3), if |Hθ|2 ̸= G1(t) or |Ht|2 ̸= G2(t) for some functions
G1, G2, then H(θ, t) is not a surface of revolution.

Thus, given a parametric equation of a surface H(θ, t), if one of the partial derivative, say Ht, of a parametric
surface satisfies Proposition 3.1, then the parametric surface may be a surface of revolution, and the parameter
θ may determine angle of the rotation about the axis. To determine whether this surface is indeed a surface of
revolution, we need to locate the rotation axis, and determine the directrix curve. Theorem 3.1 below provides
a condition for a parametric surface to be a surface of revolution, and formulates the parametric equations for
the rotation axis and directrix curve.

Theorem 3.1. Given a parametric surface H(θ, t) = (H1, H2, H3), and suppose |Ht|2 = G1(t) and |Hθ|2 = G2(t) for
some G1, G2. Suppose there exist a1, a2, a3, b1, b2, b3 ∈ R satisfying the following two conditions:

(a)

3∑
i=1

aiHi(θ, t) = H(t) for some function H(t); and

(b) for any c ∈ R, if t∗ is a solution to H(t) = c, then∣∣∣∣∣H(θ, t∗)−

(
a1c−

∑3
i=2 ai(a1bi − b1ai)∑3

i=1 a
2
i

,
a2c−

∑3
i=1,i̸=2 ai(a2bi − b2ai)∑3

i=1 a
2
i

,
a3c−

∑2
i=1 ai(a3bi − b3ai)∑3

i=1 a
2
i

)∣∣∣∣∣
= κc, a constant depending on c.
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Then H(θ, t) is a surface of revolution generated by rotating the directrix curve g(t) about the axis line f(s) =
(a1s+ b1, a2s+ b2, a3s+ b3). Furthermore, the directrix curve is

g(t) = (R(θ))T (H1 − b1, H2 − b2, H3 − b3)
T + (b1, b2, b3)

T , where R(θ) is defined in Equation (2.2).

Proof. Suppose there exist a1, a2, a3, b1, b2, b3 ∈ R satisfying two conditions in the statement. Let

f(s) = (a1s+ b1, a2s+ b2, a3s+ b3), and P (x, y, z) = a1x+ a2y + a3z = c,

where the plane P (x, y, z) = c is perpendicular to the line f(s). Let f(s∗) denote the intersection of the line f(s)
and the plane P (x, y, z) = c, where s∗ is the solution to the equation P (f(s)) = c. Note that

P (f(s)) = a1(a1s+ b1) + a2(a2s+ b2) + a3(a3s+ b3) =

(
3∑

i=1

a2i

)
s+

3∑
i=1

aibi = c

yields that s∗ =
c−

∑3
i=1 aibi∑3

i=1 a
2
i

, which, in turn, implies that

f(s∗) =

(
a1c−

∑3
i=2 ai(a1bi − b1ai)∑3

i=1 a
2
i

,
a2c−

∑3
i=1,i̸=2 ai(a2bi − b2ai)∑3

i=1 a
2
i

,
a3c−

∑2
i=1 ai(a3bi − b3ai)∑3

i=1 a
2
i

)
.

As c varies, the point f(s∗) moves along the line f(s).
The plane P (x, y, z) = c intersects the parametric surface H(θ, t) at a plane curve C. By the first condition∑3
i=1 aiHi(θ, t) = H(t), the collection of points on the parametric surface H(θ, t) under the constraint

P (H(θ, t)) = a1H1 + a2H2 + a3H3 = H(t) = c corresponds to the plane curve C. That is, the plane curve C can
be parametrically represented as H(θ, t∗) where t∗ is a solution to H(t) = c. Furthermore, the second condition
is equivalent to |H(θ, t∗)− f(s∗)| = κc, which implies that the plane curve C is a circle centered at f(s∗) with
radius κc in the plane P (x, y, z) = c. Thus, the parametric surface H(θ, t) is in fact a collection of the moving
plane circles centered on the line f(s) with radius κc in the plane P (x, y, z) = c for all c ∈ R. Therefore, the
surface H(θ, t) is a surface of revolution generated by some directrix curve g(t) about the line of axis f(s).

Finally, by Theorem 2.2, H(θ, t) = (H1, H2, H3)
T = (b1, b2, b3)

T +R(θ)(g1(t)− b1, g2(t)− b2, g3(t)− b3). Hence,
we finalize the directrix curve g(t) by solving the above equation for (g1, g2, g3). Thus, the directrix curve

g(t) = (R(θ))T (H1 − b1, H2 − b2, H3 − b3)
T + (b1, b2, b3)

T .

We will use the next example to illustrate Theorem 3.1.

Example 3.1. Is H(θ, t) a surface of revolution, where

H(θ, t) =

(
cos(θ) · (4t2 + 6)

t2 + 1
− 1,

2t

t2 + 1
,
− sin(θ) · (4t2 + 6)

t2 + 1

)
.

First, to eliminate the possibility that the given parametric surface is not a surface of revolution, we take partial
derivatives with respect to θ and t, and we verify that

3∑
i=1

(
∂Hi(θ, t)

∂t

)2

=
[8t(t2 + 1)− 2t(4t2 + 6)]2 + (2− 2t2)2

(t2 + 1)4
=

4

(t2 + 1)2
,

3∑
i=1

(
∂Hi(θ, t)

∂θ

)2

=
(4t2 + 6)2

(t2 + 1)2
.

Therefore, by Corollary 3.1, it is possible that H(θ, t) is a surface of revolution.
To confirm that H(θ, t) is a surface of revolution, applying Theorem 3.1, we check that

a1H1(θ, t) + a2H2(θ, t) + a3H3(θ, t) =
a1((4t

2 + 6) cos(θ)− t2 − 1)

t2 + 1
+

2a2t

t2 + 1
+

−a3(4t
2 + 6) sin(θ)

t2 + 1
,

and if a1 = a3 = 0 and a2 = 1, then a1H1(θ, t) + a2H2(θ, t) + a3H3(θ, t) =
2t

t2+1 = H(t). Furthermore, to solve the
equation H(t) = 2t

t2+1 = c for t, we only need to solve ct2 − 2t+ c = 0 for t. Thus{
t∗ = 0, when c = 0, or
t∗ = 2±

√
4−4c2

2c = 1±
√
1−c2

c , when c ∈ [−1, 0) ∪ (0, 1].
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Let (a1, a2, a3) = (0, 1, 0) and c = 0, then t∗ = 0 and∣∣∣∣∣H(θ, t∗)−

(
a1c−

∑3
i=2 ai(a1bi − b1ai)∑3

i=1 a
2
i

,
a2c−

∑3
i=1,i̸=2 ai(a2bi − b2ai)∑3

i=1 a
2
i

,
a3c−

∑2
i=1 ai(a3bi − b3ai)∑3

i=1 a
2
i

)∣∣∣∣∣
2

= |H(θ, 0)− (b1, 0, b3)|2 = |(6 cos(θ)− 1, 0,−6 sin(θ)− (b1, 0, b3)|2

= (6 cos(θ)− 1− b1)
2 + (−6 sin(θ)− b3)

2.

Now, let (b1, b2, b3) = (−1, 0, 0), then (6 cos(θ)− 1− b1)
2 + (−6 sin(θ)− b3)

2 = 36 is a constant.
Furthermore, applying (a1, a2, a3) = (0, 1, 0) and (b1, b2, b3) = (−1, 0, 0) to the case c ∈ [−1, 0) ∪ (0, 1],∣∣∣∣∣H(θ, t∗)−

(
a1c−

∑3
i=2 ai(a1bi − b1ai)∑3

i=1 a
2
i

,
a2c−

∑3
i=1,i̸=2 ai(a2bi − b2ai)∑3

i=1 a
2
i

,
a3c−

∑2
i=1 ai(a3bi − b3ai)∑3

i=1 a
2
i

)∣∣∣∣∣
2

= |H(θ, t∗)− (−1, c, 0)|2

=

(
cos(θ) · (4(t∗)2 + 6)

(t∗)2 + 1
− 1 + 1

)2

+

(
2t∗

(t∗)2 + 1
− c

)2

+

(
− sin(θ) · (4(t∗)2 + 6)

(t∗)2 + 1

)2

=

(
cos(θ) · (4(t∗)2 + 6)

(t∗)2 + 1

)2

+

(
− sin(θ) · (4(t∗)2 + 6)

(t∗)2 + 1

)2

the equality holds since
2t∗

(t∗)2 + 1
= c

=

(
4(t∗)2 + 6

(t∗)2 + 1

)2

= constant depending on c, since t∗ =
1±

√
1− c2

c
for c ∈ [−1, 0) ∪ (0, 1].

Thus, we confirm that (a1, a2, a3, b1, b2, b3) = (0, 1, 0,−1, 0, 0) satisfy the two conditions of Theorem 3.1, hence
H(θ, t) is a surface of revolution, and the line of axis is f(s) = (−1, s, 0). Furthermore, since (a1, a2, a3) = (0, 1, 0),

by Remark 2.1, R(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

. Again, by Theorem 3.1, the directrix curve

g(t) = RT (θ)

H1 − b1
H2 − b2
H3 − b3

+

b1b2
b3

 =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ


 cos(θ)·(4t2+6)

t2+1
2t

t2+1
− sin(θ)·(4t2+6)

t2+1

+

−1
0
0

 =

 3t2+5
t2+1
2t

t2+1

0

 .
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