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Abstract:  In this  study,  acetate derivatives were obtained from the reaction of acetophenones using
diethyl carbonate. The acidic proton of CH2 moiety was abstracted using a suitable base and α-propargyl-β-
ketoester  (non-conjugated  ynone)  derivatives  3a-c were  obtained  from  the  reaction  of  the  acetate
derivatives with propargyl bromide. By removing the ester group of α propargyl-β-ketoester derivatives
under suitable conditions, α-propargyl acetophenones (non-conjugated ynone) 4a-c were obtained. In this
study, 6 different unconjugated ynone derivatives were synthesized as starting material with yield in a
range  of  60-95%.  Cyclization  reactions  with  propargyl  amine  in  the  presence  of  three  different
unconjugated ynone derivatives, metal catalysts were investigated. The synthesis of propargyl pyrroles
7a-c having substituents on C-2 and C-5 was completed.
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INTRODUCTION

Pyrrolic  systems,  which  are  in  the  class  of  five-
membered  heterocyclic  compounds  containing  a
single nitrogen atom, are bioactive compounds that
can be synthesized both from natural products and
by  synthetic  means  (1-3).  Pyrrole  ring  containing
compounds are used in material  chemistry (4), in
natural products (5,6), dyes and as bioactive entity
(7,8),  it  has  antiallergic,  cholesterol-lowering,
antidepressant, anti-inflammatory (9), antidiabetic,
antimicrobial  (10),  antifungal,  antiviral,
anticonvulsant,  antihyperlipidemic,  and  antitumor
(11)  properties  (12,13).  Numerous  methods  have
been developed and continue to be developed for
the  synthesis  of  nitrogen-containing  heterocyclic
compounds. In recent years, great importance has
been given to the development of new methods for
the synthesis of substituted pyrroles (14). We can
cite  alkyne  groups  among  the  most  important
groups  because  of  their  easy  modifications  and
electronic  properties  (15).  Alkynes  allow  the

synthesis  of  molecules  of  different  modifications
with a wide variety of reactions such as oxidation
(16),  reduction  (17),  and  nucleophilic  addition
(18,19).
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Figure 1: Activity of some compounds containing
alkyne group attached to the pyrrole ring.
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The  presence  of  propargyl  pyrrole  compounds  in
structures  such  as  dopamine  4  receptor  agonist
(20),  fungicide,  hepatitis  C  agent,  as  shown  in
Figure  1,  increases  the  interest  in  new  pyrrolic
propargyl  derivatives  and  in  recent  years,  the
production  of  metal-catalyzed  alkylated  pyrrolic
systems has attracted a lot of attention (21,22). In
the literature, generally, pyrrolic propargyl systems
have been synthesized either by removing the NH
proton with a base or by binding to the N-protected
pyrrolic system at the propargyl ortho and/or meta
position (23-26). In these studies, the synthesis of
substituted  pyrrolic  derivatives  was  carried  out,
generally  starting  from  the  ynone  derivative
molecule.  Recently,  ynones,  known  as  alkynones
and  also  referred  to  as  conjugated  ynones,  are
attracting  attention  as  important  starting
compounds. Ynones are compounds that contain an
alkyne group directly attached to a carbonyl group
in  their  structure  (27,28).  Although  conjugated
ynone  compounds  have  been  used  as  starting
compounds in the synthesis of many heterocycles in
the  literature,  α  propargyl  acetophenone
compounds, which we can express as unconjugated
ynone compounds, have not been studied much in
the literature (29). In this study, the synthesis of
pyrrole propargyl  derivatives as a result of metal-
catalyzed  reaction  of  unconjugated  ynone
derivatives  (α  propargyl  acetophenone)  and
propargyl  amine  compound  as  starting  compound
was investigated.

EXPERIMENTAL SECTION 

Materials
All  chemicals  and  solvents  were  commercially
obtained from Sigma-Aldrich with analytical quality.
The solutions were distilled and dried with suitable
agents.  All  syntheses  were  carried  out  at  normal
atmospheric  conditions.  An  Electrothermal
Gallenkamp apparatus  was used to determine the
melting  points.  A  Q  Exactive  High  Performance
Liquid  Chromatography  and  High  Resolution  Mass
Spectrometer (LC-MS/MS) was used to record the
mass spectra  of  all  compounds.  1H-NMR and  13C-
NMR spectra were recorded using a 400 MHz Agilent
using  TMS  (tetramethylsilane)  as  the  internal
standard.  All  experiments  were  followed  by  TLC
(thin  layer  chromatography)  using  DC  Alufolien
Kieselgel 60 F254 and a Camag TLC lamp (254/366
nm).

General Procedure for the Synthesis of Acetate
Derivatives 
1 mmol of 4-methoxyacetophenone derivative was
added into  a  50  mL balloon containing 10  mL of
DMF  and  5  mmol  of  NaH  was  added.  After  45
minutes, 1.2 mmol diethyl carbonate was added and
refluxed.  With  TLC  method,  the  reaction  was
observed to end after 24 hours. The crude product
was extracted (ethyl acetate/water) and the product

was purified by column chromatography with ethyl
acetate/n-hexane (1:5).

General  procedure  for  the  synthesis  of  (α-
propargyl-β-ketoester)propargyl
acetophenone  ethyl  ester  (non-conjugated
ynone) derivatives (3a-c)(29-31)
1 mmol (5 mL) ethylbenzoyl acetate was placed in a
50 mL flask, and 1.3 mmol (0.76 g) metallic sodium
was  added  at  0  °C.  After  the  sodium metal  was
finished  in  10  minutes,  1.3  mmol  (3.95  mL)  of
propargyl  bromide  was  added  and  mixed.  It  was
observed that the reaction ended after 24 hours by
TLC method. The crude product was evaporated by
filtration. Purification was done with ethyl acetate -
n-hexane (1/5) as the mobile phase. 

R/S ethyl 2-benzoylpent-4-ynoate (3a)
 O

O

O

Yield; 85%, Color: Yellow, appearance: Liquid.
1H NMR (400 MHz, CDCl3) δ = 8.02-7.99 (m, 2H,
Ar-H), 7.59-7.55 (m, 1H, Ar-H), 7.48-7.43 (m, 2H,
Ar-H), 4.57-4.53 (t, J= 7.39 Hz, 1H, CH), 4.16-4.09
(qd, J=1.26, 7.10 Hz, 2H, OCH2), 2.89-2.83 (ddd,
J= 2.65, 7.39, 16.18 Hz, 2H, CH2), 1.97-1.96 (t, J=
2.65 Hz, 1H, CH), 1.15-1.11 (td, J= 2.23, 7.10 Hz,
3H,  CH3).13C  NMR  (100  MHz,  CDCl3)  δ=  193.6,
193.2,  170.4,  168.2,  135.8,  135.1,  133.8,  133.1,
129.5,  128.8,  128.7,  128.6,  128.3,128.0,  80.6,
78.3, 72.4, 70.5, 70.4, 62.3, 61.8, 59.8, 53.1, 23.5,
19.9,  18.3,  13.9,  13.8.  LC-MS-MS Anal.Calcd.  for
C14H14O3[M+H]: 231.10157, Found 231.10162.

R/S ethyl 2-(4-methoxybenzoyl)pent-4-ynoate (3b)
 O

O

O

H3CO

Yield; 85%, Color: Yellow, appearance: liquid.
1H NMR (400 MHz, CDCl3) δ = 8.03-8.01 (m, A part
of AA’BB’ system, 2H, Ar-H), 6.96-6.94 (m, B part
of  AA’BB’  system,  2H,  Ar-H),  4.53-4.50  (m,  1H,
CH), 4.18-4.13 (m, 2H, OCH2), 3.87 (s, 3H, OCH3),
2.93-2.87 (m, 2H, CH2), 1.97 (t, J= 2.67 Hz, 1H,
CH),  1.20-1.16  (m,  3H,  CH3).13C NMR (100  MHz,
CDCl3) δ= 191.5, 168.5, 164.1, 131.3, 113.9, 80.8,
78.5, 72.2, 70.2, 61.7, 55.5, 52.9, 23.7, 18.4, 13.9.
LC-MS-MS  Anal.Calcd.  for  C15H17O4 [M+H]:
261.11214, Found 261.11282.
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R/S  ethyl  2-(thiophene-2-carbonyl)pent-4-ynoate
(3c)

 O

O

O

S

Yield; 90%, Color: Brown, appearance: Gel. 
1H NMR (400 MHz, CDCl3) δ =7.86 (d, J= 1.27, 3.62
Hz, 1H, Ar-H), 7.71-7.69 (m, 1H, Ar-H), 7.15-7.13
(m, 1H, Ar-H), 4.38 (t, J= 7.50 Hz, 1H, CH), 4.18-
4.12 (m, 2H, OCH2), 2.94-2.77 (m, 2H, CH2), 1.97-
1.96 (m, 1H, CH), 1.19-1.15 (m, 3H, CH3).13C NMR
(100 MHz, CDCl3) δ= 185.7, 167.9, 142.9, 135.4,
133.7, 128.4, 80.4, 70.5, 61.9, 54.3, 18.3, 13.9.

General  Procedure  for  the  Synthesis  of
Propargyl  Acetophenone  (Non-Conjugated
Ynone) Derivatives (4a-c) (29-31)
12 mL of 10% NaOH solution by mass was added to
the  crude  product  and  refluxed.  It  was  observed
that  the  reaction  ended  after  8  hours  by  TLC
method.  The  crude  product  was brought  to  room
temperature  and  the  pH  was  arranged  to  4  by
adding HCl. It was extracted with diethyl ether and
re-extracted with NaHCO3 solution. It was dried with
MgSO4 and  evaporated.  The  product  was  purified
with ethyl acetate - n-hexane (1/5) as the mobile
phase.

1-phenylpent-4-yn-1-one (4a)(26)
 O

Yield;  60%,  Color:  White,  appearance:  Solid.
M.P:72-75°C
1H NMR (400 MHz, CDCl3) δ = 7.97-7.95 (m, 2H,
Ar-H), 7.59-7.54 (m, 1H, Ar-H), 7.48-7.44 (m, 2H,
Ar-H), 3.26-3.22 (m, 2H, CH2), 2.65-2.60 (m, 2H,
CH2),  1.98 (t,  J= 2.68 Hz, 1H, CH).13C NMR (100
MHz, CDCl3) δ= 197.6, 136.4, 133.3, 128.6, 128.0,
83.3,  68.8,  37.5,  13.2.  LC-MS-MS Anal.Calcd.  for
C11H11O [M+H]: 159.08044, Found 159.08058.

1-(4-methoxyphenyl)pent-4-yn-1-one (4b) (26)
 O

H3CO
Yield;  65%,  Color:  White,  appearance:  Solid.
M.P:85-87°C
1H NMR (400 MHz, CDCl3) δ = 7.94-7.91 (m, A part
of AA’BB’ system, 2H, Ar-H), 6.93-6.90 (m,  B part
of AA’BB’ system, 2H, Ar-H), 3.84 (dd, J=3.00, 4.70
Hz, 3H, OCH3), 3.19-3.15 (m, 2H, CH2), 2.62-2.57
(m, 2H, CH2), 2.01-1.96 (m, 1H, CH).13C NMR (100
MHz, CDCl3) δ= 196.1, 163.6, 130.3, 113.8, 83.5,
68.7,  55.4,  37.1,  13.3.  LC-MS-MS Anal.Calcd.  for
C12H12O2Na [M+Na]: 211.07295, Found 211.07208.

1-(thiophen-2-yl)pent-4-yn-1-one(4c) (26)
 O

S
Yield; 60%, Color: Brown, appearance: Gel.
1H NMR (400 MHz, CDCl3) δ =7.70-7.68 (m, 1H, Ar-
H), 7.62-7.60 (m, 1H, Ar-H), 7.10-7.08 (m, 1H, Ar-
H),  3.14-3.10  (m,  2H,  CH2),  2.59-2.54  (m,  2H,
CH2),  1.97-1.95  (m,  1H,  CH).13C NMR (100  MHz,
CDCl3) δ= 190.6, 143.6, 133.9, 132.1, 128.2, 83.0,
69.1, 38.0, 13.4. 

General  Procedure  for  the  Synthesis  of
Propargyl Pyrrole Derivatives (7a-c)
1 mmol of 4a-c compound was dissolved in 2 mL of
ethanol and 3 mmol of propargyl amine was added.
The mixture  was refluxed after  adding a catalytic
amount of AuCl3. It was observed that the reaction
ended  after  24  hours  by  TLC  method.  The  crude
product was evaporated by filtration. The reaction
product was purified by column chromatography in
which  the  mobile  phase  was  ethyl  acetate  -  n-
hexane (1/5). 

2-methyl-5-phenyl-1-(prop-2-yn-1-yl)-1H-pyrrole
(7a)

 

N

Yield; 85%, Color: Brown, appearance: Gel.
1H NMR (400 MHz, CDCl3) δ =7.49-7.47 (m, 2H, Ar-
H), 7.43-7.39 (m, 2H, Ar-H), 7.33-7.28 (m, 1H, Ar-
H), 6.15 (t, J= 3.0 Hz, 1H, CH), 5.99 (s, 1H, CH),
4.56 (t,  J=2.55 Hz, 2H, CH2),  2.41(d, J=2.01 Hz,
3H, CH3), 2.38(dd, J= 2.55, 5.31 Hz, 1H, CH).  13C
NMR  (100  MHz,  CDCl3)  δ=  128.6,  128.5,  126.8,
107.9,  107.2,  79.5,  72.6,  34.2,  12.4. LC-MS-MS
Anal.Calcd.  for  C14H13N [M+H]:  196,11208,  Found
196.11255.

2-(4-methoxyphenyl)-5-methyl-1-(prop-2-yn-1-yl)-
1H-pyrrole(7b)

 

N

H3CO
Yield; 50%, Color: White, appearance: Gel.
1H NMR (400 MHz, CDCl3) δ =7.41-7.39 (m, A part
of AA’BB’ system, 2H, Ar-H), 6.97-6.94 (m,  B part
of  AA’BB’  system,  2H,  Ar-H),  6.07-6.06  (m,  1H,
CH),  5.96  (s,  1H,  CH),  4.52  (d,  J=2.24  Hz,  2H,
CH2), 3.84 (d, J=1.79 Hz, 3H, OCH3), 2.39 (d, J=
1.40 Hz, 3H, CH3), 2.36 (d, J= 2.24 Hz, 1H, CH).
13C NMR (100 MHz, CDCl3) δ= 158.7, 133.7, 130.1,
129.6,  126.0,  113.9,  107.2,  106.9,  79.6,  72.4,
55.3,  34.0,  12.4. LC-MS-MS  Anal.Calcd.  for
C15H15NO [M+H]: 226.12264, Found 226,12415.
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2-methyl-1-(prop-2-yn-1-yl)-5-(thiophen-2-yl)-1H-
pyrrole(7c)

 

N

S
Yield; 60%, Color: Brown, appearance: Gel.
1H NMR (400 MHz, CDCl3) δ =7.28-7.26 (m, 1H, Ar-
H), 7.15-7.14 (m, 1H, Ar-H), 7.10-7.07 (m, 1H, Ar-
H), 6.23 (d, J= 2.61 Hz, 1H, CH), 5.97 (d, J=1.38
Hz, 1H, CH), 4.64 (d, J=1.43 Hz, 2H, CH2), 2.38(s,

3H, CH3),  2.36-2.35 (m, 3H, CH).  13C NMR (100
MHz, CDCl3) δ= 134.9, 130.7, 127.5, 125.8, 125.3,
124.9, 109.1, 107.4, 79.1, 72.6, 33.9, 12.4. LC-MS-
MS  Anal.Calcd.  for  C12H11NS  [M+H]:  202,06850,
Found 202.06989.

RESULTS AND DISCUSSION 

Molecules 3 and 4, which are unconjugated ynone
derivatives, were obtained in several steps (Figure
2).
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Figure 2: Synthesis of unconjugated ynone compounds.

Firstly,  as  shown  in  Figure  2,  ethyl  acetate
derivatives  2  were  obtained  from  acetophenone
derivative  compounds  by  removing  one  of  the
protons in the methyl carbon with sodium hydride
(NaH) and reacting with diethyl carbonate. Then, α
propargyl  acetophenone  ethyl  esters  3  were
obtained  from  the  reaction  of  ethyl  acetate
derivatives with propargyl bromide by removing one
of the acidic CH2 protons in the presence of metallic
sodium  (Na).  It  is  obvious  that  the  synthesis  of
compounds  3a-c give  chiral  molecules.  However,
the  reaction  will  take  place  in  a  racemic  mixture
because  of  non-stereoselectivity.  Finally,  the
synthesis of α propargyl acetophenone derivatives 4
was carried out by removing the ester part in the
compound. Cyclization reactions of ynones 3 and 4
with propargyl amine with various metal catalysts in
different  solvent  were  investigated.  Possible
cyclization reactions are shown in Figure 3. As it is
known, a wide research area has emerged in the
literature regarding the formation of more than one
possible product (endo-dig or exo-dig) or selective
cyclization  product  in  alkyne  cyclizations  (32-35).
The reason for this is that the nucleophilic atom in
the carbonyl  group can attack  both atoms of  the
alkyne  group.  In  such  cases,  the  metal  catalyst
chosen  usually  allows  a  regioselective  reaction  to
proceed.
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Figure 3: Cyclization of alkyne group compounds

with metallic catalyst.

When  the  possible  mechanism  of  the  reaction  is
examined in the light of this information, X and/or Y
atoms in the carbonyl group can attack the inner or
outer  carbon  atom  of  the  alkyne  group  in  the
presence  of  metal  catalysts.  If  the  X  or  Y  atom
attacks the inner carbon atom (path a and d), there
will  be exo-dig closure, and if it attacks the outer
carbon atom (path b and c), there will be endo-dig
closure (Figure 3) (36).  Therefore,  many different
reactions  are  likely  to  occur.  With  both  the
examples  in  the  literature  and the experience we
have gained from our studies, we can say that their
regioselective  properties  will  depend  on  the
substituents  in  the  ynone  skeleton  and/or  metal
catalysts.  In  this  context,  cyclization  reactions  of
ynone 3 with propargyl amine in metals and solvent
environments shown in Table 1 were investigated.
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Table 1: Cyclization reactions of ethyl 2-benzoylpent-4-ynoate compound.
 

O

O

O

3a

M

Solvent
24h

N

O

O

5

+ H2N + N

O

O

6

exo-dig endo-dig
not detected

Compound Solvent Catalyst Temperature Result
1 3a EtOH AuCl3 RT nd
2 3a EtOH AuCl3 Reflux nd
3 3a EtOH p-toluenesulfonic acid Reflux nd
4 3a PrOH CuI Reflux nd
5 3a PrOH AuCl3 Reflux nd
6 3a EtOH AgOTf Reflux nd
7 3a PrOH Au(L)* Reflux nd
8 3a PrOH Pd(OAc)2 Reflux nd
9 3a EtOH InCl3 Reflux nd

nd: No reaction, the starting material was recovered.
*
 

iPr

N

iPr

N

Au

iPr

iPr
Cl

Au(L)

Reactions  1  to  9  were  first  carried  out  at  room
temperature.  When  it  was  understood  that  there
was the starting product in the reactions controlled
by  TLC,  no  product  was  observed  as  a  result  of
reacting the molecule 3a with different solvents in
the  presence  of  the  catalyst  for  24  hours  in  the
reactions controlled by TLC again by increasing the
temperature.  When  the  reaction  medium  was
examined,  only  the  starting  compound  was
obtained. In this case, it can be considered that the
metal catalysts used form a complex with the 1,3-

dicarbonyl structure in the starting compound and
this  complex  is  more  dominant  despite  activating
the alkyne group, therefore the reaction does not
proceed.  Then, the reactions of the other starting
compound α propargyl acetophenone derivative and
propargyl  amine  were  investigated.  The  pyrrole
propargyl  derivatives  were  obtained  in  the
cyclization  reactions  performed  with  the  starting
compound  ynone  4  under  the  reaction  conditions
shown  in  Table  2,  under  different  reaction
conditions.

Table 2: Preparation of 2-methyl-5-phenyl-1-(prop-2-yn-1-yl)-1H-pyrrole (7a).
 

Ar

O

4

M

Solvent
24h

NAr

7

+ H2N NAr

8

exo-dig endo-dig

+

Compound Solvent Catalyst Temperature Result
1 4 EtOH AuCl3 RT nd
2 4 EtOH AuCl3 Reflux 7a   95%
3 4 EtOH p-toluenesulfonic acid Reflux 7a   80%
4 4 EtOH InCl3 Reflux 7a   15%
5 4 EtOH CuI Reflux nd
6 4 EtOH Pd(OAc)2 Reflux nd

nd: No reaction, the starting material was recovered.
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Cyclization  reactions  of  compound  4a-c  using  p-
toluenesulfonic acid were screened. However, only
compound 4a gave the cyclic product. So, we have
decided  to  use  AuCl3 for  further  cyclization
reactions. The  pyrrole  derivatives  7a-c shown  in
Figure 4 were obtained with a good yield from the

reaction  of  the  starting  compound  4a-c and
propargyl amine under the catalytic effect of AuCl3.
When we have checked the reaction media, we did
not  see  any  sign  of  endo-dig  cyclization  which  is
represented as compound 8 in Table 2. 

 

N N

H3CO

N

S

7c
60%

7b
50%

7a
85%

Ar

O

4

NAr

7

+ H2N AuCl3

EtOH
 24h

Figure 4: Obtained compounds 7a-c.

Figure 5: Proposed reaction mechanism of 2-methyl-5-phenyl-1-(prop-2-yn-1-yl)-1H-pyrrole (7a).

When  the  proposed  reaction  mechanism  is
examined in Figure 5, it can be said that the metal
catalyst AuCl3 activates the alkyne group, and the
imine  nitrogen  in  the  imine  propargyl  group
attached  to  the  carbonyl  group  attacks  the  inner
carbon atom of the activated alkyne group, and the
reaction  proceeds  and  becomes  cyclic  to  pyrrole

propargyl  derivatives  with  a  quintuple  exo-dig
closure.  When the structure  characterization of  2-
methyl-5-phenyl-1-(prop-2-yn-1-yl)-1H-pyrrole (7a)
is examined by NMR spectrum, protons resonating
at 6.15 ppm and 5.99 ppm in the 1H-NMR spectrum
indicate pyrrole ring protons, -CH2 protons coming
as a triplet at 4.56 ppm and -CH protons resonating
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as  a  doublet  at  2.38  ppm  indicate  alkyne  group
protons  and  protons  resonating  at  2.41  ppm
indicate pyrrole ring methyl protons. When the 13C-
NMR  spectrum  is  examined,  it  is  seen  that  the
pyrrole  C3 and C4 carbons resonate  at  107.9 and
107.2 ppm, the alkyne group carbons resonate at
79.4,  72.6  and  34.2  ppm,  respectively,  and  the
methyl group attached to the pyrrole ring resonates
at 12.4 ppm.

CONCLUSION 

In  this  study,  the  synthesis  of  1,3-diketo  esters
from  acetophenone  derivative  compounds  was
carried out and from these derivatives, 6 different
unconjugated ynone derivatives were synthesized as
starting  compounds.  Cyclization  reactions  of
unconjugated  ynone  derivatives  were  investigated
using  metal  catalysts.  In  the  presence  of  metal
catalysts,  3  different  pyrrole  propargyl  derivatives
were obtained as a result of cyclization reactions of
unconjugated  ynone  derivatives  and  propargyl
amine compound in a single step.
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Spectra
1H-NMR, 13C-NMR spectra were taken with an Agilent 400 MHz (13C-NMR: 100 MHz) and mass spectra were
taken by a Thermoscientific brand LC-MS / MS.
Ethyl 2-benzoylpent-4-ynoate (3a)
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Ethyl 2-(4-methoxybenzoyl)pent-4-ynoate(3b)
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Ethyl 2-(thiophene-2-carbonyl)pent-4-ynoate(3c)
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1-Phenylpent-4-yn-1-one (4a)
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1-(4-Methoxyphenyl)pent-4-yn-1-one (4b)
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1-(Thiophen-2-yl)pent-4-yn-1-one (4c)

566



Taşdemir V. JOTCSA. 2022; 9(2): 553-570. RESEARCH ARTICLE

2-Methyl-5-phenyl-1-(prop-2-yn-1-yl)-1H-pyrrole (7a)
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2-(4-Methoxyphenyl)-5-methyl-1-(prop-2-yn-1-yl)-1H-pyrrole (7b)
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2-Methyl-1-(prop-2-yn-1-yl)-5-(thiophen-2-yl)-1H-pyrrole (7c)
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