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Highlights
* The aim of this work focuses on investigating the spread and control of infectiona
« Discrete-time version of the system subject to treatment is proposed to exami
« Bifurcation theory is applied to achieve the flip bifurcation conditions.

* The Neimark Sacker bifurcation diagram is presented depending on thWo siz
» Chaos is controlled via a hybrid controlled method.
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The mathematical dynamicg are suitable in € ing the effect of infective populations.
Received: 31 Jan 2022 Conditions involving t read and control of the disease are calculated by analyzing
Accepted: 18 Mar 2024 mathematical models so thatW is possible to have information about the behavior of the infection.

This article includgd the dyflamics of a discrete SIS endemic model thru treatment. After

determining that t conditions are fulfilled, the stability analysis is completed for

Keywords those fixed points. The del ndemlc fixed point's stability and bifurcation conditions are
Stability examined. Pepending on the in coefficient, the flip bifurcation condition is obtained. At
Neimark-Sacker the sam e, it is determined inXhich situation Neimark-sacker bifurcation (NSB) may occur
bifurcation dependin the step siz4, and bifurcation is controlled. Our theoretical findings are supported
Flip bifurcation by a rich dyraghical naturg\

Epidemic model

1. INTRODUCTION

ated connections within and between species, numerous models based
steps have been developed. There is no overlap between successive
Iatlo g in ecology evolve at different time steps. Therefore, difference models are
 behavior of populations. Additionally, it is observed that discretization of continuous

dels has gained the attention to numerous researchers. These studies include the
s created with discrete-time equations [5-8] and discrete-time systems [9-20] as well as

procedure [2] discretization of fractional order systems [23, 24, 25] and discretization with piecewise
constant arguments.

Investigating the dynamics of epidemic disease models is essential, which is one of the population
interaction dynamics. Epidemic diseases such as influenza, plague, cholera, typhoid, aids, smallpox,
malaria, mers, ebola, measles, tuberculosis, and Covid-19 have been problematic for humanity throughout
history, affect infected individuals and infected individuals the whole society in many ways. Vaccination
and treatment are among the most effective strategies in combating epidemics. The treatment is particularly
significant to decrease the blowout of epidemics until the vaccine is developed [26-30]. In recent times,
several researchers have investigated the dynamics of endemic models [31-35].
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In this study, our aim is to include a treatment function, which expresses the situation in which the hospital
beds and drags are sufficient, into a continuous epidemic disease model; and to examine the dynamics of
the discretized model. It is expected that the number of susceptible and infected people will change as a
result of treating infected individuals, yielding different findings from the model without treatment.

Li et al. [36], introduced and analyzed the following system taking into account the availability of limited
resources

((jj_?: A—uS—pSI+y1+T(l)
%: BSI—(u+a+y)I=T()

infection population. All parameters are positive.

When (1) is used with forward Euler's technique, the discrete #8m o SIS is obtained as

Xp = X +O(P—BXY, —ex +7Y, +T(Y,))

2
Yeu = Vet S(BXY, —0Y, ~T(¥,)) ?

with 5% ~ X, — X and 6% R Yoy at S, =X, |, =Yy,.Here o represents the step size.

Furthermore, every parameter is a positive consta

hieved in this stddy by using the theory of the bifurcation idea. Also,
n the stef size and chaos is controlled via hybrid controlled strategy
in thgPhospital are adequate, the function of treatment is by given

The flip bifurcation conditions
the NSB diagram presented dependi

3)

In case th ent capacity is exceeded, a fixed treatment is recommended [26, 36]. Studying the
discretizationfof the continuous system with a fixed treatment rate leads to complex operations. In this
study, proportional treatment of the discrete system was primarily studied in terms of its dynamical
behavior.

The study divided into six sections is made up of like this scheme: The first part is given as an introduction
section to have information about the past studies and emphasize our purpose in the study. The second
section examined the fixed point’s existence requirements and assessed their stability under (3). In the third
section, the parametric requirements for flip bifurcation of endemic fixed point are determined. The fourth
section examined the existence of NSB and chaos control of endemic fixed points. Finally, brief results are
presented in the last section.
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Citations must be given in brackets [26]. If there are two citations, use comma to separate [27, 28]. If
citations are more than two and in consecutive order, give the starting number and the last number [29-33].
For multiple citations with/without consequence, use the combination of the rules above [4, 10, 11, 21, 23,
34].

2. EXISTENCE OF FIXED POINTS AND STABILITY ANALYSIS OF (3)

The existence of fixed points in the model (3) and an analysis of their local stability are covered in this
section. To determine (3)'s fixed points, the discrete model was solved by

D - XY, —eX +1y+7Y, =0
_¢yt +ﬁxtyt —ry:O.

The solution of the system (3) is obtained by using straight forward calculatio

Lemma 1. The System (3) has disease-free fixed point (DF) E* = sitjve parameters and a

p+z (p+r)e @
B Bly—9) (r-

positive endemic fixed point E” :( and O0<g<y or

CI)>M and O<y <¢.

It is easy to see that the r & (|,LLl| <1 under the assumption ds < 2) and

()
w,=1-5(r + o9, r, we get |,uz|:1—5(r+¢)+@ if and only if P <1.
£ e(p+7)
)

R e t§¢+§r+ﬁ£<l and og < 2.1If P <1, then the fixed point (DF) is

£ e(p+71)

i i . Lo
locally asy cally stable. The basic reproduction R, is referred to as .

e(p+71)

Lemma 2. [20] Let us take Z(a) = a®+Ma+N such that Z(1)>0. Also «;, and a, are two roots
F(4) = 0. Then, the subsequent assumptions are true:

i.Z(-1)>0 and N <lifand only if |e, | <1;
ii.Z(-1) <0ifand only if || <1 and || > 1 (or |ey| >1 and |a,| <1);
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iii. Z(=1)>0 and N >1ifand only if |a112| >1;
iv. Z(-1)=0 and M =0, 2ifand only if &, = -1 and |a,|#1;

V. M?—4N <0 and N =1ifand only if ¢, , complex root and ‘051,2‘ =1.

Let's now examine the stability of the model's fixed points (3). The Jacobian matrix of (3) assessed at
points E* and E".

Jxy) = {1—5(5+ﬂy) o(t—fXx+y) } @
opy 1-6(p— px+71)
Thus
_1—58 5[7+T—’B—®j
I(EY)= 7 (5)
0 1+5(ﬂ£—r—¢j
i £
[y —0e(y +7)— ¢+ BOD 5(7/_¢)
I(E)= 79 (6)
5[8(¢+7)—,B<1)]
i y=9¢

<2 and

it and only if s¢>2 and %gﬁ or e

glirce point if and only if g < W and o¢ > 2,

iv. E* is a non-hyperbolic point if and only if 4 = M or o =2,

where 5(z +¢) > 2. Also, if y <¢, E* is the unique disease-free fixed point.

T+¢ &(r+¢)—po
B Bly-9¢)

Lemma 4. If g > g(Tq':@ and the endemicpoint E” =[ J such that y < ¢, is local

asymptotically stable and the following cases hold:
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i |fﬂ<2§ET+4¢_528¢(T+¢)+}/(_4+5g(2+5(r+¢))),O<5S—L andg<g.
0(2+ y5 — 69)D y—¢ o
i 1 g TP (Ao g) | 2 g 2
A+6(r-g)@ 5 y—¢
i 1 p< EEEHD (8@ oo 2 o 2
(A+6(r—g)@ y—¢ 6
iv. If Q<ﬂ<8(7_5¢(T+¢)+7/(1+5(T+¢))), 5>—L, ES{;‘ such  that
A+6(r -9 @ y—¢ 5

o= max{2531+4¢_525¢(f+¢) +y(~4+ 52+ S8(r +9))) | e(r+¢
52+ 5 - 5p)D

Proof. The characteristic polynomial of Jacobian matrix J (E*) ab

given by
Z(a)=a’+ 7/(55—2)+§gr+2¢—ﬂ5d)a+

7 ™
52¢(8(r+¢)—ﬁd))—¢+5(,BCD—gr)—y(ég—}+52(8(r D))

y—¢
When the conditions in Lemma 2 are evaluated, t ired conditions are easily reached.
3. ANALYSIS OF FLIP BIF
This section uses the bif e the flip bifurcation of the system (3) [37-40].
Lemma 5. [6, 41] For sy t of the system is  =—1, and the other root lie inside the unit
circle if and only if
2

Lemma. 6. 4p+5°P(e(r + ) — pO) + (2P —2¢7) + y (4+ PP - 5(£(2+5(r + ¢)))) _ 0 and

y—¢

y(05=2) + 067 +2¢~ f5O #0,2 ifand only if & = -1 and |a,| % 1. (see Lemma 2-(iv)).

y—¢

Proof. From the condition Lemma 2-(iv), we can easily get that the conditions in Lemma 6.

Theorem 1. Assume that the inequalities are provided:;
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1. 6% (s(r+¢)- D) >0,
0e(r = 5¢(z +9) +y(1+5(z +9)) + f5(5(¢— 1) -D)P _
y=9
—2¢+62¢(5(r+¢)—ﬂCD)+5(,BCD—g;)—7/(55—2+52(g(r+¢)—ﬁ®)) > 0and it
=
5 = 20T +4¢—5’ed(t + @) + y(0e(2+ S (r + @) - 4)
j 5@2+5(r - )@
and the other root of the system lie inside the unit circle. The system (3) undertakes a flip bifurcation at
the endemic point E~ = (x*, y*) such that

, then one root of the systemis o = -1

o = o(t+¢)2+0(y —9))D
206t + 49— 5’ed(r +¢) + 7 (02 + 5 (r + 9)) — 4)
y = 2(0e -2)D

2667 +4¢— S2h(r+ @) + 7 (Fe(2+ S (r + ¢)) - 4)

Proof. By using the characteristic polynomial, we write that

v V(08=2)+ et 26— pS0
y—¢ ’

5 P(e(z +9) - fO) -9+ 5(SD - e1)

v (Se —1+ 6% (s(T Rg) — D))

By considering Lemma5 (i) & (ii), we reach wing conditions, respectively

5* (B0 —e(z+¢)) >0,

and

y—¢
Moreover, it is easily seen that the Jacobian matrix Equation (6) has the eigenvalues

al(ﬂF): -1
0,(8)= 3+0p. ©
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2(5c - 2)
2+5(y—9)

®p. -2,-4. 9)

where @f. =8¢ + .Since |a, (B;)| #1, it leads to

Using the transformation

x:x_ﬂ y:y_—(¢+r)8_’3®
B (r=9)p

the endemic point E” is shifted to zero. By Taylor expansion in around (x*, y*) , System (3)Yas the form:

Xes1 = y_yég_égr_qﬂﬂ&bxt+5(y—¢)yt+Gl(x,y)
y=¢ 10)
o= SEEED S, Ly L6, (xy)
y—¢

or the following map: X
MRS N b

y yl [G(xY)
where

G,(x,y)= —pBoxy

G,(x,y)= pBoxy,

.
such that Q = (X, y) . ion (11) has been modified as

t,yt)+%Y(xt,yt,ut),x,y,UER", (12)

and

Yyt = [Yl(x, y,u)].

Yp(x,y,u)
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These vectors are expressed by

T(xY) = ij)l azca;; om0 XcY; = =88 (30, + e,
T,(xY) = kilazgg oo XeY; = B8 (XY, + XY, |
neya= 3 %| Ky U =0
Y,(x,y,u) = ilagkasg o7 Xy Ui =

Suppose that @, p € R? are two eigenvectors of J (E;G

) and J7 (E* ively for ,(B;) =-1.

Then we obtain, J (E;G )q =—qand J' (E;G ) p=-p.Bycal ion, Wi

(2+5(7—¢)11T

oc—2
T
- [t
5(r—9)
With the purpose of normalizing p relating to q , Westimate
o= 4-25¢ SO - )
0(0e—4)(y —9) e —4 L)

product in R*:(p,q) = p,a, + p,d, . To determine the direction

Theorem 2. If Equation (9) becomes valid, c(ﬂG) # 0, and the value of S varies nearby £, then
system (3) undertakes a flip bifurcation at the endemic point E”. Also, if c( ﬂG) >0 (respectively
C(,BG) <0), then E  are stable and bifurcates to the period 2 orbits (unstable).

4. NEIMARK-SACKER BIFURCATIONANALYSIS AND CONTROL OF CHAOS
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In this section, the analysis of NSB and how to manage its chaos are covered. Depending on parameter ¢ ,
the next lemma is equal to lemma 2. At E”, a jacobian matrix is

. 1+6 -0
I(E") = { b aﬂ}. (13)
sa, 1
Here a, = po- g(; +T), =¢-y and a, :W. The characteristic equation is
v Y=

Z(A)=a’*-Ma+N, M =2+5a, and N =1+5a, +5°a,,a,,. The eigen values ar

—1+—+—\/U2 A,

whileU =a,, and V =a,a,,.

Lemma 7.The unique coexistence endemic fixed point E” isa

1. sinkif
a) K <0 and §<&,,or

b) K >0and 6§ <6,,

2. source if
a) K <0 and §>6,,o0r

b) K >0and 6>,
3. saddleif K'>0and 8, <5 <4,

4. non-hyperbolic if
a) K" <0 and 6=

b)

Z(x) oU)a +(1+6U +6%V).

From Lemma 7,if K" <0 and § = 05, then the eigen values are
—1——+|— 4 -U?2,
2V

Now we conclude the theorem for the system Equation (3) about the NSB.

Theorem 3. The NSB of (3) ensures when K™ <0 and & = &, and



AK GUMUS, SELVAM, RAJENDRAN/ GU J Sci, 37(2): x-x (2024)

ot | = IRV v )

PAVARVAY)

Next hybrid controlled method [44, 45] is utilized to control the chaos of the model (3) and is expressed by

x= ox+6(@+ty—ex—PBxy+yy)o+(1—o0)x

y= oy + 8(—py — v + Bxy)o + (1 — o)y (14)

where o € (0,1) . In (14) the control approach combines parameter perturbation and feedhatk control, and

the right choice of o leads to the partial or complete removal of NSB. At E*, Jacobian of §4) is

1+ 00 —00
I(EY) = o0d,; —00d, . (15)
coay, 1
Here a,,a,,,a,, arethe same as given in Equation (13). Asymptotig Staogi 15 gliaranteed by the

roots of Equation (13) being present in the unit disk.

5. NUMERICAL SIMULATIONS

trafions by taking some distinct cases of
collections of parameter is exhibited

The theoretical investigation is confirmed with appropri
(3). Dynamical behavior of (3) around the endemig point under
thru MATLAB programming.

Example 1. Consider the parameter val 575,6=0.2,=24,y=0.03,7 =0.009,¢ = 0.99

depicts a trajectory sinking g close to the endemic point (X, y").
)
1 : ; 1
—
0.8 038l
2
5 0.6¢ E
© o~ 006
§_ 0 4 ! \/\\‘[”w“xx;ﬂ xxxxxxxxxxxxxxxxxxxxxxx q_E
o
0.4t
0.2¢
% 20 40 s %% 02 04 06 08 1
Time Susceptible

Figure 1. Stability of the model (3) via timeline and phase plane
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Example 2. Taking the values ® =0.695,6 =0.4, =11,y =0.02,7=0.3,¢=0.9 and ¢ € (2.45,3)
in the model (3) with the initial value(0.95,0.05). NSB for the model (3) is discussed. By normal
simplification, the endemic value is (X" =1.0909,y" = 0.2939) . Also, the conditions are calculated as
U =-0.7233;V =0.2845: K" = —-0.6148< 0 and 0, =2.532. The Eigenvalues are
a,, =0.0806+10.9967, and the modulus of the value is one. The requirements for NSB are achieved
near the endemic fixed point E™ at bifurcate value &,by using Lemma 7. The endemic point E™ of the
model (3) is shown in NSB diagrams in the planes (&, x) and (8, Y), respectively, in Figuges 2(a) and (b).
The endemic point of the model (3) is easily seen to be locally asymptotically stable for

periodic orbit. Finally, when the bifurcation parameter rises, the orbits ten?wards

AN

T T T T T T T T T T 05
0.45
0.4

0.35

03

0.25

0.2

Susceptible Population
Infected Population

D 1 1 1 1
2145 2.8 265, 26 265 2% 2767 2.8 285 29 129
6=2.45-3

rk-sg€ker bifurcation of the model (3)

Figure 3 displays dist range of values of & for Model (3). For 6 = 2.5, the solution
curve spirals inward before bility. The graph shows instability for 6 between 2.55 and 2.6 as
it settles down i m,spirally inwards. The solution curve spirals inward for 6 =2.7—-2.9

but does not com

themsel We ca easons from the diagrams of the phase and bifurcation planes.

AN
0.5 0.5 0.5
0.4 0.4 0.4 8=2.6
0.3 0.3 0.3
> = >
02 0.2 0.2
0.1 0.1 0.1
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0.4

0.3

>

0.2

0.1

85 1 15

an unstable fixed point E” and a closed invariangfcircle. Thus, the el (14) can be modified as follows:

X= X+6(D—pfxy—ex+ry+7ry)g

y= y+8(-ty-gy+pxy)o. 10

where @ =0.695,¢ = 0.4, § =AY =0.3,¢=0.9 and o € (0,1) . The Jacobian matrix of the
. 1-0.72330 -0.880
J(E)=
0.45060 1

650> +1—0.72330 = 0. Then, the eigen values lie in the unit
.9999) . Furthermore o = 0.84, the plots for x and y of the model

re 5. It is clearly observed from Figure 5, the endemic point E” is stable.

model (Equation 16) is } and the characteristic

equation is a® —(2+0.7
open disk if an
(Equation 16) are
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2 Xt yl
1.5
* 0.4
=
o
s 1 == 03
>
o
o
a 0.2
0.5%,
0.1
0 1000 2000 3000 4000 5000 0.8 1 12 14 16 1.8

Time

Figure 4. Unstability of the model (3) via time Imeﬂha}\lane N

2 0.5
X, ¥, 5=2.995
0.4} °
1.5
g 0.3}
& 1 oy
=
S 0.2}
(A
0.5
0.1
0 ' - - - 8 - ' ' '
0 100 200 300 400 8 1 1.2 1.4 1.6
Time X

t
f the caMtrolled model (16) via time line and phase plane

(17)

The endemicyfixed point is found as E” =(0.13656,0.48235). The Jacobian J(f.) is given by
-2.06754 -0.7632 )
. Here, the eigen values are &, = -1, a, =-0.067542 such that || #1. The
2.79754 1

eigenvectors p,q e R’ correspond to &, (B-) = -1 and a, = —0.067542 are q = (—0.714913,1)" and
p = (0.62055,1)" respectively. ~ To  normalize p relating to q, we calculate
p = (—3.00018,-1.14487)" . The critical coefficient c(f3.) = —1.434625 < 0. Therefore, the periodic

orbits -2 that bifurcate from E™ are unstable see Figure 6.
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0.54

o
=)

o
=

052+

(o
=)

05}

o
m

048 F

Infected Population

o
w

Susceptible Population
o
=

o
N

[IRANS

01 L L 0.42 L .
6.4 6.45 65 6.55 6.4 6.45 6.5 6.55

p=6.4-6.55 p=6.4-6.55

Figure 6. Flip bifurcation of the model (16) \‘
Example 5. Consider the SIS model (3) without treatment, then the modef (3) modified as

X = X% +6(P—ex —BXY, +7Y,)

18
Yea = Vit (=gY+BXY,). (18)

here taking the parameter values ® = 0.575,¢ = 0.2,
initial conditions (0.8,0.2). Computation yields (x",y’) =
[-0.4169 —0.9504
B { 1.2189 1

4,7 30.03,¢ #0.99 and 6 = 0.99 with the
5,0.513) . The Jacobian matrix is

] Here M =0.5831, N =0.7415 and the eigen values are

a,, =0.2916 +10.8103 such that the mo e is 0.8611, which is less than 1. The stability criteria
are satisfied. Therefore, based onrigure 7, the mo 8) is stable. Also infected people takes time to
stable for without treatment co to the SIS treatnent model (3).

1

0 10 20 30 40 50 60
P = 0.575; €=0.2; B8=2.4; v=0.03; $=0.99; §=0.99

Figure 7. Stability of the without treatment model (18) via timeline

6. CONCLUSION
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The dynamical behavior of an SIS endemic discrete model is concerned in this work. Assuming that the
bifurcation parameter for system (3) is £, the existence conditions of fixed points and the conditions of

flip bifurcation are obtained. NSB formation is investigated depending on the step size 6. Chaos is present
in the system (3) under NSB, and it is controlled using a hybrid control process.

CONFLICTS OF INTEREST
No conflict of interest was declared by the authors.
REFERENCES

[1] Ak Giimiis, O., Feckan, M., “Stability, Neimark-Sacker Bifurcation and Ch

[2] Jang, S., Elaydi, N., “Difference equations from discretization

[3] Din, Q., “Bifurcation analysis and chaos control in disgret

[4] Rana, M. S., Kulsum, U., “Bifurcation analysis
system of Leslie type with simplified Holling type
in Nature and Society, 2017:1-17, 9705986, (2017).

jonal Response”, Discrete Dynamics

[5] Merdan, H., Ak Giimiis, O., “St
involving delay and Allee eff
(2012).

alysis of a general discrete-time population model
jed Mathematics and Computation, 219:1821-1832,

[6] Elaydi, S. N., “An Intrp@@gtion to Differenc€ Equations”, Springer-Verlag, New York, 1-540,

(2005).
[7]1 Ak Giimiis, O. 3 tor a class of nonlinear difference population model”, Afyon
Kocatepe Uni 3 ences and Engineering, 16: 585-591, 031303, (2016).

[8] AkGii o} adAocal stability analysis in a nonlinear discretetime population model”,

[9]

., “Dynamics of a discrete nonlinear prey-predator model”, International
ation and Chaos, 30:1-15, 2050055, (2020).

[10] AXQGiimj, O., Dynamics of a Prey-Predator System with Harvesting Effect on Prey. Chaos
Theoy and Applications, 4(3): 144-151, (2022).

[11] Ak Giimiis, O., “Neimark-Sacker bifurcation and stability of a prey-predator system”, Miskolc
Mathematical Notes, 21(2): 873-885, (2020).

[12] Din, Q., Ak Giimiss, O., Khalil, H., “Neimark-Sacker bifurcation and chaotic behaviour of a
modified Host Parasitoid model”, Zeitschrift fiir Naturforschung A, 72(1):25-37, (2017).

[13]



[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[26]

[27]

[28]

[29]

AK GUMUS, SELVAM, RAJENDRAN/ GU J Sci, 37(2): x-x (2024)

Ak Giimiis, O., George Maria Selvam, A., Janagaraj, R., “Stability of modified Host-Parasitoid
model with Allee effect”, Applications and Applied Mathematics: An International Journal,
15(2):1032-1045, (2020).

Din, Q., “Qualitative behavior of a discrete SIR epidemic model”, International Journal of
Biomathematics, 9(6): 1650092, (2016).

Giimiis, O. A., Selvam, A. G. M., Janagaraj, R., “Neimark-Sacker bifurcation and control of
chaotic behavior 1n a discrete-tume plant-herbivore system”, Journal of Science and Arts, 22(3):
549-562, (2022).

Isik, S., “A study of stability and bifurcation analysis in discrete-time predatofyprey system
involving the Allee effect”, International Journal of Biomathematics, 12(1):

Kapgak, S., Elaydi, S., Ufuktepe, U., “Stability of a predator-prey
Journal of Difference Equations and Applications, 22: 989-1004, (

Ak Giimiis, O., “Dynamical consequences and stability analysj ost-parasitoid model”,
General Mathematical Notes, 27(1): 9-15, (2015).

Ak Giimiis, O., Kangalgil. F., “Dynamics of a host-p
New Trends in Mathematical Sciences, 5(3): 332-339,

Liu, X., Xiao, D., “Complex dynamic behaviofs
Solitons & Fractals, 32:80-94, (2007).

refg-time predator prey system”, Chaos,

ucu, G., “Complex dynamics of a discrete-time prey-
ifurcation analysis and chaos”, Journal of Bifurcation

Janagaraj, R., Afaa Hlafta, “Bifurcation behaviour of a discrete
differential algebraic pre dator sy§tem with Holling type Il functional response and prey
refuge”, AIP Confezga

Serieg?1597:1-10, 012004, (2020).

Wang, W., Ruan, S., “Bifurcation in an epidemic model with constant removal rate of the
infectives”, Journal of Mathematical Analysis and Applications, 291(2): 775-793, (2004).

Feng, Z, Thieme, H. R, “Recurrent outbreaks of childhood diseases revisited: the impact of
isolation”, Mathematical Biosciences, 128(1-2): 93-130, (1995).

Hyman, J.M., Li, J., “Modeling the effectiveness of isolation strategies in preventing STD
epidemics”, SIAM Journal on Applied Mathematics, 58:912-925, (1998).



[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

AK GUMUS, SELVAM, RAJENDRAN/ GU J Sci, 37(2): x-x (2024)

Wu, L., Feng, Z., “Homoclinic bifurcation in an SIQR model for childhood diseases”, Journal of
Differential Equations, 168:150-167, (2000).

Wang, W., “Backward bifurcation of an epidemic model with treatment”, Mathematical
Biosciences, 201: 58-71, (2006).

Brauer, F., Castillo-Chavez, C., “Mathematical models in population biology and epidemiology”,
Texts in Applied Mathematics, 40, Springer, New York, 1-508, (2001).

Britton, N. F., “Essential Mathematical Biology”, Springer, London, 1-335, (2003).

Hethcote, H. W., “The mathematics of infectious disease”, SIAM Review, 42:599-

discrete
ications,

Ak Giimiis, O., Maria Selvam, G., Vianny D, A., “Bifurcation and stabili
time SIR epidemic model with vaccination”, International Journal of
17(5): 809-820, (2019), doi: 10.28924/2291-8639.

Ak Giimiis, O., Acer, S., “Period-doubling bifurcation analysi stabihity of epidemic model”,
Journal of Science and Arts Year 19, 4(49): 905-914, (201

atio an idemic model with
(200

Li, X. Z., Li, W. S., Ghosh, M., “Stability and bi
treatment”, Chaos, Solitons & Fractals, 42(5): 2822-28

Kuznetsov, Y. A., “Elements of Applied Bifurca
edition, 1-593, (1998).

», Springer-Verlag, New York, 2"

Guckenheimer, J., Holmes, P., “Nonline
Vector Fields”, Springer-Verlag,

Oscillations, Dynamical Systems, and Bifurcation of
, 1-462, (1983).

Wiggins, S., “Intrqd
Verlag, New YQj

ker bifurcation in a differential equation with piecewise constant
1 of Difference Equations and Applications, 23(4): 763—778, (2017).

x dynamic behavior of a discrete time predator-prey system of Holling-
qu. 180 (2014).

.» Bifurcation and complex dynamics of a discrete-time predator-prey system”,
I. Softw., 5:187-200, (2015).

Luo, X. S., Chen, G., Wang, B. H., Fang, J. Q.,“Hybrid control of period-doubling bifurcation and
chaos in discrete nonlinear dynamical systems”, Chaos, Solitons & Fractals, 18(4):775-783,
(2003).

Yuan, L. G., Yang, Q. G.,“Bifurcation, invariant curve and hybrid control in a discrete-time
predator—prey system”, Applied Mathematical Modelling, 39(8):2345-2362, (2015).



