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Highlights 

• The aim of this work focuses on investigating the spread and control of infection in a SIS model. 

• Discrete-time version of the system subject to treatment is proposed to examine the spread of infection. 

• Bifurcation theory is applied to achieve the flip bifurcation conditions.  

• The Neimark Sacker bifurcation diagram is presented depending on the step size. 

• Chaos is controlled via a hybrid controlled method.  

Article Info 

 

Abstract 

The mathematical dynamics are suitable in examining the effect of infective populations. 

Conditions involving the spread and control of the disease are calculated by analyzing 

mathematical models so that it is possible to have information about the behavior of the infection. 

This article includes the dynamics of a discrete SIS endemic model thru treatment. After 

determining that the fixed point conditions are fulfilled, the stability analysis is completed for 

those fixed points. The derived endemic fixed point's stability and bifurcation conditions are 

examined. Depending on the infection coefficient, the flip bifurcation condition is obtained. At 

the same time, it is determined in which situation Neimark-sacker bifurcation (NSB) may occur 

depending on the step size, and bifurcation is controlled. Our theoretical findings are supported 

by a rich dynamical nature. 
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1. INTRODUCTION 

 

In order to understand the complicated connections within and between species, numerous models based 

on discrete or continuous time steps have been developed. There is no overlap between successive 

generations since populations in ecology evolve at different time steps. Therefore, difference models are 

useful for studying the behavior of populations. Additionally, it is observed that discretization of continuous 

population models works better when the population is smaller than continuous ones [1-4]. The behavior 

of discrete-time models has gained the attention to numerous researchers. These studies include the 

dynamics of models created with discrete-time equations [5-8] and discrete-time systems [9-20] as well as 

the dynamics of models created forward Euler’s scheme [1, 3, 4, 21, 22] non-standard discretization 

procedure [2] discretization of fractional order systems [23, 24, 25] and discretization with piecewise 

constant arguments. 

 

Investigating the dynamics of epidemic disease models is essential, which is one of the population 

interaction dynamics. Epidemic diseases such as influenza, plague, cholera, typhoid, aids, smallpox, 

malaria, mers, ebola, measles, tuberculosis, and Covid-19 have been problematic for humanity throughout 

history, affect infected individuals and infected individuals the whole society in many ways. Vaccination 

and treatment are among the most effective strategies in combating epidemics. The treatment is particularly 

significant to decrease the blowout of epidemics until the vaccine is developed [26-30]. In recent times, 

several researchers have investigated the dynamics of endemic models [31-35]. 
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In this study, our aim is to include a treatment function, which expresses the situation in which the hospital 

beds and drags are sufficient, into a continuous epidemic disease model; and to examine the dynamics of 

the discretized model. It is expected that the number of susceptible and infected people will change as a 

result of treating infected individuals, yielding different findings from the model without treatment. 

 

Li et al. [36], introduced and analyzed the following system taking into account the availability of limited 

resources 

 

= ( )

= ( ) ( )

  

   

 − − + +

− + + −

dS
S SI I T I

dt

dI
SI I T I

dt                   

(1) 

 

where tS  and tI  represent the susceptible and infective populations. Furthermore, , , , , and  are 

the recruitment rate, natural death rate, nature recovery rate, disease-related death rate, and coefficient of 

infection population. All parameters are positive.  

 

 

When (1) is used with forward Euler's technique, the discrete form of the SIS model is obtained as 

 

( )

( )
1

1

= ( )

= ( )

t t t t t t t

t t t t t t

x x x y x y T y

y y x y y T y

   

  

+

+

+ − − + +

+ − −
                (2) 

 

with
1t t

dx
x x

dt
 + −  and

1t t

dy
y y

dt
 + −  such that , .t t t tS x I y= = Here  represents the step size. 

Furthermore, every parameter is a positive constant. 

 

The flip bifurcation conditions are achieved in this study by using the theory of the bifurcation idea. Also, 

the NSB diagram presented depending on the step size and chaos is controlled via hybrid controlled strategy 

[37-40].  Assuming that the drugs or beds in the hospital are adequate, the function of treatment is by given  

 

( ) =t tT y y  
 

for all .y Then the system (2) becomes 

 

( )

( )
1

1

=

= .

t t t t t t t

t t t t t t

x x x y x y y

y y y y x y

    

   

+

+

+ − − + +

+ − − +
                 (3) 

 

In case the treatment capacity is exceeded, a fixed treatment is recommended [26, 36]. Studying the 

discretization of the continuous system with a fixed treatment rate leads to complex operations. In this 

study, proportional treatment of the discrete system was primarily studied in terms of its dynamical 

behavior. 

 

The study divided into six sections is made up of like this scheme: The first part is given as an introduction 

section to have information about the past studies and emphasize our purpose in the study. The second 

section examined the fixed point’s existence requirements and assessed their stability under (3). In the third 

section, the parametric requirements for flip bifurcation of endemic fixed point are determined. The fourth 

section examined the existence of NSB and chaos control of endemic fixed points. Finally, brief results are 

presented in the last section. 
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Citations must be given in brackets [26]. If there are two citations, use comma to separate [27, 28]. If 

citations are more than two and in consecutive order, give the starting number and the last number [29-33]. 

For multiple citations with/without consequence, use the combination of the rules above [4, 10, 11, 21, 23, 

34]. 

 

2. EXISTENCE OF FIXED POINTS AND STABILITY ANALYSIS OF (3) 

 

The existence of fixed points in the model (3) and an analysis of their local stability are covered in this 

section. To determine (3)'s fixed points, the discrete model was solved by
 

 

0

0.

t t t t

t t t

x y x y y

y x y y

   

  

− − + + =

− + − =
 

 

The solution of the system (3) is obtained by using straight forward calculations. 

 

Lemma 1. The System (3) has disease-free fixed point (DF)
1 = ,0E



 
 
 

for all positive parameters and a 

positive endemic fixed point * ( )
= ,

( ) ( )
E

    

     

 + + 
− 

− − 
 if 

( )  



+
   and 0 <    or 

( )  



+
   and 0 .  

 

 

The Jacobian matrix's characteristic polynomial about 
1 = ,0E



 
 
 

 is provided by  

 

( )2
( 1 ) ( 1 ( )

G( ) 2 ( )
     

      
 

− + − + + − 
= + − + + + − + 

 
.  

 

It is easy to see that the roots are 
1 1 = − ( 1 1   under the assumption < 2 )  and 

2 1 ( )


   


= − + + .  Moreover, we get 
2 1 ( )


   


= − + +  if and only if 1.

( )



  




+
 

 

Remark 1. Suppose that 1


 



+ +   and < 2. If 1

( )



  




+
, then the fixed point (DF) is 

locally asymptotically stable. The basic reproduction 0R  is referred to as .
( )



  



+
 

 

Lemma 2. [20] Let us take 
2( ) =Z M N  + +  such that (1) > 0Z . Also 1  and 2  are two roots 

( ) = 0F  . Then, the subsequent assumptions are true: 

i. ( 1) > 0Z −  and < 1N if and only if 
1,2 < 1 ; 

ii. ( 1) < 0Z − if and only if 1 < 1
 
and 2 1   (or 1 1 

 
and 2 1  ); 
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iii. ( 1) > 0Z −  and > 1N if and only if 
1,2 > 1 ; 

iv. ( 1) = 0Z −  and 0,2M  if and only if 1 = 1 −  and 
2 1  ; 

v. 
2 4 < 0M N−  and = 1N if and only if 1,2  complex root and 

1,2 = 1 . 

 

Let's now examine the stability of the model's fixed points (3). The  Jacobian matrix of (3) assessed at 

points 
1E  and 

*E .  

 

1 ( ) ( )
( , ) =

1 ( )

y x
J x y

y x

      

    

− + − + 
 

− − + 
.                (4) 

 

Thus 

 

( )1

1

=

0 1

J E


   




  



   
− + −  

  
  

+ − −  
  

,                 (5) 

 

( )
( )

 
*

( )

= .
( )

1

J E

     
  

 

    

 

− + − +  
− −

 
 + − 
 

− 

                (6) 

 

With the help of Lemma 2, the stability analysis of (3) expressed as follows: 

 

Lemma 3. Assume that 
( )

<
  



+
 . For the exclusion fixed point 

1 = ,0E


 
 
 

, the following cases 

hold: 

 

i.
1E  is a sink point if and only if < 2  and 

( ( ) 2)
<

   




+ −


, 

ii.
1E  is a saddle point if and only if > 2  and 

( ( ) 2)
<

   




+ −


 or < 2  and 

( ( ) 2)
<
   




+ −


, 

iii.
1E  is a source point if and only if 

( ( ) 2)
<
   




+ −


 and > 2 , 

iv.
1E  is a non-hyperbolic point if and only if 

( ( ) 2)
=
   




+ −


 or = 2 , 

where ( ) > 2  + . Also, if <  , 
1E  is the unique disease-free fixed point. 

 

Lemma 4. If
( )

>
  


+


 and the endemicpoint

* ( )
= ,

( )

     

   

 + + − 
 

− 
E  such that <  , is local 

asymptotically stable and the following cases hold: 
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i. If 

22 4 ( ) ( 4 (2 ( )))
<

(2 )

          


  

+ − + + − + + +

+ − 
, 

1
0 < 

 
 −

−
 and 

2
< .


 

ii. If 
( ( ) (1 ( )))

<
(1 ( ))

        


  

− + + + +

+ − 
, 

2
<


, 
2

= .
 

−

−
 

iii. If 
( ( ) (1 ( )))

<
(1 ( ))

        


  

− + + + +

+ − 
, 

2
>

 
−

−
, 

2
0 < <


. 

iv. If 
( ( ) (1 ( )))

< <
(1 ( ))

        


  

− + + + +


+ − 
, 

2
>

 
−

−
, 

2



 , such that 

22 4 ( ) ( 4 (2 ( ))) ( )
= max ,

(2 )

             

  

 + − + + − + + + +
  

+ −   
. 

Proof. The characteristic polynomial of Jacobian matrix ( )*J E   about 
* ( )

= ,
( )

     

   

 + + − 
 

− 
E  is 

given by 

 

2

2 2

( 2) 2
( )

( ( ) ) ( ) ( 1 ( ( ) ))
.

Z
    

  
 

                

 

− + + − 
= + +

−

+ −  − +  − − − + + − 

−

 (7) 

 

When the conditions in Lemma 2 are evaluated, the desired conditions are easily reached. 

 

3. ANALYSIS OF FLIP BIFURCATION 

 

This section uses the bifurcation theory to analyze the flip bifurcation of the system (3) [37-40]. 

 

Lemma 5. [6, 41] For system (3), one root of the system is 1 = − , and the other root lie inside the unit 

circle if and only if 

 

i. (1) = 1 > 0Z M N+ +  

ii. ( 1) =1 = 0Z M N− − +  

iii. 1 = 1 > 0P N+ +  

iv. 1 = 1 0.P N− −   

 

Lemma 6. 

24 ( ( ) ) (2 2 ) (4 ( (2 ( ))))
= 0

                

 

− + + −  + − + + − + +

−
 and 

( 2) 2
0,2

    

 

− + + − 


−
 if and only if 1 = 1 −  and 2 1  . (see Lemma 2-(iv)). 

 

Proof. From the condition Lemma 2-(iv), we can easily get that the conditions in Lemma 6.  

 

Theorem 1. Assume that the inequalities are provided; 
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1. 
2 ( ( ) ) > 0    − + −  , 

2. 
( ( ) (1 ( ))) ( ( ) 1)

> 0
            

 

− + + + + + − − 

−
 

3. 

2 22 ( ( ) ) ( ) ( 2 ( ( ) ))
> 0

                

 

− + + −  + − − − + + − 

−
and if 

2

F

2 4 ( ) ( (2 ( )) 4)
=

(2 ( ))

          


   

+ − + + + + −

+ − 
, then one root of the system is 1 = −  

and the other root of the system lie inside the unit circle. The system (3) undertakes a flip bifurcation at 

the endemic point ( )* * *= ,E x y  such that 

 

*

2

*

2

( )(2 ( ))
=

2 4 ( ) ( (2 ( )) 4)

2( 2)
= .

2 4 ( ) ( (2 ( )) 4)

x

y

     

          



          

+ + − 

+ − + + + + −

− 

+ − + + + + −

 

 

Proof. By using the characteristic polynomial, we write that  

 

2 2

( 2) 2
= ,

( ( ) ) ( ) ( 1 ( ( ) ))
= .

M

N

    

 

                

 

− + + − 

−

+ −  − +  − − − + + − 

−

 

 

By considering Lemma 5 ( ) & ( )i ii , we reach the following conditions, respectively  

 
2 ( ( )) > 0,     − +  

 

and 

 
22 4 ( ) ( (2 ( )) 4)

= .
(2 ( ))

          


   

+ − + + + + −

+ −   
 

From Lemma 5 (iii) & (iv), we obtain  

 
2 2

1

1

( ( ) ) 2 ( ) ( 2 ( ( ) ))
= > 0

( ( ) (1 ( ))) ( ( ) 1)
= > 0.

P

P

                

 

            

 

+

−

+ −  − +  − − − + + − 

−

− + + + + + − −

−
 

 

Moreover, it is easily seen that the Jacobian matrix Equation (6) has the eigenvalues 

 

1

2

( ) = 1

( ) = 3

F

F F

 

  

−

+
                 (8) 
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where 
2( 2)

=
2 ( )

F


 

  

−
 − +

+ −
. Since 

2 ( ) 1F   , it leads to  

 

2, 4.F  − −                      (9) 

 

Using the transformation  

 

( )
= , =

( )

     

   

+ + − 
− −

−
x x y y

 
 

the endemic point 
*E  is shifted to zero. By Taylor expansion in around ( )* *,x y , System (3) has the form: 

 

1 1

21

= ( ) ( , )

( ( ) )
= ( , )

    
  

 

    

 

+

+

− − − + 
+ − +

−

+ − 
+ +

−

t t t

tt t

x x y G x y

y x y G x y

   (10) 

 

or the following map:  

 

1*

2

( , )
( )

( , )

    
→ +     

         

G x yx x
J E

G x yy y
                (11) 

 

where  

 

1

2

( , ) =

( , ) = ,





−G x y x y

G x y x y  

 

such that ( )= ,
T

x y . The system Equation (11) has been modified as 

 

( ) ( )
1 * 2

1

1 1
( ) , , , , , , ,

2 6

+

+

   
→ +  +     

      

t t

t t tt t

t t

x x
J E x y x y u x y u

y y
 (12) 

 

here 

 

1

2

( , )
( , ) = ,

( , )

 
 
  

T x y
T x y

T x y  

 

and  

 

1

2

( , , )
( , , ) = .

( , , )

 
  

  

x y u
x y u

x y u  
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These vectors are expressed by  

 

( )

( )

22
1

1 21 =0 2 1

, =1

22
2

1 22 =0 2 1

, 1

32
1

1 =0

, , =1

32
2

2 =0

, , =1

( , ) = | =

( , ) = | =

( , , ) = | = 0

( , , ) = | = 0.










 


 

  

  

=


− +

 


+

 




  




  









k j

k j k j

k j

k j k j

k lj

k j l k j l

k lj

k j l k j l

G
T x y x y x y x y

G
T x y x y x y x y

G
x y u x y u

G
x y u x y u

 
 

Suppose that 
2,q p  are two eigenvectors of ( )*


G

J E  and ( )*



T

G
J E , respectively for 1( ) = 1G  − . 

Then we obtain, ( )* = −
G

J E q q  and ( )* = −T

G
J E p p . By calculation, we get  

 

2 ( )
,1

2

2
,1 .

( )

T

T

q

p

  



  

+ − 
  

− 

 
 − 

−   
 

With the purpose of normalizing p  relating to q  , we estimate 

 

4 2 ( 2)( )
= , ,

( 4)( ) 4 ( 4)( ) 4

T

p
    

       

 − − −
 

− − − − − −   

 

such that , =1p q . By using the scalar product in 
2

1 1 2 2: , =p q p q p q+ . To determine the direction 

of the flip bifurcation, we need to get the sign of the coefficient ( )Gc  as follows:  

 

( ) ( )11 1
= , ( , , ) , ,( ) ( , ) .

6 2
 − − −Gc p q q q p T q J I T q q

 
 

The following theorem results from the analysis above, section 5.4 in [37], and section 3 in [42, 43]. 

 

Theorem 2. If Equation (9) becomes valid, ( ) 0 Gc , and the value of  varies nearby G , then 

system (3) undertakes a flip bifurcation at the endemic point 
*E . Also, if ( ) > 0Gc  (respectively 

( ) < 0Gc ), then 
*E  are stable and bifurcates to the period 2 orbits (unstable). 

 

4. NEIMARK-SACKER BIFURCATIONANALYSIS AND CONTROL OF CHAOS 
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In this section, the analysis of NSB and how to manage its chaos are covered. Depending on parameter  , 

the next lemma is equal to lemma 2. At 
*E , a jacobian matrix is 

 

11 12*

21

1
( ) = .

1

a a
J E

a

 



+ − 
 
 

                 (13) 

 

Here 
11 12

( )
= , =a a
   

 
 

− +
−

−
 and 

21

( )
=a
   

 

+ − 

−
. The characteristic equation is 

2( ) =Z M N  − + , 11= 2M a+  and 
2

11 12 21= 1N a a a + + . The eigen values are 

 

2

1,2 =1 4 ,
2 2

U
U V

 
 +  −

 
 

while 11=U a  and 12 21=V a a . 

 

Lemma 7.The unique coexistence endemic fixed point 
*E  is a 

 

1. sink if 

a) 
* < 0  and 3<  , or 

b) 
* 0  and 2<  , 

2. source if 

a) 
* < 0  and 3>  , or 

b) 
* 0  and 1>  , 

3. saddle if 
* 0  and 2 1< <   , 

4. non-hyperbolic if  

a) 
* < 0  and 3=  , or 

b) 
* > 0  and 1=   or 2=  . 

 
* 2= 4U V−  and 𝛿1 =

1

𝑉
[√𝑈2 − 4𝑉 − 𝑈], 𝛿2 = −

1

𝑉
[√𝑈2 − 4𝑉 + 𝑈], 𝛿3 = −

𝑈

𝑉
. 

 

To analyze the NSB consider the bifurcation parameter as . The existence of this bifurcation is 

confirmed when the roots of the values at an endemic point are complex conjugate with 1 = [6]. The 

quadratic equation obtained from Equation (13) is 

 
2 2( ) = (2 ) (1 )Z U U V     − + + + + . 

 

From Lemma 7, if 
* < 0  and 3=  , then the eigen values are 

 
2

2

1,2 =1 4 .
2 2

U U
i V U

V V
 −  −

 
 

Now we conclude the theorem for the system Equation (3) about the NSB. 

 

Theorem 3. The NSB of (3) ensures when 
* < 0  and 3=   and 
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2

2

1,2 = 1 4 =1.
2 2

U U
i V U

V V
 −  −

 
 

Next hybrid controlled method [44, 45] is utilized to control the chaos of the model (3) and is expressed by 

 
𝑥 = 𝜎𝑥 + 𝛿(𝛷 + 𝜏𝑦 − 휀𝑥 − 𝛽𝑥𝑦 + 𝛾𝑦)𝜎 + (1 − 𝜎)𝑥

𝑦 = 𝜎𝑦 + 𝛿(−𝜙𝑦 − 𝜏𝑦 + 𝛽𝑥𝑦)𝜎 + (1 − 𝜎)𝑦
              (14) 

 

where (0,1)  . In (14) the control approach combines parameter perturbation and feedback control, and 

the right choice of   leads to the partial or complete removal of NSB. At E
, Jacobian of (14) is 

 

11 12

21

1
( ) =

1

a a
J E

a

 




+ − 

 
 

.                (15) 

 

Here 11 12 21, ,a a a  are the same as given in Equation (13). Asymptotic stability E
is guaranteed by the 

roots of Equation (13) being present in the unit disk. 

 

5. NUMERICAL SIMULATIONS 

 

The theoretical investigation is confirmed with appropriate illustrations by taking some distinct cases of 

(3). Dynamical behavior of (3) around the endemic point under various collections of parameter is exhibited 

thru MATLAB programming. 

 

Example 1. Consider the parameter values = 0.575, = 0.2, = 2.4, = 0.03, = 0.009, = 0.99      

and = 0.99  with the initial conditions (0.8,0.2) . Computation yields 
* *( , ) = (0.416,0.559)x y . The 

Jacobian matrix is 
0.4151 0.9504

=
1.2128 1

J
− − 
 
 

. Here = 0.5849M , = 0.7375N  and the eigen values are 

1,2 = 0.2924 0.8075i   such that the modulus value is 0.8588, which is less than 1. The conditions for 

stability are satisfied. Hence, from Figure 1, model (3) is stable. As a result, the phase portrait in Figure 1 

depicts a trajectory sinking and spiraling close to the endemic point 
* *( , )x y . 

 

 
Figure 1.  Stability of the model (3) via timeline and phase plane 
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Example 2. Taking the values = 0.695, = 0.4, =1.1, = 0.02, = 0.3, = 0.9      and (2.45,3)   

in the model (3) with the initial value ( )0.95,0.05 . NSB for the model (3) is discussed. By normal 

simplification, the endemic value is 
* *( 1.0909, 0.2939)= =x y . Also, the conditions are calculated as 

*= 0.7233; = 0.2845; = 0.6148 < 0U V− −  and 3 = 2.532 . The Eigenvalues are 

1,2 = 0.0806 0.9967i  , and the modulus of the value is one. The requirements for NSB are achieved 

near the endemic fixed point 
*E  at bifurcate value 3 by using Lemma 7. The endemic point 

*E  of the 

model (3) is shown in NSB diagrams in the planes ( , )x  and ( , )y , respectively, in Figures 2(a) and (b). 

The endemic point of the model (3) is easily seen to be locally asymptotically stable for 3< = 2.5423, 

when 3=  , the model becomes unstable and shifts to a stable invariant cycle when 3>  . Additionally, 

these orbits take place in the time windows where 3>   causes the invariant cycle to shift to a quasi-

periodic orbit. Finally, when the bifurcation parameter rises, the orbits tend towards chaos. 

 

 
Figure 2. Neimark-sacker bifurcation of the model (3) 

 

Figure 3 displays distinct phase planes for a range of values of   for Model (3). For = 2.5 , the solution 

curve spirals inward before settling at stability. The graph shows instability for   between 2.55 and 2.6 as 

it settles down as a limit cycle from spirally inwards. The solution curve spirals inward for = 2.7 2.9 −  

but does not come to a point. Finally, the circle vanishes for = 2.91 2.99 − , and chaotic attractors show 

themselves. We can draw our reasons from the diagrams of the phase and bifurcation planes. 
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Figure 3. Various phase plane of the model (3) for different values 

 

Example 3. With the set of parameter values = 0.695, = 0.4, =1.1, = 0.02, = 0.3, = 0.9     , and 

takes = 2.995  with the initial condition ( ) ( )(0), (0) = 0.95,0.05x y , Figure 4 shows the appearance of 

an unstable fixed point 
*E  and a closed invariant circle. Thus, the model (14) can be modified as follows: 

 

( )

( )

=

= .

     

    

+  − − + +

+ − − +

x x xy x y y

y y y y xy
 (16) 

 

where = 0.695, = 0.4, =1.1, = 0.02, = 0.3, = 0.9      and (0,1)  . The Jacobian matrix of the 

model (Equation 16) is estimated at 
*E and is 

*
1 0.7233 0.88

( ) =
0.4506 1

J E
 



− − 
 
 

, and the characteristic 

equation is 
2 2(2 0.7233 ) 0.3965 1 0.7233 = 0    − + + + − . Then, the eigen values lie in the unit 

open disk if and only if (0,0.9999)  . Furthermore = 0.84 , the plots for x  and y  of the model 

(Equation 16) are exhibited in Figure 5. It is clearly observed from Figure 5, the endemic point 
*E  is stable. 
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Figure 4. Unstability of the model (3) via time line and phase plane 

 

 
Figure 5. Stability of the controlled model (16) via time line and phase plane  

 

Example 4. Consider = 0.9, = 0.3, = 0.85, = 0.03, = 0.002      and = 0.45  with the initial 

conditions (0.8,0.2) . The bifurcate value is calculated as = 6.44424F . 

 

= 0.9(0.45 0.3 6.44424 0.032 )

= 0.9(6.44424 0.85 0.03 ).

x x x xy y

y y xy y y

+ − − +

+ − −
              (17) 

 

The endemic fixed point is found as 
* = (0.13656,0.48235)E . The Jacobian ( )FJ  is given by 

2.06754 0.7632

2.79754 1

− − 
 
 

. Here, the eigen values are 1 = 1 − , 2 = 0.067542 −  such that 2 1  . The 

eigenvectors 
2,p q  correspond to 1( ) = 1F  −  and 2 = 0.067542 −  are = ( 0.714913,1)Tq −  and 

= (0.62055,1)Tp  respectively. To normalize p  relating to q , we calculate 

= ( 3.00018, 1.14487)Tp − − . The critical coefficient ( ) = 1.434625 < 0Fc  − . Therefore, the periodic 

orbits -2 that bifurcate from 
*E  are unstable see Figure 6. 
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Figure 6. Flip bifurcation of the model (16) 

 

Example 5. Consider the SIS model (3) without treatment, then the model (3) modified as 

 

( )

( )
1

1

=

= .

t t t t t t

t t t t t

x x x x y y

y y y x y

   

  

+

+

+ − − +

+ − +
               (18) 

 

here taking the parameter values = 0.575, = 0.2, = 2.4, = 0.03, = 0.99     and = 0.99  with the 

initial conditions (0.8,0.2) . Computation yields 
* *( , ) = (0.4125,0.513)x y . The Jacobian matrix is 

0.4169 0.9504
=

1.2189 1
J

− − 
 
 

. Here = 0.5831M , = 0.7415N  and the eigen values are

1,2 = 0.2916 0.8103i   such that the modulus value is 0.8611, which is less than 1. The stability criteria 

are satisfied. Therefore, based on Figure 7, the model (18) is stable. Also infected people takes time to 

stable for without treatment compare to the SIS treatment model (3). 

 

 
 

Figure 7. Stability of the without treatment model (18) via timeline 

 

 

 

6. CONCLUSION 
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The dynamical behavior of an SIS endemic discrete model is concerned in this work. Assuming that the 

bifurcation parameter for system (3) is  , the existence conditions of fixed points and the conditions of 

flip bifurcation are obtained. NSB formation is investigated depending on the step size . Chaos is present 

in the system (3) under NSB, and it is controlled using a hybrid control process. 
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