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Abstract
The cause-specific hazard function plays an important role in developing the regression
models for competing risks survival data. Proportional hazards and additive hazards
are the commonly used regression approaches in survival analysis. Mostly, in literature,
the proportional hazards model was used for parametric regression modelling of survival
data. In this article, we introduce a parametric additive hazards regression model for
survival analysis with competing risks. For employing a parametric model we consider
the modified Weibull distribution as a baseline model which is capable to model survival
data with non-monotonic behaviour of hazard rate. The estimation process is carried out
via maximum likelihood and Bayesian approaches. In addition to Bayesian methods, a
class of non-informative types of prior is introduced with squared error (symmetric) and
linear-exponential (asymmetric) loss functions. The relative performance of the different
estimators is assessed using Monte Carlo simulation. Finally, using the proposed method-
ology, a real data analysis is performed.
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1. Introduction
In survival studies, it is often interesting to observe individuals lifetime with p ≥ 2

mutually exclusive types of events or competing risks [9,13]. In this situation, occurrence
of one type of failure alter the chance of the occurrence of other types of failure. For
example, primary biliary cirrhosis (PBC) is a chronic liver disease in which individual may
receive the transplant and experience the death in waiting queue. In breast cancer clinical
trial, investigators may be interested to observe events such as local relapse, auxiliary
relapse, remote relapse, second malignancy of any kind, and death. The frequently used
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competing risks modelling methods depend on the observed value of the bivariate random
vector (T, C), where T denotes the lifetime (possible censored) and C = j, j ∈ 1, 2, . . . , p
is the set of possible causes of failure. In this framework, the basic identifiable quantities
are the cause-specific hazard (CSH) function and the cumulative incidence function (CIF).
For comprehensive review and discussion on competing risks one may refer to [13,17,25].

The survival time is frequently arises with auxiliary information in the form of the
covariates such as treatment, sex, age, and so on. In this scenario, regression models
are useful tools for understanding and exploiting the relationship between survival time
and covariates. Generally, the regression models are developed through CSH function for
competing risks survival analysis. In practice, the widely used analysis of survival data
with competing risks is non-parametric and semi-parametric. However, if the model is
correctly specified then parametric models are more efficient than semi-parametric models
[17].

In literature, there is a considerable amount of work on parametric modelling of com-
peting risks using the CSH function. Jeong and Fine [11] considered the Weibull CSH
function and the direct improper Gompertz distribution for parametric modelling of the
CIF. Anjana and Sankaran [2] proposed the parametric reverse cause-specific proportional
hazards (PH) regression model by assuming inverse Weibull model under left censoring.
Lee [18] provided the parametric quantile inference for CSH function with adjustment of
covariates. Rehman et al. [29] presented the survival analysis with competing risks under
parametric PH model with Bayesian approach.

Parametric regression analysis of competing risks survival data in the above mentioned
literature is mainly based on the Cox’s PH model [4]. In the PH model, the effects of
the covariates act multiplicatively on some baseline hazard rate. Aalen [1] introduced
an important alternative to the PH model that is the additive hazards (AH) regression
model and later studied by [20,21]. In the AH model, the hazard rate with the associated
covariates is defined as the sum of the baseline hazard rate and regression function of the
covariates. In a two sample set-up, the PH model concern the risks ratio, whereas AH
model addresses the risks difference. Shen and Cheng [32] proposed the confidence bands
for CIF under AH model. Sun et al. [35] considered the AH model for competing risks
analysis of the case-cohort design. Zhang et al. [38] proposed the regression analysis of
competing risks data via semi-parametric AH model. Li et al. [19] analyzed an additive
sub-distribution hazard model for competing risks data.

Parametric AH regression model may developed by assuming some known distribu-
tional form for baseline hazard function [31]. As much as we know, survival analysis with
competing risks based on parametric AH regression model has not received any atten-
tion. Therefore, the objective of the present work is to employ parametric AH regression
model for competing risks survival data. In this article, we study the modified Weibull
distribution (MWD) with one scale and two shape parameters which is capable to capture
various shapes of the hazard rate like bathtub failure [15]. The aim of this attempt is to
consider both classical and Bayesian methods of estimation. Recently, Rehman et al. [28]
proposed the Bayesian estimation based on the class of informative priors for the modified
Weibull AH regression model under competing risks. Therefore, in this article, we consider
Bayesian estimation based on a class of non-informative types of prior namely, uniform,
Jeffreys and half-t for baseline parameters and uniform prior for regression parameters.
The squared error and linear-exponential (LINEX) loss functions, which are symmetric
and asymmetric loss functions, respectively, are used to derive the Bayes estimates.

The rest of the paper is organised as follows: we introduce a parametric cause-specific
AH regression model in Section 2. In Section 3, we estimate the model parameters by
using maximum likelihood method. In Section 4, the Bayesian estimation is considered
under non-informative priors with two loss functions. A Monte Carlo simulation study
is carried out to examine the finite sample behaviour of the estimators in Section 5. In
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Section 6, the applicability of the proposed model is demonstrated with real data. Finally,
concluding remarks are given in Section 7.

2. Model specification
According to [27], the CSH function of the survival time T , simply gives the instan-

taneous failure rate from a particular cause j among the individuals who are currently
event free in the presence of remaining competing causes (other than j). Mathemati-
cally, the CSH function at t due to cause j conditional on m × 1 vector of covariates
x = (x1, x2, . . . , xm)⊤ is given by

hj(t|x) = lim
∆t→0

Pr(t ≤ T < t + ∆t, C = j | T ⩾ t, x)
∆t

, j = 1, 2, . . . , p. (2.1)

In the context of competing risks analysis, calculating the probability of a certain type of
failure, say j at time t in the presence of competing risks may be useful. Such probability
is known as CIF and defined by

Fj(t|x) = Pr(T ≤ t, C = j | x), j = 1, 2, . . . , p. (2.2)
Since the causes of failure are mutually exclusive. So, the overall hazard h(t) and cumu-
lative distribution function F (t) of T are given below

h(t|x) =
p∑

j=1
hj(t|x), F (t|x) =

p∑
j=1

Fj(t|x).

Therefore, the CIF can be evaluated in terms of the CSH function as follows

Fj(t|x) =
∫ t

0
hj(u|x) exp

−
p∑

j=1
Hj(u|x)

 du, (2.3)

where Hj(t|x) is the cumulative CSH function. The overall survival function in terms of
CSH function is defined as

S(t|x) = exp

−
p∑

j=1
Hj(t|x)

 . (2.4)

For the detail interpretation and use of the equations (2.1)-(2.4) one may refer to [26].
In this study, to develop a regression model for competing risks survival data we consider

the AH regression model given by [21]. In this model, the constant effect of covariates on
the baseline hazard function is additive in nature. This model for CSH rate turns out in
the following form

hj(t|x) = h0j(t) + β⊤
j x, j = 1, 2, . . . , p, (2.5)

where hj(t|x) and h0j(t) denotes the CSH functions for given covariates x and at baseline,
respectively and βj = (βj1, βj2, . . . , βjm)⊤ is the m × 1 vector of cause-specific regression
parameters. In the present work, we study the MWD with one scale parameter a and two
shape parameters α and λ for lifetime variate T with cumulative distribution function,
and hazard function are given as

F (t) = 1 − exp(−atαeλt), t ≥ 0, a > 0, α ≥ 0, λ > 0, (2.6)

h(t) = a(α + λt)tα−1eλt, t ≥ 0, a > 0, α ≥ 0, λ > 0. (2.7)
The commonly used parametric models for survival analysis are exponential, Weibull

and gamma distributions etc., which can only capture the monotonic behaviour of the
hazard rate, for example, increasing, decreasing and constant hazard rates. However,
MWD can capture non-monotonic behaviour of the hazard rate and has exponential,
Weibull, and Type I extreme value distributions as special cases [15]. In equation (2.6),
if we assume that λ = 0 and λ = 0, α = 1 then the distribution function F (t) reduces to
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Figure 1. Hazard plot of MWD for different parameter values.

Weibull and exponential distribution, respectively. Therefore, MWD covers a wider range
of real-life applications compared to exponential, Weibull and Gamma distributions. So,
motivated by this, we assume MWD as a baseline parametric model. Lai et al. [15]
developed the MWD and discussed some of its theoretical properties, for example, the
behaviour of the hazard rate see Figure 1. Ng [24] estimated the parameters of the MWD
for progressively type -II censored samples. Further, some Bayesian estimations of MWD
parameters are considered by [12] and [37]. The MWD is assumed here as a baseline
model of the cause-specific AH analysis in (2.5) due to its flexibility to accommodate
various shapes of the hazard function.

Accordingly, the CSH function, cumulative CSH function, and overall survival function
are obtained as

hj(t; Θj , x) = aj(αj + λjt)tαj−1eλjt + β⊤
j x, (2.8)

Hj(t; Θj , x) = ajtαj eλjt + β⊤
j xt, (2.9)

and

S(t; Θ, x) = exp

−

 p∑
j=1

ajtαj eλjt + β⊤
j xt

 , (2.10)

where Θ = (Θ1, Θ2, . . . , Θp), and Θj = (aj , αj , λj , βj) vector of cause-specific parameters.
The main attention of this article is to estimate the unknown parameters and cumulative
CSH function as the quantity of interest.

3. Maximum likelihood estimation
In the competing risks framework, suppose that T is the observed lifetime which is

defined by T = min(T ∗, D), where T ∗ is the failure time and D is the censoring time. For
the given covariate x, T ∗ and D are assumed to be independent. Further, we assume that
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for each observed failure time, the associated cause of failure is also observed. Therefore,
the censoring indicator is defined as δij = I(Ti = T ∗

i , Ci = j). Let (ti, δij , xi), i =
1, 2, . . . , n be the n ∈ N independently and identically distributed samples of (T, δ, x).
Now we can write the likelihood function for the observed data as

L(Θ) =
n∏

i=1

 p∏
j=1

hj(ti; Θj , xi)δij S(ti; Θ, xi)

 . (3.1)

The fully parameterized likelihood function based on (2.8) and (2.10) is given by

L(Θ) =
n∏

i=1

 p∏
j=1

(
aj(αj + λjti)t

αj−1
i eλjti + β⊤

j xi

)δij exp

−

 p∑
j=1

ajt
αj

i eλjti + β⊤
j xiti


 .

(3.2)
The log likelihood function ℓ(Θ) = log L(Θ) is given as

ℓ(Θ) =
p∑

j=1

nj∑
i=1

log
(
aj(αj + λjti)t

αj−1
i eλjti + β⊤

j xi

)
−

n∑
i=1

 p∑
j=1

ajt
αj

i eλjti + β⊤
j xiti

 .

(3.3)
In equation (3.3), nj denotes the number of failure of type j. To obtain the estimates of
the unknown parameters aj , αj , λj and βj we maximize the (3.3) by equating the partial
derivatives of each parameter to zero. The score equations are obtained as

∂ℓ(Θ)
∂aj

=
nj∑

i=1

(αj + λjti)t
αj−1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β⊤

j xi

−
n∑

i=1
t
αj

i eλjti = 0, (3.4)

∂ℓ(Θ)
∂αj

=
nj∑

i=1

ajt
αj−1
i eλjti + ajαjt

αj−1
i log tie

λjti + ajλjt
αj

i log tie
λjti

aj(αj + λjti)t
αj−1
i eλjti + β⊤

j xi

−
n∑

i=1
ajt

αj

i log tie
λjti = 0,

(3.5)
∂ℓ(Θ)
∂λj

=
nj∑

i=1

ajαjt
αj

i eλjti + ajt
αj

i eλjti + ajλjt
αj+1
i eλjti

aj(αj + λjti)t
αj−1
i eλjti + β⊤

j xi

−
n∑

i=1
ajt

αj+1
i eλjti = 0, (3.6)

∂ℓ(Θ)
∂βj

=
nj∑

i=1

xi

aj(αj + λjti)t
αj−1
i eλjti + β⊤

j xi

−
n∑

i=1
xiti = 0. (3.7)

The score equations (3.4)-(3.7) are not in explicit form and cannot be solved analytically.
Therefore, we use numerical methods to estimate the parameters.

In the literature, several techniques are available for estimating the parameters by
solving score equations or directly maximising the log-likelihood function. The Newton-
Raphson technique is the most commonly used method for estimating the unknown pa-
rameters because the derivatives of the scoring equations are simple to calculate. The
initial values are important in the numerical iterative procedure because of the logarithm
function. In the literature, we do not have any theoretical method to choose the initial
values for the complex models. To avoid the effect of initial values, we arbitrarily tried
different sets of initial values in the iterative procedure. We chose those values which
have the maximum value of the likelihood function. We use the simplex method proposed
by [23] to estimate the parameters through optim function in R software. The sim-
plex method is a straightforward method for estimating the parameters by maximising
the likelihood function without having to optimise the function’s derivatives. The results
of the optim function shows the appropriate convergence of the algorithm, and model
shows its identifiabilty in terms of time taking during the simulation study. Once the
parameter estimates are obtained, the function of the parameters can be estimated using
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the invariance property of the maximum likelihood estimator (MLE). Therefore, the MLE
of cumulative CSH Hj(t; Θj , x) is given by

Ĥj(t; Θ̂j , x) = âjtα̂j eλ̂jt + β̂⊤
j xt.

4. Bayes estimation
Frequentist statistical techniques do not incorporate the prior knowledge into data anal-

ysis. Bayesian inference is attractive in that because it incorporates prior or previous in-
formation with the observed data. Therefore, in this section, we introduced the Bayesian
analysis of parametric cause-specific AH regression model. Prior assumption is based en-
tirely on previous experiences, mathematical convenience and expert judgments, which
can be informative, non-informative, or weakly informative. If the previous data is large
enough, informative priors can be used. A non-informative prior can be used when only
limited or vague knowledge (a priori) about the parameters is available. In this arti-
cle, non-informative types of priors such as the uniform, Jeffreys, and half-t distributions
for baseline parameters are described. A uniform non-informative prior is assumed for
regression parameters. Also, it is assumed that all the chosen priors are independent.

4.1. Uniform prior
Suppose that the prior distributions of the random variables aj , αj and λj , j = 1, 2, . . . , p

are the uniform distributions of the following form

π1j(aj) ∝ 1
Maj

, 0 < aj < Maj ,

π1j(αj) ∝ 1
Mαj

, 0 < αj < Mαj ,

π1j(λj) ∝ 1
Mλj

, 0 < λj < Mλj
.

(4.1)

For regression parameter βjl, l = 1, 2, . . . , m, j = 1, 2, . . . , p we assumed a uniform distri-
bution on (cjl, djl) where −∞ < cjl < djl < ∞ as a non-informative prior. Hence, the
prior for βj is given by

π1j(βj) ∝
m∏

l=1

1
(djl − cjl)

, −∞ < cjl < djl < ∞. (4.2)

Thus the joint prior distribution for aj , αj , λj and βj , j = 1, 2, . . . , p is given by

π1(Θ) ∝
p∏

j=1

1
Maj Mαj Mλj

m∏
l=1

1
(djl − cjl)

. (4.3)

4.2. Jeffreys prior
A commonly used non-informative prior in Bayesian analysis is Jeffreys prior. Jeffreys

prior exhibits nice features that make it an attractive non-informative prior. According
to Jeffrey’s rule [34] we choose the priors for baseline parameters i.e. if the domain of
the parameters is on positive real line then log of the parameters is uniformly distributed.
Hence, the priors for baseline parameters are defined accordingly to Jeffrey’s rule and for
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regression parameter uniform prior is considered as follows

π2j(aj) ∝ 1
aj

, 0 < aj < ∞,

π2j(αj) ∝ 1
αj

, 0 < αj < ∞,

π2j(λj) ∝ 1
λj

, 0 < λj < ∞,

π2j(βj) ∝
m∏

l=1

1
(djl − cjl)

, −∞ < cjl < djl < ∞.

(4.4)

Therefore, the joint prior distribution of aj , αj , λj and βj , j = 1, 2, . . . , p is equivalent to

π2(Θ) ∝
p∏

j=1

1
ajαjλj

m∏
l=1

1
(djl − cjl)

. (4.5)

4.3. Half-t prior
Gelman [5] recommended half-t as a default non-informative prior with large and finite

value of the variance (scale parameter) of the t distribution. This prior is more suitable
in the situation when more information is required compare to uniform/Jeffreys prior be-
cause is not completely flat but nearly flat. When the prior distribution has sufficient
information, the numerical approximation algorithm can be easily explore the target den-
sity, or posterior distribution. We use an independent and identical half-t prior for baseline
parameters and a uniform prior for regression parameters as follows

π3j(aj) ∝
(

1 + 1
ν

(
aj

σ

)2
)−( ν+1

2 )
, 0 < aj < ∞,

π3j(αj) ∝
(

1 + 1
ν

(
αj

σ

)2
)−( ν+1

2 )
, 0 < αj < ∞,

π3j(λj) ∝
(

1 + 1
ν

(
λj

σ

)2
)−( ν+1

2 )
, 0 < λj < ∞,

π3j(βj) ∝
m∏

l=1

1
(djl − cjl)

, −∞ < cjl < djl < ∞.

(4.6)

Hence, the joint prior distribution of aj , αj , λj and βj , j = 1, 2, . . . , p is given by

π3(Θ) ∝
p∏

j=1

((
1 + 1

ν

(
aj

σ

)2
)(

1 + 1
ν

(
αj

σ

)2
)(

1 + 1
ν

(
λj

σ

)2
))−( ν+1

2 ) m∏
l=1

1
(djl − cjl)

.

(4.7)
The parameters ν denotes the degree of freedom and σ > 0 is the scale parameter of

the half-t distribution. From Figure 2, it is clear that at σ = 25 and ν = 4 half-t becomes
approximate to uniform.

4.4. Posterior analysis
The posterior probability distribution is obtained by combining past information with

the observed sample using likelihood and prior distribution. Therefore, the joint posterior
density of the random variables aj , αj , λj and βj , j = 1, 2, . . . , p given the data can be
written as

p(Θ|data) = L(data|Θ)π(Θ)∫ ∫
· · ·
∫

L(data|Θ)π(Θ)dΘ , (4.8)
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Figure 2. Half-t density plot.

where p(Θ|data) is the joint posterior density, L(data|Θ) is the likelihood function for the
given observed data as in (3.2) and π(Θ) is the joint prior density. Under the joint priors
π1(Θ), π2(Θ) and π3(Θ) given in (4.3), (4.5) and (4.7), respectively, the joint posterior
densities are obtained as

π1(Θ|data) = K1

p∏
j=1

[ nj∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β⊤

j xi

)]

× exp
{

−
n∑

i=1

p∑
j=1

(
ajt

αj

i eλjti + β⊤
j xiti

)}
,

(4.9)

π2(Θ|data) = K2

p∏
j=1

[
1

ajαjλj

nj∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β⊤

j xi

)]

× exp
{

−
n∑

i=1

p∑
j=1

(
ajt

αj

i eλjti + β⊤
j xiti

)}
,

(4.10)

π3(Θ|data) = K3

p∏
j=1

[ nj∏
i=1

(
aj(αj + λjti)t

αj−1
i eλjti + β⊤

j xi

)

×
((

1 + 1
ν

(
aj

σ

)2
)(

1 + 1
ν

(
αj

σ

)2
)(

1 + 1
ν

(
λj

σ

)2
))−( ν+1

2 ) ]

× exp
{

−
n∑

i=1

p∑
j=1

(
ajt

αj

i eλjti + β⊤
j xiti

)}
,

(4.11)

where K1, K2 and K3 are the normalizing constant or they are the denominator part in
the right hand side of equation (4.8) according to each joint posterior distribution.

It is not possible to compute the integral in the denominator of (4.8) analytically under
each considered prior due to the complex form of likelihood function. Therefore, we
cannot obtain the posterior density in closed form. Hence, in such situation Markov Chain
Mote Carlo (MCMC) method [30] can be used to approximate the integrals. Popularly
used MCMC algorithms are Gibbs sampling algorithm [6] and Metropolis-Hastings (M-
H) algorithm [10]. For the implementation of the Gibbs sampling algorithm the full
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conditional distribution of each parameter is required. So, in this situation the M-H
algorithm is preferable.

The first step in the M-H algorithm is to generate a candidate point, denoted here by
Θ∗, from a proposal density q(Θ∗|Θ) also known as candidate density [33]. Let u be a
random variable which is generated from a uniform distribution U(0, 1). Then a general
version of the M-H algorithm for sampling from the posterior distribution π(Θ|data) can
be described as follows:

(1) Choose the initial values Θ(0) and set i = 0.
(2) For i = 1, 2, . . . , M repeat the following steps, where M is typically of the order of

many thousands.
(a) Set Θ = Θ(i−1).
(b) Generate a candidate point Θ∗ from a proposal density q(Θ∗|Θ).
(c) Generate u from U(0, 1).
(d) Calculate the acceptance probability

α(Θ, Θ∗) = min
{

1,
π(Θ∗|data)q(Θ|Θ∗)
π(Θ|data)q(Θ∗|Θ)

}
.

(e) Set

Θ(i+1) =
{

Θ∗ if u ≤ α(Θ(i), Θ∗)
Θ(i) otherwise.

The performance of the M-H algorithm depends on the choice of a proposal density
q(·). Nevertheless, in practice, the choice of the proposal is essential since poor choices
will considerably delay convergence towards the equilibrium distribution. Gibbs sam-
pling is a particular case of the M-H algorithm using a specified form of a proposal
density. Special, cases of M-H algorithm are random-walk Metropolis algorithm, inde-
pendence sampler, or independent Metropolis algorithm [7, 22, 30]. As for applying these
algorithms, we use BUGS software via OpenBUGS [22] interface, a free software and it is
the most popular and has good documentation. For understanding the procedure of
Bayesian analysis through OpenBUGS and its implementation in R software one may re-
fer to (https://CRAN.R-project.org/package=R2OpenBUGS), (https://www.mrc-bsu.
cam.ac.uk/software/bugs/openbugs/), and [22].

4.5. Loss function
The choice of loss function plays an important role in Bayesian computation. In this

article, we consider two different types of loss functions, namely, squared error (symmetric)
and LINEX (asymmetric) loss functions to compare Bayes estimates. Squared error loss
function (SELF) for a parameter Θ is defined as

L1(Θ, Θ̂) = (Θ − Θ̂)2.

Then the Bayes estimate for parameter Θ under SELF can be obtained as the posterior
means and calculated by

Θ̂self = 1
M − M∗

M∑
l=M∗+1

[Θ]Θ=Θ(l) ,

where Θ(l), l = 1, 2, . . . , M are the MCMC random samples generated from the posterior
distribution of Θ and M∗ is the number of iteration used in burn-in period.

However, we also consider LINEX loss function (LLF) as an asymmetric loss function,
which is given by

L2(Θ, Θ̂) = eρ(Θ̂−Θ) − ρ(Θ̂ − Θ) − 1, ρ ̸= 0.

https://CRAN.R-project.org/package=R2OpenBUGS
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
https://www.mrc-bsu.cam.ac.uk/software/bugs/openbugs/
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Under LLF the Bayes estimates of parameter Θ can be obtained as follows

Θ̂llf = −1
ρ

log

 1
M − M∗

M∑
l=M∗+1

e−ρ[Θ]Θ=Θ(l)

 ,

where ρ is the hyper parameter of the LLF and magnitude of ρ reflects the degree of
asymmetry. For ρ > 0, the LLF is quite asymmetric about 0 with overestimation being
more serious than underestimation. Estimates under LLF are roughly equal to estimates
obtained under SELF if ρ is close to zero. LLF is more applicable in lifetime modeling
because underestimating the survival and failure rate functions is typically much more
harmful than overestimating [8].

4.6. Asymptotic confidence interval
In this subsection, we obtained the interval estimates of the unknown parameters based

on the asymptotic property of MLE. Since the MLEs of the unknown parameters are not
in closed form, therefore, it is not possible to obtained exact distribution of MLEs. Using
the asymptotic property of MLE, the sampling distribution of Θ̂ can be approximated by
a (2p + (p × m)) variate normal distribution with mean Θ and variance covariance matrix
Σ(Θ), which is nothing but the inverse of the Fisher information matrix I(Θ) and given
by

I(Θ) = E
[
− ∂2ℓ(Θ)

∂(Θ)∂(Θ)⊤

]
Θ=Θ̂

.

Since the exact mathematical expressions for the above expectations are difficult to
obtain. Therefore, the observed Fisher information matrix IO(Θ) can be used to approx-
imate Fisher information matrix I(Θ), which is obtained by dropping the expectation
operator E in I(Θ). The variance of MLEs of the unknown parameters, i.e. var(Θ̂) are
the diagonal elements of the asymptotic variance covariance matrix Σ(Θ̂). Thus, for a
given confidence level γ, 0 < γ < 1, a two-sided 100(1−γ)% asymptotic confidence interval
(ACI) for Θ̂ can be constructed as follows[

Θ̂ − zγ/2

√
var(Θ̂), Θ̂ + zγ/2

√
var(Θ̂)

]
,

where, zγ/2 is the upper γ/2 quantile of the standard normal distribution. Further, we
also computed two-sided 100(1 − γ)% confidence interval for the estimates of cumulative
CSH Ĥj(t; Θ̂j , x), which is given by[

Ĥj(t; Θ̂j , x) − zγ/2

√
var(Ĥj(t; Θ̂j , x)), Ĥj(t; Θ̂j , x) + zγ/2

√
var(Ĥj(t; Θ̂j , x))

]
,

where variance of cumulative CSH var(Ĥj(t; Θ̂j , x)) is obtained by using the delta method
as follows

var(Ĥj(t; Θ̂j , x)) =
(

∂Hj(t; Θj , x)
∂Θ

)∣∣∣∣
Θ=Θ̂

Σ(Θ̂)
(

∂Hj(t; Θj , x)
∂Θ

)⊤∣∣∣∣∣
Θ=Θ̂

.

4.7. Bayes credible interval
In Bayesian approach, for a γ level of significance, the (1 − γ) interval estimate of a

parameter Θ is a credible interval based on given data, that covers the parameter with
(1 − γ) level of confidence. The 100(1 − γ)% Bayes credible interval (BCI) [ΘL, ΘU ] for
Θ is obtained by setting ΘL equal to the γ/2% quantile and ΘU equal to (1 − γ/2)%
quantile of Θl, l = 1, 2, . . . , M − M∗. Similarly, same procedure also adopt for obtaining
Bayes credible interval for Hj(t; Θj , x).
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Table 1. AE, MSE, AVL and CP values for MLE and Bayes estimates for sample size n = 75

Method a1 α1 β11 H1 a2 α2 β21 H2

True value 0.5 0.8 0.5 0.4269 0.7 0.6 0.4 0.5855
MLE AE 0.5241 0.8592 0.5385 0.4397 0.7260 0.6437 0.4166 0.5907

MSE 0.0301 0.0502 0.1468 0.0107 0.0414 0.0132 0.1642 0.0114
ACI AVL 0.6204 0.7305 1.4002 0.5473 0.7137 0.4347 1.5292 0.5577

CP 0.9340 0.9460 0.9420 0.9920 0.9280 0.9600 0.9500 0.9880
U-self AE 0.5331 0.9033 0.6614 0.4671 0.7148 0.6626 0.5988 0.6230

MSE 0.0244 0.0524 0.1132 0.0119 0.0276 0.0163 0.1201 0.0131
U-llf1 AE 0.5168 0.8755 0.5893 0.4609 0.6952 0.6524 0.5234 0.6148

MSE 0.0217 0.0427 0.0811 0.0111 0.0254 0.0143 0.0797 0.0122
U-llf2 AE 0.5507 0.9334 0.7426 0.4737 0.7356 0.6734 0.6864 0.6314

MSE 0.0280 0.0649 0.1594 0.0129 0.0308 0.0187 0.1791 0.0143
U-BCI AVL 0.5717 0.7397 1.1951 0.3561 0.6305 0.4535 1.2120 0.4064

CP 0.9620 0.9320 0.9480 0.9080 0.9440 0.9560 0.9620 0.9360
J-self AE 0.4843 0.8580 0.6946 0.4561 0.6689 0.6341 0.6307 0.6088

MSE 0.0220 0.0503 0.1263 0.0108 0.0270 0.0127 0.1375 0.0118
J-llf1 AE 0.4693 0.8281 0.6219 0.4500 0.6504 0.6240 0.5538 0.6009

MSE 0.0210 0.0397 0.0902 0.0101 0.0266 0.0114 0.0922 0.0111
J-llf2 AE 0.5005 0.8922 0.7761 0.4625 0.6887 0.6446 0.7190 0.6170

MSE 0.0237 0.0673 0.1770 0.0115 0.0284 0.0144 0.2014 0.0127
J-BCI AVL 0.5465 0.7606 1.2068 0.3518 0.6117 0.4489 1.2285 0.4015

CP 0.9380 0.9300 0.9420 0.9140 0.9280 0.9700 0.9480 0.9440
HT-self AE 0.5324 0.9108 0.6648 0.4671 0.7163 0.6645 0.6004 0.6238

MSE 0.0245 0.0628 0.1143 0.0120 0.0276 0.0167 0.1202 0.0132
HT-llf1 AE 0.5161 0.8805 0.5930 0.4608 0.6964 0.6541 0.5246 0.6156

MSE 0.0218 0.0485 0.0819 0.0112 0.0253 0.0146 0.0794 0.0122
HT-llf2 AE 0.5501 0.9453 0.7454 0.4736 0.7377 0.6755 0.6888 0.6323

MSE 0.0282 0.0840 0.1608 0.0129 0.0312 0.0193 0.1798 0.0144
HT-BCI AVL 0.5726 0.7654 1.1927 0.3559 0.6354 0.4557 1.2175 0.4081

CP 0.9540 0.9260 0.9460 0.8960 0.9540 0.9480 0.9600 0.9420

5. Numerical illustration
We conducted a Monte Carlo simulation study to observe the finite sample behaviour of

the proposed estimators of the unknown parameters and cumulative CSH functions. For
simplicity, we considered two causes of failure i.e. j = 1, 2 and one covariate, say x, which
is generated using a Bernoulli random number for each sample with equal probability
of success and failure. The survival time T is generated through inverse transformation
following the steps given in [3]. For each simulated survival time, the causes of failure are
generated from Binomial distribution with probability of success h1(t;Θj ,x)

h1(t;Θj ,x)+h2(t;Θj ,x) for
cause 1 and failure outcome is considered as cause 2.

In this simulation study, the data set are generated for various sample sizes such as
n = 75, 150 and 300. Without loss of generality we have arbitrary taken the true value
of the parameters as a1 = 0.5, α1 = 0.8, λ1 = 0.1, β11 = 0.5, a2 = 0.7, α2 = 0.6, λ2 =
0.1, β21 = 0.4. We assume that λj to be known for mathematical simplicity. The censored
time D is generated from U(0, d), where d is chosen in such a way that on an average 20%
observations are right censored. Under this setting we had approximately 34% and 46%
failures from cause 1 and cause 2, respectively. For each sample size we have calculated the
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Table 2. AE, MSE, AVL and CP values for MLE and Bayes estimates for sample size n = 150

Method a1 α1 β11 H1 a2 α2 β21 H2

True value 0.5 0.8 0.5 0.4269 0.7 0.6 0.4 0.5855
MLE AE 0.5151 0.8237 0.5030 0.4317 0.7223 0.6315 0.3897 0.5867

MSE 0.0147 0.0170 0.0666 0.0040 0.0174 0.0064 0.0754 0.0053
ACI AVL 0.4318 0.4784 0.9658 0.3661 0.4971 0.2963 1.0517 0.3847

CP 0.9220 0.9480 0.9400 0.9960 0.9400 0.9540 0.9500 0.9840
U-self AE 0.5206 0.8484 0.5675 0.4463 0.7171 0.6393 0.4884 0.6050

MSE 0.0129 0.0196 0.0581 0.0044 0.0129 0.0070 0.0576 0.0060
U-llf1 AE 0.5122 0.8362 0.5273 0.4433 0.7069 0.6348 0.4461 0.6010

MSE 0.0121 0.0175 0.0491 0.0042 0.0122 0.0065 0.0449 0.0057
U-llf2 AE 0.5294 0.8611 0.6113 0.4495 0.7277 0.6438 0.5357 0.6091

MSE 0.0138 0.0222 0.0714 0.0046 0.0138 0.0075 0.0759 0.0063
U-BCI AVL 0.4121 0.4937 0.9019 0.2499 0.4571 0.3004 0.9122 0.2860

CP 0.9300 0.9360 0.9480 0.9480 0.9460 0.9460 0.9660 0.9300
J-self AE 0.4957 0.8250 0.5866 0.4409 0.6928 0.6260 0.5087 0.5979

MSE 0.0121 0.0176 0.0616 0.0041 0.0124 0.0061 0.0631 0.0057
J-llf1 AE 0.4877 0.8129 0.5464 0.4379 0.6829 0.6216 0.4656 0.5940

MSE 0.0118 0.0161 0.0513 0.0039 0.0122 0.0057 0.0487 0.0055
J-llf2 AE 0.5040 0.8378 0.6302 0.4440 0.7031 0.6305 0.5566 0.6019

MSE 0.0126 0.0196 0.0763 0.0043 0.0128 0.0065 0.0835 0.0059
J-BCI AVL 0.4020 0.4935 0.9040 0.2485 0.4489 0.2995 0.9217 0.2841

CP 0.9180 0.9440 0.9420 0.9620 0.9400 0.9520 0.9620 0.9340
HT-self AE 0.5192 0.8500 0.5714 0.4463 0.7177 0.6402 0.4885 0.6052

MSE 0.0127 0.0198 0.0587 0.0044 0.0129 0.0071 0.0575 0.0060
HT-llf1 AE 0.5109 0.8376 0.5313 0.4432 0.7074 0.6357 0.4462 0.6012

MSE 0.0120 0.0176 0.0494 0.0042 0.0122 0.0066 0.0448 0.0057
HT-llf2 AE 0.5279 0.8629 0.6147 0.4494 0.7284 0.6448 0.5358 0.6093

MSE 0.0137 0.0225 0.0723 0.0046 0.0139 0.0076 0.0759 0.0063
HT-BCI AVL 0.4101 0.4972 0.8996 0.2486 0.4585 0.3020 0.9136 0.2861

CP 0.9200 0.9420 0.9440 0.9460 0.9440 0.9400 0.9680 0.9380

average estimate (AE) and mean square error (MSE) for point estimates and average length
(AVL) and coverage probability (CP) for interval estimates of aj , αj , βj and Hj(t; Θj , x)
over 500 replications. The estimates of Hj(t; Θj , x) for j = 1, 2 are obtained at t = 0.5
with covariates values x = 0.5 and denoted as H1 and H2 with true values H1 = 0.4269
and H2 = 0.5855.

Next, as we mentioned in Sub-Section 4.4 that the conditional posterior densities of
the unknown parameters are not turn out in known distributional form. So, we employed
the MCMC procedure for generating the random samples from conditional posteriors. For
this purpose we used the BUGS software via R2OpenBUGS package in R software [22]. The
non-informative priors often lead to a class of improper priors [34]. The use of a proper
prior ensures that posterior will be a proper density, but using an improper prior does not
guarantee that posterior will be a proper density. Thus, with the use of improper prior,
it is necessary to ensure that the resulting posterior density will be proper. Although
we are using the BUGS software for Bayesian analysis, which requires a valid probability
distribution to define the prior as a result, we will get a proper posterior density. In BUGS,
the Jeffreys prior is defined using an appropriate distribution approximation such as the
gamma distribution [22].
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Table 3. AE, MSE, AVL and CP values for MLE and Bayes estimates for sample size n = 300

Method a1 α1 β11 H1 a2 α2 β21 H2

True value 0.5 0.8 0.5 0.4269 0.7 0.6 0.4 0.5855
MLE AE 0.5129 0.8158 0.4970 0.4305 0.7208 0.6212 0.3750 0.5859

MSE 0.0067 0.0070 0.0301 0.0020 0.0101 0.0031 0.0400 0.0028
ACI AVL 0.3038 0.3307 0.6751 0.2554 0.3494 0.2050 0.7339 0.2679

CP 0.9460 0.9620 0.9560 0.9920 0.9200 0.9440 0.9320 0.9820
U-self AE 0.5194 0.8280 0.5208 0.4378 0.7207 0.6254 0.4195 0.5952

MSE 0.0067 0.0075 0.0289 0.0021 0.0084 0.0032 0.0295 0.0030
U-llf1 AE 0.5150 0.8224 0.4994 0.4363 0.7152 0.6234 0.3966 0.5932

MSE 0.0064 0.0070 0.0273 0.0021 0.0081 0.0031 0.0270 0.0029
U-llf2 AE 0.5239 0.8336 0.5430 0.4393 0.7262 0.6275 0.4435 0.5972

MSE 0.0070 0.0080 0.0316 0.0022 0.0088 0.0033 0.0332 0.0030
U-BCI AVL 0.2994 0.3359 0.6621 0.1744 0.3328 0.2052 0.6727 0.1998

CP 0.9480 0.9560 0.9560 0.9460 0.9240 0.9300 0.9520 0.9460
J-self AE 0.5062 0.8162 0.5318 0.4351 0.7083 0.6191 0.4313 0.5917

MSE 0.0062 0.0068 0.0294 0.0021 0.0080 0.0029 0.0310 0.0029
J-llf1 AE 0.5019 0.8106 0.5105 0.4336 0.7029 0.6170 0.4081 0.5898

MSE 0.0060 0.0065 0.0274 0.0020 0.0078 0.0028 0.0279 0.0029
J-llf2 AE 0.5106 0.8218 0.5540 0.4366 0.7137 0.6212 0.4556 0.5937

MSE 0.0064 0.0072 0.0325 0.0021 0.0083 0.0030 0.0353 0.0030
J-BCI AVL 0.2958 0.3351 0.6613 0.1740 0.3302 0.2056 0.6784 0.1995

CP 0.9500 0.9680 0.9560 0.9540 0.9360 0.9500 0.9480 0.9520
HT-self AE 0.5180 0.8285 0.5245 0.4378 0.7211 0.6261 0.4184 0.5950

MSE 0.0066 0.0075 0.0291 0.0021 0.0084 0.0032 0.0293 0.0030
HT-llf1 AE 0.5136 0.8229 0.5031 0.4364 0.7156 0.6240 0.3955 0.5930

MSE 0.0063 0.0070 0.0273 0.0021 0.0081 0.0031 0.0268 0.0029
HT-llf2 AE 0.5225 0.8342 0.5466 0.4393 0.7267 0.6282 0.4426 0.5970

MSE 0.0069 0.0081 0.0319 0.0022 0.0089 0.0034 0.0330 0.0030
HT-BCI AVL 0.2984 0.3364 0.6609 0.1736 0.3342 0.2069 0.6744 0.1999

CP 0.9480 0.9620 0.9560 0.9500 0.9260 0.9360 0.9500 0.9520

We generated M = 10000 Markov chains for each parameter, and the first M∗ = 4000
samples are used in the burn-in period to reduce the effect of initial values. Furthermore,
for minimizing the effect of the autocorrelation, every second equally spaced outcome is
considered i.e., thin=2. By visualizing the convergence diagnostics plots, it is realized that
chains converge nicely. Therefore, the last 6000 MCMC samples are used to obtain the
Bayes estimates of a1, α1, β11, H1, a2, α2, β21 and H2 under both the loss functions. The
Bayes estimates for a uniform prior are denoted as U-self: Bayes estimates under SELF,
U-llf1: Bayes estimates under LLF at ρ = 1.5, U-llf2: Bayes estimates under LLF at
ρ = −1.5. Similarly, for Jeffreys and half-t are denoted as J-self, J-llf1, J-llf2 and HT-self,
HT-llf1, HT-llf2, respectively. The BCI for uniform, Jeffreys and half-t priors are denoted
as U-BCI, J-BCI and HT-BCI, respectively. The numerical results of the simulation study
are presented in Tables 1-3.

From Tables 1-3 it is clear that as the sample size increases, MSEs decrease for MLE
and Bayes estimates which verifies the consistency property of all the estimators. It is also
noticed that the AVLs for ACI and BCIs are decreasing and CPs maintain the nominal
level (95%). From Table 1, we observed that for sample size 75, the Bayes estimates based
on Jeffreys prior are better than the MLE and Bayes estimate based on uniform and half-t
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priors under both the loss functions except for β11 and β21. For large sample sizes 150
and 300 in Tables 2-3, MLE gets better except for some cases. MLE of the cumulative
CSH functions are dominating over the Bayes estimates for sample sizes 75, 150 and 300.
However, half-t prior work well under LINEX loss function at ρ = 1.5 compare to MLE. For
large sample size it is observed that the magnitude of the MSE is negligible for the MLE
and Bayes estimates. Among the priors it is observed that Jeffreys prior is performing
well, however, in some cases uniform and half-t priors shows their applicability. It is also
noticed that the performance of LINEX loss function at ρ = 1.5 relatively good compared
to SELF and LINEX ρ = −1.5 corresponding to each prior. From Tables 1-3 it is noticed
that the interval estimates, BCI under uniform, Jeffreys and half-t prior are dominating
over ACI except for α1 and α2 in terms of AVL.

6. Application
In this section, we used real data from a Mayo Clinic trial in PBC of the liver conducted

between 1974 and 1984 to demonstrate the applicability of the proposed model. This
data set is available in survival package of R software. During this ten-year period, 312
patients were randomly assigned to receive D-penicillamine or placebo treatment from
a total of 424 patients. Furthermore, the remaining 112 patients did not take part in
the clinical trial but agreed to have their basic measurements taken and to be observed
for survival. Six of those patients were lost to follow-up shortly after diagnosis, so these
patients were removed from the study.

In the end of the study, 161 patients died, another 25 patients were received liver
transplant and 232 patients were lost to follow-up. Therefore, the competing risks model
becomes more reasonable for two competing outcome variables liver transplant and death.
The survival time is measured in days for all individuals. Although there are several
covariates in the original data such as treatment, sex, age, etc. For the analysis purpose
treatment is considered as a covariate. For more information on PBC data one could
refer to [36] and application of competing risk on PBC data is available in [16]. Recently,
Bayes estimates based on informative priors for PBC data using a modified Weibull AH
regression model with competing risks are obtained in [28].

In order to compute survival time in terms of years, we divided it by 365, which has a me-
dian survival time of 4.74 years. We also assume that 106 patients who did not participate
in the trial they received the D-penicillamine treatment. Further, we apply the proposed
estimation methods to obtain the estimates of unknown parameters and cumulative CSH
functions. The results of the estimates of unknown parameters are presented in Table 4.
Figure 3 depicts diagnostic plots of the 6000 posterior samples of a1, α1, β11, a2, α2, and β21

Table 4. Estimates of the unknown parameters

Method a1 α1 λ1 β11 a2 α2 λ2 β21

MLE 0.00159 1.36052 0.12696 0.00481 0.06098 0.86681 0.05123 0.00588
U-self 0.00713 0.78394 0.10336 0.00454 0.06215 0.88388 0.04189 0.01178
U-llf1 0.00712 0.7546 0.10083 0.00453 0.06207 0.87867 0.04153 0.01173
U-llf2 0.00713 0.80735 0.10601 0.00454 0.06223 0.88876 0.04225 0.01183
J-self 0.00447 1.29811 0.04431 0.00469 0.05853 1.06259 0.00677 0.0113
J-llf1 0.00446 0.96344 0.03928 0.00468 0.05843 1.05539 0.00663 0.01126
J-llf2 0.00448 1.48471 0.05018 0.00469 0.05864 1.06953 0.00691 0.01135
HT-self 0.00446 1.27911 0.05193 0.00414 0.0586 0.94879 0.03331 0.01184
HT-llf1 0.00446 1.18592 0.05029 0.00413 0.05851 0.93932 0.03295 0.01179
HT-llf2 0.00447 1.36911 0.0537 0.00414 0.05869 0.95804 0.03368 0.01189
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Figure 3. MCMC diagnostic plots of the Bayes estimates under uniform prior, where B1.U and
B2.U are cause-specific regression parameters.
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Figure 4. Cumulative CSH plot for transplant.
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Figure 5. Cumulative CSH plot for death.
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under uniform prior generated from MCMC algorithm using BUGS software. The model
parameters appear to be convergent based on the trace and density plots, as seen in Figure
3 where the auto-correlation for each parameter is decreasing with increasing values of lag.
Although similar results for posterior samples under Jeffreys and half-t priors can also be
obtained.

We estimates the cumulative CSH functions using (2.9) based on the proposed esti-
mators which are presented in Figures 4 and 5. These plots indicates that cumulative
CSH rate for transplant patients is small compared to the same for the patients who ex-
perienced the death. Figure 4 shows that value of the cumulative CSH function due to
transplant is small for the patients who received placebo treatment. Similarly, the same
is observed for cumulative CSH rate due to death see Figure 5. Moreover, the likelihood
test procedure is used to test the significance of the covariate effect on transplant and
death separately. The hypotheses of interest are H0 : β11 = 0 against H1 : β11 ̸= 0 and
H0 : β21 = 0 against H1 : β21 ̸= 0. We calculated the likelihood ratio test statistics and
corresponding p − values are 0.016 and 0.008, respectively. This indicates that treatment
has a significant effect on transplant and death.
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Figure 6. Plot of Cox-Snell residual versus its estimates of cumulative hazard rate.

To test the goodness of fit of the model (2.5) to the PBC data in competing risks
framework we use the Cox-Snell residual plot [14]. The Cox-Snell residual is defined as

ri = Ĥ(ti|xi), i = 1, 2, . . . , n, (6.1)

where Ĥ(t|x) is the estimator of cumulative CSH rate H(t|x) =
∑2

j=1 Hj(t|x) and j = 1, 2
for transplant and death, respectively. If the model holds, then these residuals should be a
sample from unit exponential distribution. Therefore, the hazard plot of residuals versus
the Nelson-Aalen estimator of the cumulative hazard of the residuals will be a straight
line with slope one. From Figure 6 it is clearly observed that fit is reasonably good.
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7. Conclusion
In this article, we considered the parametric cause-specific AH regression analysis

through MWD for competing risks survival data. AH model is a good alternative of
the Cox PH model and it is useful when excess risk is of concern. The estimation of
the unknown parameters and cumulative CSH function have been dealt through MLE
and Bayes estimates. In addition to Bayes estimation, we proposed three types of non-
informative priors for baseline parameters and uniform priors are considered for regression
parameters. Monte Carlo simulations are used to evaluate the relative performance of the
proposed estimators using various sample sizes. The results of simulations showed that
the proposed estimators perform admirably. We demonstrated the model utility with the
PBC data. This data fits well to the model and the covariate have significant effect on
transplant and death. The proposed work can be extent for different censoring schemes
such as interval, current status and middle censoring schemes. Furthermore, the situation
of masking in competing risks analysis is widespread, therefore, the analysis of masked
competing risks data using proposed model seems an interesting attempt.

References
[1] O.O. Aalen, A linear regression model for the analysis of life times, Stat. Med. 8

(8), 907-925, 1989.
[2] S. Anjana and P. Sankaran, Parametric analysis of lifetime data with multiple causes

of failure using cause-specific reversed hazard rates, Calcutta Stat. Assoc. Bull. 67
(3-4), 129-142, 2015.

[3] J. Beyersmann, A. Allignol and M. Schumacher, Competing Risks and Multistate
Models with R, Springer Science & Business Media, New York, 2012.

[4] D.R. Cox, Regression models and life-tables, J. R. Stat. Soc. Ser. B (Methodol.)
34(2), 187-220, 1972.

[5] A. Gelman, Prior distributions for variance parameters in hierarchical models (com-
ment on article by Browne and Draper), Bayesian Anal. 1 (3) 515-534, 2006.

[6] S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the
Bayesian restoration of images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-
6 (6), 721-741, 1984.

[7] W.R. Gilks, R. Sylvia and S. David, Markov Chain Monte Carlo in Practice, CRC
press, Boca Raton, 1996

[8] C.B. Guure and N.A. Ibrahim, Bayesian analysis of the survival function and failure
rate of Weibull distribution with censored data, Math. Probl. Eng. 2012.

[9] B. Haller, G. Schmidt and K. Ulm, Applying competing risks regression models: an
overview, Lifetime Data Anal. 19 (1), 33-58, 2013.

[10] W.K. Hastings, Monte Carlo sampling methods using Markov chains and their ap-
plications, Biometrika 57 (1), 97-109, 1970.

[11] J.H. Jeong and J. Fine, Direct parametric inference for the cumulative incidence
function, J. R. Stat. Soc. Ser. C (Applied Stat.) 55 (2), 187-200, 2006.

[12] H. Jiang, M. Xie and L. Tang, Markov chain monte Carlo methods for parameter
estimation of the modified Weibull distribution , J. Appl. Stat. 35 (6), 647-658, 2008.

[13] J.D. Kalbeisch and R.L. Prentice, The Statistical Analysis of Failure Time Data,
volume 360, John Wiley & Sons, New Jersey, 2002.

[14] J.P. Klein and M.L. Moeschberger, Survival Analysis: Techniques for Censored and
Truncated Data, Springer-Verlag, New York, 2003.

[15] C. Lai, M. Xie and D. Murthy, A modified Weibull distribution, IEEE Trans. Reliab.
52 (1), 33-37, 2003.

[16] X. Lai, K.K. Yau and L. Liu, Competing risk model with bivariate random eects for
clustered survival data, Comput. Stat. Data Anal. 112, 215-223, 2017.



Parametric competing risks additive hazards regression model 1281

[17] J.F. Lawless, Statistical Models and Methods for Lifetime Data, volume 362, John
Wiley & Sons, New Jersey, 2003.

[18] M. Lee, Parametric inference for quantile event times with adjustment for covariates
on competing risks data, J. Appl. Stat. 46 (12), 2128-2144, 2019.

[19] W. Li, X. Xue and Y. Long, Long. An additive subdistribution hazard model for
competing risks data, Commun. Stat. - Theory Methods 46 (23), 11667-11687, 2017.

[20] D. Lin and Z. Ying, Semiparametric analysis of general additive-multiplicative hazard
models for counting processes, Ann. Stat. 23 (5), 1712-1734, 1995.

[21] D. Lin and Z. Ying, Semiparametric analysis of the additive risk model, Biometrika
81 (1), 61-71, 1994.

[22] D. Lunn, C. Jackson, N. Best, D. Spiegelhalter and A. Thomas, The BUGS book: A
Practical Introduction to Bayesian Analysis, Chapman and Hall/CRC, Boca Raton,
2012.

[23] J.A. Nelder and R. Mead, A simplex method for function minimization, Comput. J.
7 (4), 308-313, 1965.

[24] H.K.T. Ng, Parameter estimation for a modified Weibull distribution, for progres-
sively type-II censored samples, IEEE Trans. Reliab. 54 (3), 374-380, 2005.

[25] M. Pintilie, Competing Risks: A Practical Perspective, volume 58, John Wiley &
Sons, England, 2006.

[26] N. Porta Bleda, G. Gómez Melis and M.L. Calle Rosingana, The role of survival
functions in competing risks, Technical report, Universitat Politùcnica de Catalunya,
2008.

[27] R.L. Prentice, J.D. Kalbeisch, A.V. Peterson Jr, N. Flournoy, V.T. Farewell and N.E.
Breslow, The analysis of failure times in the presence of competing risks, Biometrics
34 (4), 541–554, 1978.

[28] H. Rehman, N. Chandra, T. Emura and M. Pandey, Estimation of the modified
Weibull additive hazards regression model under competing risks, Symmetry, 15
(485), 2023, https://doi.org/10.3390/sym15020485.

[29] H. Rehman, N. Chandra, F.S. Hosseini-Baharanchi, A.R. Baghestani and M.A.
Pourhoseingholi, Cause-specific hazard regression estimation for modified Weibull
distribution under a class of non-informative priors, J. Appl. Stat. 49 (7), 1784–
1801, 2022.

[30] C.P. Robert, G. Casella and G. Casella, Introducing Monte Carlo methods with R,
volume 18, Springer Science & Business Media, New York, 2010.

[31] P. Sankaran and S. Prasad, Additive risks regression model for middle censored
exponentiated-exponential lifetime data, Commun. Stat. Simul. Comput. 47 (7),
1963-1974, 2018.

[32] Y. Shen and S. Cheng, Confidence bands for cumulative incidence curves under the
additive risk model, Biometrics 55(4), 1093-1100, 1999.

[33] C. Siddhartha and G. Edward, Understanding the metropolis-hastings algorithm,
Stat. Methods Appt. 49 (4), 327-335, 1995.

[34] S. Sinha, Bayesian Estimation, New Age International (P) Limited Publisher, New
Delhi, 1998.

[35] J. Sun, L. Sun and N. Flournoy, Additive hazards model for competing risks analysis
of the case-cohort design, Commun. Stat. - Theory Methods 33 (2), 351-366, 2004.

[36] T.M. Therneau and P.M. Grambsch, Modeling Survival Data: Extending the Cox
Model, Springer Science & Business Media, New York, 2000.

[37] S. Upadhyay and A. Gupta, A Bayes analysis of modified Weibull distribution via
Markov chain Monte Carlo simulation, J. Stat. Comput. Simul. 80 (3), 241-254,
2010.

[38] X. Zhang, H. Akcin and H.J. Lim, Regression analysis of competing risks data via
semi-parametric additive hazard model, Stat. Methods Appt. 20 (3), 357-381, 2011.

https://doi.org/10.3390/sym15020485

