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Abstract Article Info 

Mathematical modeling has come into prominence during the last few decades in many 

countries’ mathematics teaching curricula. It combines real life situations with 

mathematical context. Although evaluating students’ mathematical modeling 

performances with a unique Likert type instrument is questionable, having an instrument 

about their self-efficacy beliefs in mathematical modeling may help to comment about 

their ideas related to their competencies in mathematical modeling. The purpose of this 

study is to develop a reliable and valid measurement scale to determine mathematical 

modeling self-efficacy of mathematics teacher candidates. For this purpose, the draft and 

final form of the scale were applied to a total of 562 pre-service elementary mathematics 

teachers from various public universities in Turkey. The findings of study revealed that 

the scale is unidimensional according to the results of exploratory factor analysis. The 

unidimensionality of the scale was validated by confirmatory factor analysis. The 

reliability of mathematical modeling self-efficacy scale was very high (.97). Finally, it 

was found that this scale is an appropriate measurement tool to evaluate students’ self-

efficacy beliefs on their mathematical modeling competencies. Some suggestions related 

to the scale and for further studies were given at the end. 
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1. INTRODUCTION 

Mathematical modeling is important part of a real life. People often use statements 

related to mathematics or geometry, and do calculations for different purposes in their daily life. 

Mathematical modeling can be defined as a part of real life situation that is expressed 

mathematically. After the expressions, evaluations are done based on the mathematical model, 

and it is interpreted again in real life context. During this ‘mathematization’ process, some 
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physical models are built from real life situations, and transformed to mathematical models. 

From this point of view, models are concepts, which are already in human mind for making 

sense of complex structures and systems, and their demonstrations (Lesh & Doerr, 2003). The 

term ‘mathematical model’, whereas, is related to explaining the structural characteristics and 

working principles of real life situation (Lehrer & Schauble, 2007; Lesh & Doerr, 2003). For 

example, assume that it is planned to design a car parking area. The aim is to locate parking areas 

for each car such that there is minimum empty place and maximum number of cars located in the 

area. A drawing or physical manipulative that demonstrate the real life situation is a simple 

model. However, a mathematical model is formulas or some other mathematical demonstrations 

that could be used to find the better parking method. When a simple or real model and 

mathematical model concepts are used within a process, they are considered as parts of 

mathematical modeling.  Blum (1993) identifies mathematical modeling as a process that 

consists of the following stages;  

 

 

Figure 1. Blum’s stages of modeling process 

According to the Figure 1, the real life situation is simplified and structured as a real model 

that can be interpreted and transmitted into a mathematical model. The process continues with 

solving the problem to get mathematical results and finally, these results are interpreted and 

translated to the real life situation. In short, mathematical modeling is a cycle of operating on real 

life situations (Blum, 1993). Similarly, according to Brown (2002), mathematical modeling is 

formulating a real world problem, solving it by integrating the real life situation and 

mathematical manipulation, and checking the result using other real life situations. Lingefjrad 

(2004) identified that mathematical modeling is the process that includes observing an authentic 

situation, estimating relationships, applying mathematical analysis, obtaining mathematical 

results, and interpreting again the model.  

Especially, during last few decades, mathematical modeling gained much significance in 

mathematics education (Blum, 2015). A few fundamental reasons for this situation are the fact 

that using modeling in mathematics education gives opportunity to understand mathematics more 

meaningfully, learn mathematics by relating with real life, and eliminate inadequacy of available 

problems (Erbaş et al., 2014). Haines and Crouch (2001) consider that developing mathematical 

modeling skills is very crucial and, for this purpose, they suggest that many real life problems 

should be solved in the classroom, and mathematical modeling courses should be added to the 

curriculum apart from mathematics courses. Maaß (2006) urged that modeling competencies 

should be paid attention in the class. It is advised that mathematical modeling needs to be 

included in mathematics courses at every stage of education beginning from early years of 

education before high school and college levels (Lehrer & Schauble, 2003).  

In general manner, mathematical modeling is the ability to make transitions between real 

world and mathematical world (Crouch & Haines, 2004). Although there are different 
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approaches based on different theoretical frameworks, there is no consensus on mathematical 

modeling approaches in the literature (Kaiser & Sriraman, 2006). Though Lesh and Doerr (2003) 

argue it as a new paradigm beyond the constructivism, Haines and Crouch (2007) regarded 

modeling as the transition between mathematics and real life. Kaiser and Sriraman (2006) 

classify modeling approaches that constitute bases for international studies as realistic and 

applied modeling, contextual modeling, educational modeling, socio-critical modeling, 

epistemological or theoretical modeling, and cognitive modeling.  

Another classification is made based on the aim of using modeling in mathematics 

education. Modeling as the purpose of teaching mathematics and modeling as a means to teach 

mathematics are two general approaches depending on the aim of use (Galbraith, 2012; 

Gravemeijer, 2002; Niss, Blum, & Galbraith, 2007). Although in the first one the main objective 

is to develop models and use this models to improve students’ mathematical modeling abilities; 

in the second one the aim is to use mathematical modeling to teach mathematical models and 

contexts (Erbaş et al., 2014). According to Haines and Crouch (2007), mathematical modeling 

needs to be regarded as interdisciplinary rather than considering it solely in the mathematical 

context. Therefore, it is suggested that mathematical skills and competencies that could be used 

in other disciplines need to be identified and supported in different ways (Erbaş et al., 2014). In 

the second approach, modeling is used as a teaching tool and it is called the emergent modeling 

approach (Gravemeijer, 2002). It is a result of Modeling and Modeling Perspectives (MMP) in 

mathematics education (Lesh & Doerr, 2003) and Realistic Mathematics Education (RME) 

(Freudental, 1991) approaches. MMP is a theoretical approach based on constructivism and 

socio-cultural theories. It focuses on teaching, learning and problem solving in mathematics. In 

the context of MMP, a ‘model’ is product obtained at the end of a process; ‘modeling’ is a 

process that constituting the physical, symbolic, or abstract model of a situation (Erbaş et al., 

2014).  The theoretical basis of another modeling approach offered by RME is the same as MMP 

(Freudental, 1991; Gravemijer, 2002). In this approach, ‘modeling’ is not just transferring 

authentic problem situations into mathematical language; it is also the process to reveal new 

relationships by organizing facts included in these authentic situations (Gravemeijer & Stephan, 

2002). 

In addition to this information related to modeling and some main approaches, it seems to 

be an important matter to identify the term ‘mathematical competency’ before discussing about 

what modeling competencies are. Niss (2004, p.120) defines it as: “Mathematical competence 

then means the ability to understand, judge, do, and use mathematics in a variety of intra- and 

extra-mathematical contexts and situations in which mathematics plays or could play a role.” 

Based on this definition, it is important to know about the context of mathematical modeling in 

detail to understand modeling competencies. Maaß (2006) urges that there is close relationship 

between modeling competencies and the process of modeling. Blum and Kaiser (1997) evaluate 

modeling competencies as the objectives that needed to be accomplished during modeling 

process. Therefore, they consider that the students initially need to understand the real problem 

and set up a model based on reality. Then, they set up a mathematical model from the real model 

and solve mathematical questions within this mathematical model. Finally, the students should 

interpret mathematical results in a real situation and validate the solution (Blum & Kaiser 

1997).  

Ikeda and Stephens (1998), and Profke (2000) have similar understanding of modeling 

competencies with Blum and Kaiser (1997). However, Profke (2000) gives more coverage to 
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general skills such as being curious instead of competencies like interpreting and verifying than 

Blum and Kaiser (1997). Although Niss (2004) has similar ideas with Blum and Kaiser about 

modeling competencies, he differentiates between active modeling and models that have been 

already prepared. Maaß (2006) develops a holistic point of view and stated that modeling 

competencies are more competencies than just following steps of modeling process. These 

competencies are sub-competencies to carry out the single steps of the modeling process, 

metacognitive competencies, competencies for structuring real world situations, competencies 

for urging modeling process, and competencies for seeing different solutions of the real world 

problem and developing positive attitude (Maaß, 2006).  

On the other hand, the researchers such as Ross Crouch, John Davis, Andrew Fitzharris, 

Chris Haines, John Izard, Ken Houston, and Neville Neill define mathematical modeling skills at 

a micro level and stated them as follows (Lingefjrad, 2004): Identifying and simplifying the 

given information, making the aim explicit, formulating the problem, identifying variables, 

parameters, and constants, formulating mathematical expressions, selecting a mathematical 

model, using graphical representations, and comparing with real life situation and controlling the 

process. It could be seen that these competencies specified by Lingefjrad (2004) are all included 

in the sub-competencies suggested by Blum and Kaiser (1997). In the present study, 

mathematical modeling competencies are regarded at micro level. The main reason for not using 

the framework suggested by Maaß (2006) is the fact that each sub-competency is not specified 

well and it is difficult to discriminate between them implicitly. Therefore, Blum and Kaiser’s 

(1997) framework that includes all competencies specified by Lingefjrad (2004) was used to 

develop item clauses. However, modeling is time consuming to apply in the classroom, does not 

fit the curriculum, makes mathematics lessons more demanding and less predictable, and 

assessing modeling is challenging. Peer-to-peer assessment, take-home exams and surveys are 

some tools for measuring and evaluating students’ modeling competencies (Lingefjard & 

Holmquist, 2004). However, due to the complexity of measuring modeling skills with a unique 

assessment tool, using a survey will be a convenient way of commenting on mathematical 

modeling ‘self-efficacy beliefs’ of teacher candidates which is in the scope of this study.  

Whether being used as a means or purpose, mathematical modeling has been an important 

part of school mathematics. In addition to the studies on mathematical modeling and modeling 

competencies, teachers’ self-efficacy beliefs about their modeling competencies seem to be an 

important subject that might affect their effectiveness in the classroom. Bandura (1997) identifies 

the term ‘self-efficacy’ as beliefs of a person about his/her capacity to do and organize intended 

course activities to attain given objectives. People with high level of self-efficacy effort much to 

success and they are more patient in problematic situations (Bandura, 1997).  It is found that 

when the learners are at equal levels of ability, the possibility of finishing a given task for 

learners who believe to do the task is higher than the ones who do not believe (Schunk & 

Pajares, 2005).  

Another important point is the fact that self-efficacy is not an observed skill or 

competency, it is internal beliefs of a person related to what to do with this skill (Synder & 

Lopez, 2002, p. 278). In the context of this study, modeling self-efficacy is related to beliefs of 

students concerning what to do with their mathematical modeling competencies. In other words, 

it refers to the beliefs of the students about what they can do with their capacity in mathematical 

modeling. Bandura (1997) states that four main sources of self-efficacy are mastery experiences, 

the vicarious experiences provided by social models, social persuasion, and physiological 

factors. According to Bandura (1997), mastery experiences are the most important and effective 
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sources of self-efficacy beliefs. For example, if the students with higher performance on 

mathematical modeling get higher scores from a modeling course, they will develop positive 

beliefs in their capacity of this subject. However, although they have higher performance, and 

they get low scores, then, their beliefs on their ability will decrease and it will directly affect 

their performance. This means that students’ personal experiences influence their self-efficacy 

(Bandura, 1997). 

The vicarious experiences, also called ‘modeling’, are related to take others as models. 

When people do not have any judgments about their capacities or have limited experience on a 

subject, vicarious experiences are very effective on their performances (Bandura, 1997). Social 

persuasion, another source of self-efficacy, is related to encouragement of parents, teachers, or 

friends on accomplishing a task or a mission. Physiological factors, the last source of self-

efficacy, affect significantly one’s belief in their capacity. People with high level of anxiety or 

stress are in tendency to develop lower self-efficacy when compared to ones with low level of 

negative emotional and physiological feelings. It is urged that people who are able to control 

their anxiety or stress have high self-efficacy beliefs (Bandura, 1997).   

In education, self-efficacy studies generally focus on the relationship of self-efficacy with 

academic performance, motivational tools, the fields of profession, the choice of profession, 

teachers’ practices in the classroom, and students’ products on given tasks (Pajares, 1997). In 

mathematics education, self-efficacy is found as one of the most important factors that affect 

students’ mathematics performance (Dede, 2008; Pajares & Graham, 1999). Similarly, students 

with low level of mathematics performance have low level of self-efficacy (Lee, 2009). This 

situation justifies the claim of Bandura (1997) related to mastery experiences source of self-

efficacy, which is the fact that students’ personal experiences influence their self-efficacy.  

As justified by some researchers (e.g. Bandura, 1997; Dede, 2008; Lee, 2009; Pajares & 

Graham, 1999) there is a close relationship between students’ performances and their self-

efficacies. From mathematical modeling perspective, it seems to be important to assess students’ 

beliefs about their capabilities in mathematical modeling as these competencies have important 

implications for their mathematical modeling performances. Therefore, the purpose of this study 

is to develop and verify Mathematical Modeling Self-Efficacy Scale regarding mathematical 

modeling competencies. Blum and Kaiser’s (1997) framework that includes all competencies 

specified by Lingefjrad (2004) was used to develop item clauses. The validity of the scale is 

established by structural equation models. Content and construct related validity evidences are 

obtained by means of these models and the opinions of scholars, teachers, and students. The 

internal consistency of the scale was interpreted by evaluating Cronbach’s and McDonald’s 

reliability coefficients. During the verification process, it is aimed to specify the following 

questions: 

1. What is the validity of Self-Efficacy Scale in measuring students’ mathematical modeling 

competencies? 

2. What is the consistency level of Self-Efficacy Scale in measuring students’ mathematical 

modeling competencies? 
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2. METHOD 

In the present study, a descriptive research design was used to develop a scale to measure 

the level of students’ mathematical modeling self-efficacy. The indices for mathematical 

modeling competencies were matched by appropriate expressions and the students were expected 

to select the degree to agree or disagree with given situation. Therefore, it was aimed to describe 

students’ beliefs and ideas about their mathematical competencies. From these perspectives, the 

present study represents the characteristics of descriptive studies (Frankel & Wallen, 2011). 

2.1. Participants  

Participants of the present study were selected from four public universities in Turkey. 

Each university was selected from different regions including Eastern, Mediterranean, Black Sea 

and Central Anatolia. The participants were elementary mathematics teacher candidates from all 

class levels. The reasons for selecting pre-service teachers are that because mathematical 

modeling is included in almost all levels of education, they need to be aware of their modeling 

competencies to assist the students effectively, and they meet mathematical modeling activities 

directly or indirectly during their university education. The study was carried out in three 

application steps. In the first application, the data were collected from 72 (Female=45, Male=27) 

pre-service teachers to analyze whether the items work or not in terms of sentence structures and 

item parameters. The second application was carried out with 180 (Female=127, Male=53) pre-

service teachers to explore the structure of the scale by performing an exploratory factor 

analysis. Finally, the third application was carried out with 310 (Female=230, Male=80) pre-

service teachers to confirm hypothetical structure of the scale by performing a confirmatory 

factor analysis.      

2.2. Scale development process 

In general manner, the purpose of the present study was to develop a scale to measure an 

affective construct in mathematics education research. Ryang (2014) suggest following steps to 

develop a scale for this purpose: Defining research problem and significance of the study, 

literature review, theoretical framework, collecting data, sample selection, target population, 

developing/adapting measurement scale, data analysis, reporting the results, and reliability and 

validity studies. In addition, Crocker and Algina (1986) proposed a more technical scale 

development plan than Ryang’s one and focused on developing/adapting measurement scale, 

data analysis and reliability and validity studies steps in Ryang’s process. In the present study, 

the scale development process was designed by considering scale development process 

suggested by Ryang (2014), and Crocker and Algina (1986). 

Maaß (2006) criticized that modeling competencies are generally associated with modeling 

process, and stated that modeling competencies are more competencies than just following steps 

of modeling process. However, as stated before, each sub-competency is not specified well in 

Maaß (2006) framework, and it is difficult to discriminate between them implicitly. Many 

researchers, such as Ross Crouch, John Davis, Andrew Fitzharris, Chris Haines, John Izard, Ken 

Houston, and Neville Neill define mathematical modeling skills at a micro level (Lingefjrad, 

2004). In the present study, mathematical modeling competencies are also regarded at micro 

level instead of Maaß holistic point of view. Therefore, Blum and Kaiser’s (1997) framework 

that includes all competencies specified by Lingefjrad (2004) was used to develop item clauses.  

For each mathematical modeling index (sub-competency) given in Blum and Kaiser (1997, 

p.9) five to seven items were developed and an item pool consisting of 32 Likert type items was 
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prepared (see Appendix). The appropriateness of these items was controlled by two scholars 

having their PhD degree in mathematical modeling and other two scholars having their PhD 

degree in the field of measurement and evaluation in education. The criteria for evaluating the 

items was suitability of the items with the indices of mathematical modeling competencies, 

appropriateness of item formats, suitability of item levels for pre-service elementary mathematics 

teachers. In order to increase the quality of the items and to develop items representing the 

construct ideally, the scholars were also requested to suggest delete or add new items if possible.  

After revisions of the scholars, some items were deleted, new ones were written, and unclear 

items were modified. As a result, Mathematical Modeling Self-Efficacy Scale consisting of 32 

items was prepared as the first draft (see Appendix).  

2.3. Data analysis 

The first draft was applied to 72 students to analyze some basic psychometric properties of 

items including item-total score correlations, item mean, and standard deviations. By doing this, 

the researcher had also the possibility of observing how students react to the expressions and 

students’ ideas about the item structures. The results of the preliminary analysis revealed that 

item parameters were appropriate and none of the items were needed to be deleted except 

modifying some of them to make more understandable.     

Verification process of the scale consisted of two applications. Exploratory factor analysis 

and confirmatory factor analysis were carried out in each application. In order to have evidence 

for internal reliability of the scale, Cronbach α and McDonald ω coefficients were calculated. 

The assumptions of factor analysis were checked before doing this analysis. In order to test the 

appropriateness of sample size, Kaiser-Meyer-Olkin sample suitably test was done and it was 

found that the sample size was adequate. When the descriptive statistics of the data were 

examined, there was not any missing values and outliers. As another assumption for factor 

analysis, there should not be multicollinearity. Since, principle component analysis was done, 

this assumption will not create problem and there is no need to check (Tabachnick & Fidell, 

2013).  In order to check univariate and multivariate normality, Chi-square statistics was 

evaluated and this assumption was not satisfied (p<0.05). For this reason, Robust Maximum 

Likelihood method was used to estimate the parameters. For data analysis, IBM SPSS 18.0, 

LISREL 8.80, and Microsoft Office Excel 2010 software were used.   

3. RESULTS 

In this section, the results of item analysis for preliminary application, validity and 

reliability studies were reported in detail. 

3.1. Item Analysis of Preliminary Application 

Before verifying appropriateness of the scale structure on a large trial group, it will be 

beneficial to observe the suitably of the scale in practice on a small group. For this purpose, the 

first scale template was applied to 72 students and the feasibility of the items was examined. For 

item analysis two methods are generally preferred: Simple and Henryson methods. Simple 

method bases on upper and lower 27% of whole group and it is appropriate for a sample of 300 

or more participants. Henryson method is usually used for a sample of 60 or higher participants. 

When the sample is big enough, the results of two methods are similar. In the present study, 

descriptive statistics were calculated based on Henryson method due to the sample size of the 

first application (N=72).   
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In Table 1, item means (µ), standard deviations (s) and item-total score correlations (rIT) 

are given. According to the results, item means differ from 3.13 to 3.85 and standard deviations 

differ from 0.72 to 1.16. Item-total score correlations differ from 0.30 to 0.66 and all of them are 

significant (p<0.05). Since, it was aimed to develop a scale with high internal consistency, 0.30 

and higher correlations are enough for intended purpose. The mean of the items is higher or 

lower than the mean of all items by standard deviations that are higher than 0.60, which is lower 

bound.   

Table 1. Descriptive Statistics 

Item  µ s n rIT Item  µ s n rIT 

1 3.76 0.853 71 0.43 17 3.3 0.962 71 0.47 

2 3.65 0.937 72 0.51 18 3.85 0.98 71 0.39 

3 3.71 0.721 72 0.4 19 3.81 0.839 70 0.5 

4 3.46 0.992 72 0.43 20 3.25 1.143 71 0.66 

5 3.26 0.904 72 0.61 21 3.38 1.156 72 0.47 

6 3.18 1.142 72 0.39 22 3.51 1.061 72 0.37 

7 3.63 1.131 72 0.36 23 3.33 0.856 72 0.6 

8 3.42 1.196 72 0.44 24 3.64 0.844 72 0.58 

9 3.68 0.819 72 0.52 25 3.13 1.055 71 0.3 

10 3.51 1.061 72 0.41 26 3.38 1.08 72 0.51 

11 3.47 1.007 72 0.5 27 3.55 0.983 71 0.61 

12 3.73 0.962 70 0.63 28 3.63 0.941 72 0.39 

13 3.44 1.06 72 0.41 29 3.4 0.944 72 0.43 

14 3.38 0.868 71 0.53 30 3.24 1.12 72 0.54 

15 3.81 0.959 72 0.53 31 3.26 0.934 72 0.54 

16 3.32 1.005 72 0.6 32 3.44 1.005 72 0.48 

 

3.2. Validity Studies 

Validity is a process in which evidences are collected to support inferences done based on 

test scores (Cronbach, 1984).  According to the well accepted classification, validity consists of 

content, construct and criterion related evidences. Content validity is related to the fact that the 

items are a sample of subject and behavior domain (Cronbach & Meehl, 1955). In the present 

study, scholar views were taken as a rational evidence for content validity. Four scholars’ 

suggestions were taken into account during whole scale development process including forming 

item pool, modifying or deleting items that are not consistent with mathematical modeling 

construct. Criterion-based evidence is related to the fact that the test measures what it intended to 

measure (Cureton, 1951). In order to provide evidence for criterion-based validity, the 

correlation between developed scale and an already existed scale that measures the same 

construct is examined. Since there could not be found any scale that measures mathematical 

modeling self-efficacy, criterion-based validity evidence could not be obtained for the present 

scale.  

Construct validity is related to the construct that test measures instead of criterion scores. 

Cronbach and Meehl (1955) stated that nomological networks that indicates how constructs will 

be measured and shows the relationships between each other are essential for construct validity.  

Campbell and Fiske (1959) made nomological networks more concrete and suggest multi-

method multi-trait matrix to show the relationships between variables. They also suggest to 

analyze convergent and divergent validity evidences together when any concrete criteria do not 
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exist. In the present study, factor analysis was used as an empirical method to provide evidences 

for the construct validity of the scale. For this purpose, the structure of the scale was explored 

with exploratory factor analysis after item analysis of preliminary application. The obtained 

structure of the scale was hypothetically tested with confirmatory factor analysis. After verifying 

the structure of the scale, convergent validity coefficient was calculated. Due to the 

unidimensional structure of the scale, divergent validity coefficient could not be calculated.  

3.2.1. Exploratory factor analysis. 

In order to examine construct validity of the scale, first of all, an exploratory factor 

analysis was conducted with the data collected from 180 pre-service elementary mathematics 

teachers. The appropriateness of the data for the analysis was investigated by examining the 

results of the Keiser-Meier-Olkin (KMO) and Bartlett sphericity tests. According to Tabachnick 

and Fidell (2013), KMO value should be greater than 0.60 and Bartlett test result need to be 

significant for an exploratory factor analysis to be conducted. The scale’s values for the KMO 

test was 0.88 and Bartlet test results were significant (χ2=2044.23, p=0.000). Therefore, it can be 

said that the data were appropriate for the analysis.  

According to Büyüköztürk (2013), the factors that have eigenvalues equal or greater than 1 

are assumed to be significant factors. Accordingly, there are 7 significant factors that have 

eigenvalues equal or greater than 1. Additionally, Büyüköztürk (2013) suggests that if explained 

variance for a scale that designed as unidimensional is greater than 0.30, it can be accepted 

enough for ensuring the unidimensionality of the scale. In the present study, the first significant 

factor has a factor loading value of 0.342. The unidimensional structure of the scale could also be 

observed from scree plot. The curve of the plot decline dramatically after the first significant 

factor. This is also an indication for unidimensional structure of the scale. Since the scale was 

unidimensional as expected, there was no need for rotation.  

In the present study, it was aimed that the items which have factor loadings in the first 

factor are expected to have factor loadings at least 0.50. For this reason, the items (21, 18, 22, 7, 

4, 6, 8 and 13) having factor loadings lower than 0.50 were removed from the scale. When these 

items were deleted one by one, the structure of the scale varied and the items (9, 1, 19, 15, 26, 32 

and 2) also had factor loadings lower than 0.50 and were removed from the scale. When all items 

that were removed from the scale examined they had high relationships with each other and they 

were lower relationship with the aim of the scale compared to other items according to scholar’s 

views. After reducing dimensions, explanatory factor analysis was repeated with remaining 

items. Scree plot for dimension reduction analysis is given in Figure 2.  

 

 

 

 

 

 

 



Koyuncu, Guzeller & Akyuz 

 
28 

 

Figure 2. Scree plot 

According to the scree plot given in Figure 2, the curve decreases dramatically after the 

first factor. The second and the other factors have the values very close to each other and the 

decrease between any two factors is not remarkable.  Although the scree plot indicates a 

unidimensional structure for the scale, it is important to examine component matrix and 

explained variance proportions.  

For the second exploratory factor analysis of remaining 17 items, the scale’s values for 

the KMO test was 0.91 and Bartlett test results were statistically significant (χ2=1058.85, 

p=0.000). Therefore, it can be said that the data were appropriate for the analysis. There were 

two significant factors that have eigenvalues equal or greater than 1. Explained variance for the 

first factor was 0.445 and hence it indicates a unidimensional scale as observed in the scree plot. 

All remaining items had factor loadings equal or greater than 0.56 for the first factor (Table 2). 

Table 2. Factor Loadings (Λ) and Total Explained Variance 

Item λ Item λ Item λ Item λ 

5  .776 30  .702 28  .638 25  .616 

23  .755 16  .690 11  .638 3  .574 

24  .733 27  .682 17  .637 12  .562 

31  .729 14  .664 29  .620 10  .558 

20  .708       
Eigenvalue = 7.561 

Total variance explained (%) = 44.476  

 

According to the exploratory factor analysis results, it was concluded that 17 items 

explained sufficiently mathematical modeling self-efficacy. In order to verify proposed scale 

structure by this analysis, a confirmatory factor analysis was performed. 

 

 



International Journal of Assessment Tools in Education: Vol. 4, Issue 1, (2017) pp. 19-36 

 

 
29 

3.2.2. Confirmatory factor analysis.  

A confirmatory factor analysis was carried out to validate that the scale with 17 items is 

proper to measure mathematical modeling self-efficacy of pre-service teachers. LISREL 8.80 

software was used to perform the analysis and obtain evidences for construct validity of the 

scale. In order to calculate model parameters, maximum likelihood technique was used (Jöreskog 

& Sörbom, 2004). Univariate and multivariate normality were checked and it was found that 

these assumptions were not satisfied as the prerequisite of the analysis. Therefore, a robust 

method for maximum likelihood technique was performed. Tabachnick and Fidell (2013) suggest 

carrying out the analysis with a sample of approximately 300 participants. Therefore, the scale 

with 17 items was applied to 310 pre-service elementary mathematics teachers from different 

public universities around Turkey.   

KMO and Bartlett test results were examined before doing the analysis. According to 

Tabachnick and Fidell (2013), KMO value should be greater than 0.60 and Bartlett test result 

need to be significant for a confirmatory factor analysis to be conducted. The scale’s value for 

the KMO test was 0.88 and Bartlett test result was significant (χ2=1904.52, p=0.000). Therefore, 

it can be said that the data were appropriate for the analysis. 

As shown in Table 3, χ2 and χ2/df statistics, the normed fit index (NFI), the non-normed fit 

index (NNFI; also known as Tucker-Lewis index), the relative fit index (RFI), the comparative 

fit index (CFI), the incremental fit index (IFI), the goodness of fit index (GFI), the adjusted 

goodness of fit index (AGFI), the root mean square residual (RMR), and the root mean square 

error of approximation (RMSEA) were used to interpret the fit of the model to the data (Kline, 

2011). Among the modifications given for the decrease in χ2 values in LISREL output, one of 

them, which is between items 9 and 10, was done.    

Table 3. χ2 Statistics, Error, and Fit Indices 

χ2 χ2/df ρ RMSEA NFI NNFI RFI CFI GFI AGFI SRMR IFI 

303.38* 2.55 .000 0.071 0.95 0.96 0.94 0.97 0.87 0.83 0.058 0.97 

Notes. ρ<0.01           

As shown in Table 3, χ2 statistics is significant (ρ<0.001) and χ2/df statistics is 2.55. 

Although it is advised that χ2/df value need to be lower than 5 (Anderson & Gerbing, 1984), 

Kline (2011) stresses that using this value to evaluate the fit of data to the model has not any 

logical and statistical base. For this reason, interpreting other approximation and fit indices given 

in Table 3 will be much appropriate. The model RMSEA and SRMR values for the present scale 

were 0.071 and 0.057, respectively. The acceptable maximum cutoff value for RMSEA is 0.06 

and for SRMR it is 0.08 (Hu & Bentler, 1999). However, Steiger (2007) proposes a maximum 

cutoff value of 0.07 for RMSEA.  Hence the model has acceptable fit to the data for RMSEA and 

SRMR. Inversely, the acceptable value for GFI and AGFI indices is to be greater than 0.80 

(Cole, 1987; Marsh, Balla & McDonald, 1988). Since the model GFI and AGFI values for the 

present scale was 0.87 and 0.83, respectively, the model has again acceptable fit to the data. The 

model values greater than 0.90 represents good fit, and greater than 0.95 indicates perfect fit of 

the model to the data (Hair, Anderson, Tatham & Black, 1998). Relative fit indices, RFI, IFI, and 

CFI have values 0.94, 0.97, and 0.97, respectively. Therefore, RFI indicates well; IFI and CFI 

have perfect fit of the model to the data. Normed and non-normed fit indices are also interpreted 
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similar to relative fit indices (Hu & Bentler, 1999). Since the model NFI and NNFI values for the 

present scale were 0.95 and 0.96, respectively, the model has perfect fit to the data.   

The item values of standardized factor loadings (λ), unstandardized factor loadings (λ’), t 

values, standardized error variances (σe), unstandardized error variances (σe
’), and determination 

coefficients (R2) were calculated for the theoretical model and given in Table 4.  

Table 4. Factor Loadings, t Values, Error Variances, and Determination Coefficients 

Item λ λ' t σe σe
’ R2 

3 0.64 1 10.55 0.60 0.6 0.40 

25 0.57 0.87 11.44 0.67 0.64 0.33 

10 0.56 0.9 11.13 0.69 0.74 0.31 

17 0.57 0.94 11.03 0.68 0.75 0.32 

16 0.61 1.01 11.39 0.63 0.7 0.37 

5 0.63 0.93 12.30 0.60 0.53 0.40 

11 0.56 0.93 10.75 0.68 0.75 0.32 

12 0.58 0.9 10.41 0.66 0.65 0.34 

23 0.59 0.9 11.77 0.65 0.63 0.35 

20 0.64 0.98 12.27 0.59 0.57 0.41 

31 0.61 0.88 11.70 0.63 0.54 0.37 

30 0.66 0.91 10.55 0.57 0.45 0.43 

24 0.59 0.87 11.71 0.65 0.58 0.35 

14 0.64 0.96 10.15 0.58 0.53 0.42 

27 0.52 0.78 10.69 0.73 0.67 0.27 

29 0.66 1.02 10.52 0.57 0.55 0.43 

28 0.58 0.93 10.74 0.67 0.7 0.33 

 

Kline (2011) suggests that the absolute values of standardized factor loadings are expected 

to be greater than 0.10. In addition, it is also stressed that the values lower than 0.10 indicate 

small effect; values between 0.30 and 0.50 represent medium effect; and values greater than 0.50 

show large effect. Standardized factor loadings for the present scale vary between 0.56 and 0.66 

and hence all of them indicate large effect. In addition, t values greater than the critical value 

1.96 show that all items fit to the unidimensional model. The standardized error variances (σe) 

for the items of the present scale vary between 0.57 and 0.73. These values show that error 

variances are little higher than medium level. Correspondingly, explained variances vary 

between 0.37 and 0.43 and they are little lower than medium level. When all findings obtained 

from the confirmatory factor analysis were interpreted together, it was found that all 17 items fit 

to the theoretical model.          

Convergent validity. The present scale consists of congeneric items. These items do not have 

equal factor loadings when compared to parallel, tau-equivalent, and essentially tau-equivalent 

items. Therefore, the reliability and validity coefficients for congeneric items were evaluated 

differently. McDonald (1985) suggests to use ω coefficient for such items. The value of this 

coefficient for this scale was calculated as 0.97. Campbell and Fiske (1959) proposed convergent 

validity to establish construct validity. Convergent validity could be evaluated by using 
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reliability coefficient. √𝜔 is equal to the correlation between observed and true scores in 

classical test theory. The value 0.99 indicates that the construct validated by confirmatory factor 

analysis has a very high convergent validity and this value constitutes a strong evidence for 

construct validity of the scale. Since the scale was unidimensional, discriminant validity which 

shows the discrepancy between two dissimilar constructs could not be evaluated.  

3.3. Reliability of the Scale 

Reliability coefficient was defined differently in the literature. Gulliksen (1950) identified 

that it is equal to the correlation between observed scores obtained from parallel test forms. 

Cureton (1958) stated that the ratio of true score variance to the observed score variance 

corresponds to the reliability coefficient. Lord and Novick (1968) defined it as the square of 

correlation between true and observed scores. In order to calculate reliability coefficient 

corresponds to internal consistency of a scale, different reliability coefficients are used according 

to the equality of item means, standard deviations, error variances, and factor loadings 

(Yurdugül, 2006). Since items factor loadings of the present scale were not equal, ω coefficient 

(McDonald, 1985) was used to calculate the reliability of the scale. Kline (2011) suggested that a 

reliability coefficient greater than 0.90 is reliable at perfect level. As it was calculated in the 

equation 4, ω internal consistency coefficient of the scale is 0.97. This value indicates that the 

reliability of the present scale is very high. 

In addition to ω coefficient, Cronbach’s α coefficient was also calculated as standardized 

factor loadings of the items are close to each other. McDonald‘s ω coefficient is equal or higher 

than Cronbach’s α coefficient in all measurements (Bacon, Sauer & Young, 1995). For the 

present scale, Cronbach’s α reliability coefficient was calculated as 0.91. This value is the lower 

bound for the reliability of the scale.  Although α is lower than ω coefficient, it also indicates a 

perfect level reliability for the present scale. 

Since McDonald ‘s ω and Cronbach’s α coefficient could have values between 0.00 and 

1.00, if the reliability value found is subtracted from 1.00, the new value found indicates total 

observed score variance arising from random errors (Kline, 2011). When McDonald‘s ω and 

Cronbach’s α coefficient for the presented scale are subtracted from 1.00, the random error 

variance is 3% and 9%, respectively. It means that maximum total observed score variance 

arising from random errors is 0.09. These findings show that the present scale has a very low 

total observed score variance arising from random errors.  

4. CONCLUSIONS AND SUGGESTIONS 

The aim of the present study is to develop a self-efficacy scale to measure pre-service 

elementary mathematics teachers’ belief on their competencies in mathematical modeling. The 

scale is unidimensional and it is constructed according to Blum and Kaiser’s (1997) 

mathematical modeling competencies framework that includes all competencies specified by 

Lingefjrad (2004). The final form of the scale consists of 17 items and they are in the form of 

Likert format which is scored 1 to 5 points. When the items with negative meaning reversed, the 

scale scores vary between 17 to 85 points. Higher scale score means higher level self-efficacy of 

mathematical modeling competencies. Indices for items, and the items included and not included 

in the final form are given in Appendix. The Turkish version of the final form will be provided to 

the researchers that are interested in self-efficacy of prospective teachers related to mathematical 

modeling competencies. 
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The validity studies revealed that the scale is verified in terms of its content and construct 

to be measured. The evidences are obtained by taking the ideas of scholars, teachers and students 

for the content of the scale and it is concluded that the scale measures what it intends to measure. 

Moreover, exploratory and confirmatory evidences obtained by factor analysis provided strong 

evidences for the construct validity of the scale. In addition, the reliability analysis revealed high 

level of internal consistency according to both Cronbach’s and McDonald’s reliability 

coefficients. This finding also constitutes an evidence for construct validity of the scale. When 

all findings are interpreted together, an appropriate tool is developed to measure pre-service 

teachers’ self-efficacy beliefs on their mathematical modeling competencies.  

Since assessing mathematical modeling performances is more complicated than expected 

(Blum, 1993; Lingefjard & Holmquist, 2004), this scale is considered to be a convenient tool that 

could be used in the field of mathematical modeling. Scholars and teachers can utilize this scale 

to make interpretations about students’ self-efficacies which is one of the most important 

indicators for performance of the students as justified by some researchers (e.g., Bandura, 1997; 

Dede, 2008; Lee, 2009; Pajares & Graham, 1999).  

In other research studies, it can also be used to investigate on the relationship between 

modeling performances and students’ self-efficacies. Moreover, the scale could be used in 

mathematical modeling studies for diverse purposes such as examining the effects of other 

mathematical constructs, their relationship with different demographic variables, etc.  In 

addition, evidences related to criterion-related validity, test-retest, split-half and equivalent form 

reliability can be collected to enhance the scale. Finally, this scale can be adapted to the high 

school level for different regions and countries.  
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Appendix  

Indices for mathematical modeling self-efficacy scale  

Indices # Item Inclusion 

Competencies to 

understand the 

real problem 

and to set up a 

model based on 

reality 

1 I could understand real life problem situation by simplifying. NI 

2 I could make assumptions to understand and interpret real life problems. NI 

3 I could identify real life situations differently. I 

4 I have difficulty in planning to solve a real life problem. NI 

5 I could benefit from relations between variables to make estimations from 

given situation.  

I 

6 I have difficulty in setting up a figure, drawing or model to describe real life 

situation. 

NI 

Competencies to 

set up a 

mathematical 

model from the 

real model 

 

7 I have difficulty in establishing relationships between mathematical models 

(formula or graphics) and mathematical materials (unit cubes, geometrical 

strips, etc.).  

NI 

8 I could not decide on relevant information to set up a mathematical model.  NI 

9 I could see mathematical relationships in real life situation. NI 

10 I could reflect on a mathematical model in depth.  I 

11 I could use different materials to set up a mathematical model. I 

12 I could choose appropriate mathematical notations (graphic, function, etc.) to 

set up a mathematical model. 

I 

Competencies to 

solve 

mathematical 

questions within 

this 

mathematical 

model 

13 I have difficulty in understanding mathematical and cognitive processes in 

developing mathematical formulas or notations.  

NI 

14 I could compare mathematical models developed for different problem 

situations.  

I 

15 I could decide on how to use mathematics in different problem situations.   I 

16 I could design mathematical models for different mathematical subjects.  I 

17 I could use a formula developed for solving a math problem in developing 

formulas for similar problems. 

I 

18 I could demonstrate a function on a graphical model. NI 

Competencies to 

interpret 

mathematical 

results in a real 

situation 

 

19 I could interpret mathematical results in social and daily life. NI 

20 I could apply the solution for a mathematical problem to the real life situations.  

21 I have difficulty in understanding mathematical formulas or graphics used in 

other disciplines (physics, chemistry, etc.). 

NI 

22 I have difficulty in interpreting mathematical formulas or graphics applied to 

real life situations.  

NI 

23 I could generalize mathematical solutions into different real life situations.  I 

24 I could demonstrate the logic behind a mathematical formula in real life 

situations. 

I 

25 I could develop formulas or graphics that enable to take actions for the future 

based on a given dataset.   

I 

Competencies to 

validate the 

solution 

 

26 I could validate the model that I developed by mathematical modeling.  NI 

27 I feel confident to demonstrate the accuracy of a mathematical model. I 

28 I could critically check the solution that I obtained by mathematical modeling. I 

29 I could review the modeling process after developing a solution for a 

mathematical problem situation. 

I 

30 I could develop alternative solutions during mathematical modeling process. I 

31 I could develop creative solutions by checking possible mistakes done during 

modeling process.  

I 

32 I could develop problems that could be solved by mathematical formulas or 

graphics.  

NI 

Notes.  

NI: Items not included in the final form 

I: Items included in the final form 

 


