
BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Abstract—In linguistics, probabilistic relation between co-
occurrent words can provide useful interpretation of knowledge
conveyed in a text. Connectivity patterns of vectorized representa-
tion of lexemes can be identified by using bigram models of word
sequences. Similarity assessment of these patterns is performed
by applying cosine similarity and mean squared error measures
on word vectors of probabilistic relation matrix of text. Moreover,
parallel computing is another important aspect for various
domains that enables fast data processing and analytics. In this
paper, we aim to demonstrate the benefit of parallel computing
for computational challenges of extracting probabilistic relations
between lexemes. In this study, we have explored performance
limitations of sequential semantic similarity analysis and then
implemented CPU and GPU parallel versions to show benefits of
multicore CPU-GPU utilization for computationally demanding
applications. Our results indicate that the alternative parallel
computing implementations can be used to significantly enhance
performance and applicability of probabilistic relation graph
models in linguistic analyses.

Index Terms—Text similarity, probability relations, parallel
computing, CUDA, multicore processing, GPU.

I. INTRODUCTION

P

requests [7].
Due to increasing demand for computing power in Artificial
Intelligence (AI), parallel computing has been applied in
vast research efforts in AI and related research areas such
as Natural Language Processing (NLP), Robotics, Machine
Learning, Data Mining, etc. [8]. Numerous NLP techniques
facilitate information retrieval and textual patterns analyses
in short texts [9] with the purpose of enhancing the poten-
tial of semantic relations extraction and its applications in
Linguistics. Moreover, in natural language processing, par-
allel processing techniques were proven to be effective for
enhancing performance of applications such as lexical analysis
and shallow parsing [10]. In lexical analysis, a probabilistic
graph model can be a useful tool to analyze relations among
word sequences in a given text since it allows representation
of these relations with low complexity. Thus, this model can
be attainable by calculating words co-occurrence probabilities,
which can convey semantic features and grammatical structure
of text while reducing repeated lexical relations. Further explo-
ration of language characteristics obtained from probabilistic
associations of lexemes can provide more insights on relational
similarity among words in short texts. In addition, vector rep-
resentation of probabilistic associations among words allows
for utilization of Cosine Similarity (CS) and Mean Squared
Error (MSE) measures to perform relational similarity analysis
[11].
One of the main purposes of this study is to apply parallel
computing to perform fast and scalable relational similarity
analysis on short texts of various lengths. In this paper,
first, a sequential version of relational similarity analysis has
been implemented. The computational complexity of relational
similarity analysis and probabilistic graph model increases in
proportion to the number of lexemes in the given text hence
nodes in graph model and consequently imposes additional
cost on time requirement of traditional serial computing.
Next, one CPU and one GPU parallel versions have been
implemented to get benefit of parallel computing and to
decrease data processing time. These parallel versions pro-
vide a significant decrease in run time required to perform
relational similarity analysis regarding the sequential version.
Last, performance evaluations are presented by comparing the
sequential version with the proposed CPU and GPU parallel
computing approaches on the same text data.
This paper is organized as follows. In section II, a related
work is presented and in section III, the methodology of
the probabilistic relation graph model is explained. Then,

ARALLEL COMPUTING is a very important concept
in various domains for a variety of tasks since it aims

efficient use of underlying hardware, decreasing processing
time and saving existing resources. Many research efforts have
been directed towards applying multiple computer resources
to compute parallel versions of sequential tasks [1], [2], [3].
Moreover, various data processing tools such as Apache Spark
, Apache Pig and Apache Hadoop [4] have been
developed to provide parallel computing by utilizing Google’s
MapReduce paradigm. Furthermore, parallel processing is
highly demanded in solving computing problems that require
real-time solutions since the value of gleaned information
is inversely proportional [5] with processing time for real-
time data analytics [6]. Thus, spending less time is crucial
to perform on-demand actions for fulfilling near real-time

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

Dima Alnahas and Ahmet Arif Aydin

Manuscript received Feb 07, 2022; accepted Sep 30, 2022.
DOI: 10.17694/bajece.1069152

419

Alternative CPU and GPU Parallel Computing
Approaches for Improving Sequential Analysis of

Probability Associations in Short Texts

Ahmet Arif Aydin is with the Department of Computer Engineering,
Engineering Faculty, Inonu University, Malatya, 44000 TURKEY e-mail:
arif.aydin@inonu.edu.tr
orcidID: 0000-0002-4124-7275

Dima Alnahas is with the Department of R&D, Infina Software Inc.,
Istanbul, TURKEY e-mail:dalnahas@infina.com.tr
orcidID: 0000-0002-6046-1066

https://orcid.org/0000-0002-6113-4649
https://orcid.org/0000-0002-6113-4649

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

in section IV, our implementations of the sequential and
two parallel version approaches are presented. In section V,
computational comparisons and results of our implementations
and evaluations are provided and in section VI, a conclusion
is provided to present the contributions of our work.

II. RELATED WORK

In many studies, co-occurrence probabilities of lexemes and
its vector representation have been utilized in natural language
processing. Also, Statistical Language Modeling is considered
a successful approach for various tasks of NLP such as,
machine translation, text classification, spelling correction, etc.
However, similar approaches involve intensive matrix com-
putations and analyses, thus, requiring immense computation
time, power usage, and resources.
The first use of word co-occurrence probabilities in language
modeling dates back to 1999. I. Dagan et al. [12] utilized
a probabilistic word association model in tasks of language
modeling and pseudo-word disambiguation.
In a recent work, A. Schakel and B.J. Wilson [13] introduced
the use of word co-occurrence and vector representation as a
significant factor of word in corpus. This study further explores
the language features that can be conveyed by Word2vec [14].
In a later study, D. Alnahas and B.B. Alagoz [11] suggested
a deep relational similarity analysis which explores path
probabilities between words by utilizing power of probabilistic
relation matrix. More recently, Y. Yin et al. [15] introduced
a method to improve accuracy of text recommendation by
8.63%. The method in [15] utilizes improved cosine similarity
measure to compare correlation coefficients vectors of related
texts.
Moreover, in an attempt to minimize the computational cost,
Mikolov et al. [16] presented the Skip-gram Model which
utilizes probability to predict surrounding words in a short
text. This study suggests training the Skip-gram model with
distributed representations of words as a solution to achieve
learned representation of phrases with minimal computational
complexity.
In [17], authors accelerated text clustering speed while per-
forming text similarity measurement by utilizing Spark archi-
tecture in parallel computing. In further effort to minimize
computational cost, many researchers have explored the pos-
sible utilization of CPU and GPU cores. In a performance
analysis study, S. Gupta and M.R. Babu [10] demonstrated that
a 16-core GPU performs expectedly better than single-core
and multi-core CPUs in the simple task of string matching.
Furthermore, in a more recent study, E. Strubell et al. [18]
described the financial and environmental impact of train-
ing state-of-the-art NLP models using large computational
resources. This study compares the carbon emissions from
training common NLP models to familiar consumptions such
as, Air travel. As a result, E. Strubell et al emphasizes the
need for NLP models that can be trained and developed on
more affordable computational resources such as commodity
laptop or server, while providing state-of-the-art analysis. As
a result, these studies inspired our research to provide faster
alternatives to existing NLP models and training methods by

efficiently applying available hardware resources in similarity-
based NLP analyses.

III. METHODOLOGY

In this section, first, a probabilistic relation graph model
approach is presented for relational similarity analysis of short
texts. Then, two similarity measures are applied to evaluate
similarity level of probabilistic relations of word pairs. Last,
an illustrative example is provided to demonstrate probabilistic
associations analysis in short text.

A. Probabilistic Relation Graph Model of Short Text for
Semantic Similarity Analysis

In linguistics, a word sequence of finite length can be
interpreted to a form of knowledge or information. Also,
word sequences can be depicted as messages and a series of
messages represents a text. A vocabulary set of a message
collection consists of lexical instances of message elements.
Adjacent words in a message are considered to have bigram
relation. The bigram relation frequency matrix of co-occurrent
word pairs conveys information of co-occurrence frequency of
words instances in vocabulary set. Let us form a vocabulary
set of message series M1,M2, ..,Mh as,

Wc = wi : wi⊥M1 ∨ wi⊥M2 ∨ ... ∨ wi⊥Mh , (1)

where the occurrence operator ⊥ infers that wi item is an
element of Mj message in the term wi⊥Mj . The bigram
relation frequency matrix of a message M is constructed by

Rf =

{
fi,j = fi,j + 1 , ”wiwj”⊥M ∧ wi, wj ∈Wc

fi,j = fi,j otherwise
(2)

Probabilistic associations between co-occurrent lexeme pairs
in finite-length word sequences can be expressed by a proba-
bilistic bigram relation graph model. The probabilistic relation
matrix of bigram model is identified as normalized values of
Rf elements in a range of [0, 1],

Rp
∼=

1∑
Rf

Rf , (3)

where
∑

Rf is summation of Rf elements and is calcu-
lated by

∑k,k
i=1,j=1 fi,j . Each element of probabilistic relation

matrix conveys the probability of relation between ith and
jth elements of vocabulary set. Accuracy of estimating the
co-occurrence probability of two lexeme items increases in
proportion to length of text.
Fig. 1 illustrates a message example of word sequence
M = ”w1w2w3w4w2w4”. In this figure, probabilistic transi-
tions between co-occurrent lexeme items in word sequence M
are demonstrated by probabilistic relation matrix Rp and its
corresponding weighted graph representation. Zero value of
probabilistic relation matrix element pi,j depicts the absence
of co-occurrence between wi and wj items of text.

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

420

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Fig. 1. A probability relation matrix of M message and
corresponding weighted graph representation.

As demonstrated in Fig. 1, on one hand, the output-word
vector of node w2 is described by the 2nd row elements of
probabilistic matrix and is expressed as,
u2 = [0 0 p2,3 p2,4] .

On the other hand, the input word-vector of node w2 is
described by the 2nd column elements of probabilistic matrix
and is expressed as,
v2 = [p1,2 0 0 p4,2]

T .
As a result, input and output word-vectors are utilized to

evaluate similarity of relational transition paths between nodes.
Therefore, similar probabilistic connection patterns can be an
indication of relational similarity of a word pair.

B. Relational Similarity Measures Application on Vectorized
Representation of Lexemes

In this study, Cosine Similarity (CS) measure is applied
to assess relational similarity of lexeme pairs. CS matrix of
output word-vectors can be obtained for all lexeme pairs of
vocabulary set and is expressed as,

Cu = Rp ⊗RT
p , (4)

where the CS operator ⊗ performs CS calculation between
vectors of Rp and RT

p . CS matrix of input word-vectors can
also be obtained for all lexeme pairs of vocabulary set and is
expressed as,

Cv = RT
p ⊗Rp . (5)

Relational similarity based on CS is calculated with formulas
4 and 5 and can be expressed and normalized to the range of
[0, 1] as follows

C =
1

2
(Cu + Cv) . (6)

Another measure to evaluate relational similarity of lexeme
pairs is Mean Squared Error (MSE). Output MSE matrix is

calculated for all lexemes in a vocabulary and can be expressed
as,

Eu = Rp ⊖RT
p , (7)

where operator ⊖ performs MSE calculation between vectors
of Rp and RT

p . Input MSE matrix is calculated for all lexemes
in vocabulary and can be expressed as,

Ev = RT
p ⊖Rp , (8)

MSE matrix E is then calculated by using formulas 7 and 8
for lexeme pairs and is expressed as

E = Eu + Ev . (9)

C. An Explanatory Example of Probabilistic Relations Anal-
ysis in Short Text

Let us consider the following text which is a quote by
Einstein:
M = “A clever person solves a problem. A wise person avoids
it.”
This message provides the following vocabulary set:
W = A, clever, person, solves, problem, ., wise, avoids, it
Fig. 2a presents Rf matrix values of message M .
Fig. 2b shows values of Rp matrix as calculated using formula
3.
The full stop is assigned an index in the vocabulary set and

it indicates the end of a sentence. As Fig. 2a demonstrates,
the full stop is not included in the probabilistic calculations
of associated lexemes. Fig. 3 presents bigram graph model of
M . In this figure, the stream of transitions between lexemes
is interrupted by full stop at the end of each sentence.
CS matrix of message M is illustrated in Fig. 4a that shows

CS value of 1 for lexeme pair (wise-clever). This similarity
measure indicates similar relations with similar adjacent words
of the lexeme pair. In M message example, these similar
adjacent words can be identified as “A” and “person” and
similar relations can be detected in bigram relation graph of
M .
Similarly, MSE matrix presents 0 error value for lexeme pair
(wise-clever) which indicates validity of similarity analysis.
The MSE matrix as calculated with formula 9 is demonstrated
in Fig. 4b.
Diagonal values of CS and MSE matrices express similarity
of each lexeme with itself which explains 1 values of diagonal
in CS matrix and 0 values of diagonal in MSE matrix.

IV. IMPLEMENTATION

In this section, sequential, CPU parallel and GPU parallel
versions are explained.

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

421

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

A

cle
ve

r

pe
rs

on

so
lv

es

pr
ob

le
m .

wi
se

av
oi

ds it

A

clever

person

solves

problem

.

wise

avoids

it

Co-occurrence Frequency Matrix Rf

0.0

0.2

0.4

0.6

0.8

1.0

(a) Rf values of M message.

A

cle
ve

r

pe
rs

on

so
lv

es

pr
ob

le
m .

wi
se

av
oi

ds it

A

clever

person

solves

problem

.

wise

avoids

it

Bigram Probability Matrix Rp

0.00

0.02

0.04

0.06

0.08

0.10

(b) Rp values of M message.

Fig. 2. Rf and Rp values of M message.

Fig. 3. Bigram relation graph of M message.

A

cle
ve

r

pe
rs

on

so
lv

es

pr
ob

le
m .

wi
se

av
oi

ds it

A

clever

person

solves

problem

.

wise

avoids

it

Cosine Similarity Matrix

0.0

0.2

0.4

0.6

0.8

1.0

(a) CS matrix of M message.

A

cle
ve

r

pe
rs

on

so
lv

es

pr
ob

le
m .

wi
se

av
oi

ds it

A

clever

person

solves

problem

.

wise

avoids

it

Mean Square Error Matrix

0.000

0.002

0.004

0.006

0.008

0.010

(b) MSE matrix of M message.

Fig. 4. CS and MSE matrices of M message.

A. Sequential Probabilistic Similarity Analysis

Pseudocode of the sequential version of probabilistic simi-
larity analysis algorithm is provided in Algorithm IV-A.

Pre-process text file
Create dictionary W of text
for each element i of W do

Obtain l list of adjacent elements to i
for each element j of l do

Rf (i, j)← Rf (i, j) + 1
Total frequency T ← sum of Rf elements
for each element p of Rp and corresponding element f of
Rf do

p← f
T

Calculate Euclidean norm vector Nu of Rp

Norms multiplication matrix Numatrix
← Nu ×NT

u

for each nu element of Numatrix
do

if nu = 0 then
nu ← 1

for each element u of Cu and corresponding elements nu

of Numatrix
, p of Rp and pT of RT

p do

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

422

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

u← (p×pT)
nu

Calculate Euclidean norm vector Nv of RT
p

Norms multiplication matrix Nvmatrix ← Nv ×NT
v

for each nv element of Nvmatrix
do

if nv = 0 then
nv ← 1

for each element v of Cv and corresponding elements nv

of Nvmatrix , p of Rp and pT of RT
p do

v ← (p×pT)
nv

for each element c of C and corresponding elements u of
Cu and v of Cv do
c← (u+v)

2
Calculate Rp size S
for each eu(xu, yu) element of Eu and corresponding xu

and yu vectors of Rp do
eu(xu, yu)← sum of (xu − yu)

2 elements /S
for each ev(xv, yv) element of Ev and corresponding xv

and yv vectors of Rp do
ev(xv, yv)← sum of (xv − yv)

2 elements /S
for each element e of E and corresponding elements eu of
Eu and ev of Ev do

e← eu + ev

Fig. 5 illustrates serially computed matrices in the sequential
version of the algorithm as explained in section III-C.

To obtain co-occurrence matrix Rf for probabilistic similar-
ity analysis, words associations of M-length text are explored
sequentially to construct a dictionary of lexeme items in text.
For a dictionary of N elements, indexes of dictionary lexemes
are used as columns and rows index of Rf . Therefore, Rf

matrix conveys frequency information of N × N possible
lexeme pair co-occurrences. Inspecting relational connectivity
of word pairs with window size of 2 in M-length text requires
M − 1 iterations in order to construct Rf matrix. To reduce
computing time of frequently adjacent lexeme pairs in textual
patterns such as grammatical structures, this study implies to
alternatively iterate dictionary elements and obtain adjacent
words list with corresponding occurrence frequency for each
item in the dictionary. The inferred computing sequence can
significantly reduce execution time particularly for long texts
that produce relatively small vocabulary sets.
Probabilistic relation matrix Rp is populated by using Rf as
expressed in formula 3. Rp describes association probability
between each two items in dictionary, thus, it is obtainable by
calculating co-occurrence probability of N ×N word pairs.
CS matrices of input and output word-vectors of Rp and RT

p

are computed discretely to obtain CS matrix as expressed in
formula 6. Each element of both CS matrices is a depiction
of cosine the angle between input and output vectors of
word pairs. Similarly, MSE matrices of input and output
word-vectors of Rp and RT

p requires sequential computing of
Euclidean distance between input and output word-vectors of
N ×N word pairs.

B. Parallel Computing Approaches for Probabilistic Similarity
Analysis

In this section, one CPU and one GPU parallel approaches
are presented. These approaches have been developed to

efficiently explore information extraction properties of
connectivity analysis for long texts in parallel by making
use of parallel computing tools. CPU and GPU parallel
approaches are respectively explained next.

1) Multicore CPU Version: In this parallel CPU version,
the Multiprocessing module of Python programming language
is utilized to parallelize the process of extracting connectivity
features of word sequences. The Multiprocessing module
contains the Pool class which automatically initiates processes
as many as core number of CPU when process number is not
deliberately specified. Using the Map function, this class can
divide elements of the argument matrix between the spawned
processes which simultaneously execute the specified task by
making use of underlying CPU cores. The computing steps
of the CPU parallel version is provided in Fig. 6 that also
presents how matrices are computed in this parallel version
of probabilistic similarity analysis algorithm.

In this parallel CPU version, two main portions of the
sequential algorithm have been parallelized. First, obtaining
CS matrix for input and output word-vectors of Rp and RT

p

implemented by making use of Multiprocessing Pool class that
drastically reduces time complexity of this task. Alternative
to iterating matrix elements sequentially, elements are divided
into chunks between initialized processes. Then, processes
concurrently execute serial instructions of computing CS
of lexeme pairs to construct CS matrix. The second main
parallelized portion of the sequential algorithm is computing
MSE matrix for input and output word-vectors of Rp and RT

p .
In this part word-vector pair chunks are distributed among
processes which discretely calculate the MSE index of each
pair.

2) A GPU Version: In this section, a GPU version of
probabilistic similarity analysis is presented. Modern graphic
processors have introduced drastic solutions for immensely
large computation problems. Also, many research efforts con-
tinue to investigate the prospect of utilizing GPUs to reduce
time complexity of analysis tasks in fields of deep learning and
information processing [19]. In particular, CUDA (Compute
Unified Device Architecture) programming model has been
utilized to establish the required integration of NVIDIA’s
GPU with multicore CPU for parallel processing purposes.
This parallel computing platform applies Single Instruction
Multiple Thread (SIMT) execution model to manage and
schedule warps independently, hence concurrently [20]. More-
over, instruction of threads can be specified by a C function
that denotes a kernel that is executed concurrently by all
available threads in the instruction sequence. Threads are
organized in grids which consist of thread blocks. Each block
is assigned a shared memory space that can be accessible by
512 threads within the block [21] and up to 1024 threads with
recent CUDA toolkit.
In this paper, we aimed to explore CUDA’s potential on
concurrent extraction of textual features in near real-time
manner. With the aid of CUDA, time complexity of obtaining
similarity measures and probabilistic connectivity matrices of
text is significantly reduced by efficiently expressing word

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

423

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Text
𝑀 = {𝑀ଵ𝑀ଶ𝑀ଷ𝑀ସ … .𝑀௛}

Obtaining dictionary 𝑊 of size 𝑛
𝑊 = {𝑤ଵ𝑤ଶ𝑤ଷ𝑤ସ. . . 𝑤௡}

Serial computing of co-occurrence frequencies

𝑓ଵ,ଵ, 𝑓ଵ,ଶ, 𝑓ଵ,ଷ, 𝑓ଵ,ସ … 𝑓௡,௡

Co-occurrence frequency matrix 𝑅௙ of size n*n

቎

𝑓ଵ,ଵ ⋯ 𝑓ଵ,௡
⋮ ⋱ ⋮

𝑓௡,ଵ ⋯ 𝑓௡,௡

቏

Serial computing of relation probabilities

𝑝ଵ,ଵ, 𝑝ଵ,ଶ, 𝑝ଵ,ଷ, 𝑝ଵ,ସ … 𝑝௡,௡

Probabilistic relation matrix 𝑅௣ of size n*n

൥

𝑝ଵ,ଵ ⋯ 𝑝ଵ,௡
⋮ ⋱ ⋮

𝑝௡,ଵ ⋯ 𝑝௡,௡
൩

Serial computing of CS values of output word-vectors

𝑐௨ଵ,ଵ, 𝑐௨ଵ,ଶ, 𝑐௨ଵ,ଷ, 𝑐௨ଵ,ସ … 𝑐௨௡,௡
and CS values of input word-vectors

𝑐௩ଵ,ଵ, 𝑐௩ଵ,ଶ, 𝑐௩ଵ,ଷ, 𝑐௩ଵ,ସ … 𝑐௩௡,௡
to serially compute CS values

𝑐ଵ,ଵ, 𝑐ଵ,ଶ, 𝑐ଵ,ଷ, 𝑐ଵ,ସ … 𝑐௡,௡

CS matrix 𝐶 of size n*n

൥

𝑐ଵ,ଵ ⋯ 𝑐ଵ,௡
⋮ ⋱ ⋮

𝑐௡,ଵ ⋯ 𝑐௡,௡
൩

Serial computing of MSE values of output word-vectors

𝑒௨ଵ,ଵ, 𝑒௨ଵ,ଶ, 𝑒௨ଵ,ଷ, 𝑒௨ଵ,ସ … 𝑒௨௡,௡
And MSE values of input word-vectors

𝑒௩ଵ,ଵ, 𝑒௩ଵ,ଶ, 𝑒௩ଵ,ଷ, 𝑒௩ଵ,ସ … 𝑒௩௡,௡
to serially compute MSE values

𝑒ଵ,ଵ, 𝑒ଵ,ଶ, 𝑒ଵ,ଷ, 𝑒ଵ,ସ … 𝑒௡,௡

MSE matrix 𝐸 of size n*n

൥

𝑒ଵ,ଵ ⋯ 𝑒ଵ,௡
⋮ ⋱ ⋮

𝑒௡,ଵ ⋯ 𝑒௡,௡
൩

Fig. 5. Computing steps of the serial version of similarity analysis.

sequences in blocks. At least eight blocks per multiprocessor
can be executed simultaneously in association with hardware
limitations and memory resources.
Fig. 7 presents possible blocks division of processed matrices
in GPU version of similarity analysis. Each element of these
blocks corresponds to a thread which computes one element
of the processed matrix. Block number is usually assigned in
accordance to data size.

Pseudo code of the GPU version of probabilistic similarity
analysis algorithm is presented in Algorithm IV-B2.

Pre-process text file
Create dictionary W of text
for each element i of W do

Obtain l list of adjacent elements to i
for each element j of l do

Rf (i, j)← Rf (i, j) + 1
Total frequency T ← sum of Rf elements
Initialize block dimensions Bdim(xthread, ythread, zthread), total
thread number t← xthread + ythread + zthread
Initialize grid dimensions Gdim(xblock, yblock, zblock), total block num-
ber t← xblock + yblock + zblock
Divide Rp matrix to b blocks
for each block in parallel do

for each element p of Rp and corresponding element f of Rf do
p← f

T
Calculate Euclidean norm vector Nu of Rp

Norms multiplication matrix Numatrix ← Nu ×NT
u

Divide Numatrix and Cu matrices to b blocks
for each block in parallel do

for each nu element of Numatrix block do
if nu = 0 then

nu ← 1
for each element u of Cu and corresponding elements nu of Numatrix

block , p of Rp block and pT of RT
p block do

u← (p×pT)
nu

Calculate Euclidean norm vector Nv of RT
p

Norms multiplication matrix Nvmatrix ← Nv ×NT
v

Divide Nvmatrix and Cv matrices to b blocks
for each block in parallel do

for each nv element of Nvmatrix block do
if nv = 0 then

nv ← 1
for each element v of Cv and corresponding elements nv of Nvmatrix

block , p of Rp block and pT of RT
p block do

v ← (p×pT)
nv

for each element c of C and corresponding elements u of Cu and v of
Cv do

c← (u+v)
2

Calculate Rp size S
Divide Eu to b blocks
for each block in parallel do

for each eu(xu, yu) element of Eu block and corresponding xu and
yu vectors of Rp block do

eu(xu, yu)← sum of (xu − yu)2 elements/S
Divide Ev to b blocks
for each block in parallel do

for each ev(xv , yv) element of Ev block and corresponding xv and
yv vectors of Rp block do

ev(xv , yv)← sum of (xv − yv)2 elements/S
for each element e of E and corresponding elements eu of Eu and ev of
Ev do

e← eu + ev

V. RESULTS AND EVALUATIONS

In this section, performance evaluations of sequential and
parallel versions of probabilistic similarity analysis approaches
are presented. In addition, Fig. 8 demonstrates performance

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

424

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Co-occurrence frequency matrix 𝑅௙ of size n*n

቎

𝑓ଵ,ଵ ⋯ 𝑓ଵ,௡
⋮ ⋱ ⋮

𝑓௡,ଵ ⋯ 𝑓௡,௡

቏

Probabilistic relation matrix 𝑅௣ of size n*n

൥

𝑝ଵ,ଵ ⋯ 𝑝ଵ,௡
⋮ ⋱ ⋮

𝑝௡,ଵ ⋯ 𝑝௡,௡
൩

Text
𝑀 = {𝑀ଵ𝑀ଶ𝑀ଷ𝑀ସ… .𝑀௛}

Obtaining dictionary W of size 𝑛
𝑊 = {𝑤ଵ𝑤ଶ𝑤ଷ𝑤ସ. . . 𝑤௡}

CS matrix 𝐶 of size n*n

൥

𝑐ଵ,ଵ ⋯ 𝑐ଵ,௡
⋮ ⋱ ⋮

𝑐௡,ଵ ⋯ 𝑐௡,௡
൩

MSE matrix 𝐸 of size n*n

൥

𝑒ଵ,ଵ ⋯ 𝑒ଵ,௡
⋮ ⋱ ⋮

𝑒௡,ଵ ⋯ 𝑒௡,௡
൩

Serial computing of co-occurrence frequencies

𝑓ଵ,ଵ, 𝑓ଵ,ଶ, 𝑓ଵ,ଷ, 𝑓ଵ,ସ … 𝑓௡,௡

𝑐ଵ,ଵ, 𝑐ଵ,ଶ, 𝑐ଵ,ଷ, 𝑐ଵ,ସ … 𝑐ଵ,௡

to compute CS values in parallel

𝑐ଶ,ଵ, 𝑐ଶ,ଶ, 𝑐ଶ,ଷ, 𝑐ଶ,ଷ … 𝑐ଶ,௡

𝑐ଷ,ଵ, 𝑐ଷ,ଶ, 𝑐ଷ,ଷ, 𝑐ଷ,ସ … 𝑐ଷ,௡

𝑐௡,ଵ, 𝑐௡,ଵ, 𝑐௡,ଵ, 𝑐௡,ଵ … 𝑐௡,ଵ

…

𝑐௨ଵ,ଵ, 𝑐௨ଵ,ଶ, 𝑐௨ଵ,ଷ, 𝑐௨ଵ,ସ … 𝑐௨ଵ,௡

Parallel computing of CS values of output word-vectors

𝑐௨ଶ,ଵ, 𝑐௨ଶ,ଶ, 𝑐௨ଶ,ଷ, 𝑐௨ଶ,ଷ … 𝑐௨ଶ,௡

𝑐௨ଷ,ଵ, 𝑐௨ଷ,ଶ, 𝑐௨ଷ,ଷ, 𝑐௨ଷ,ସ … 𝑐௨ଷ,௡

𝑐௨௡,ଵ, 𝑐௨௡,ଵ, 𝑐௨௡,ଵ, 𝑐௨௡,ଵ … 𝑐௨௡,ଵ

…

𝑐௩ଵ,ଵ, 𝑐௩ଵ,ଶ, 𝑐௩ଵ,ଷ, 𝑐௩ଵ,ସ … 𝑐௩ଵ,௡

and CS values of input word-vectors

𝑐௩ଶ,ଵ, 𝑐௩ଶ,ଶ, 𝑐௩ଶ,ଷ, 𝑐௩ଶ,ଷ … 𝑐௩ଶ,௡

𝑐௩ଷ,ଵ, 𝑐௩ଷ,ଶ, 𝑐௩ଷ,ଷ, 𝑐௩ଷ,ସ … 𝑐௩ଷ,௡

𝑐௩௡,ଵ, 𝑐௩௡,ଵ, 𝑐௩௡,ଵ, 𝑐௩௡,ଵ … 𝑐௩௡,ଵ

…

𝑒ଵ,ଵ, 𝑒ଵ,ଶ, 𝑒ଵ,ଷ, 𝑒ଵ,ସ … 𝑒ଵ,௡

𝑒ଶ,ଵ, 𝑒ଶ,ଶ, 𝑒ଶ,ଷ, 𝑒ଶ,ଷ … 𝑒ଶ,௡

𝑒ଷ,ଵ, 𝑒ଷ,ଶ, 𝑒ଷ,ଷ, 𝑒ଷ,ସ … 𝑒ଷ,௡

𝑒௡,ଵ, 𝑒௡,ଵ, 𝑒௡,ଵ, 𝑒௡,ଵ … 𝑒௡,ଵ

…

Parallel computing of MSE values of output word-vectors then MSE values of input word-vectors
to compute MSE values in parallel

Serial computing of relation probabilities

𝑝ଵ,ଵ, 𝑝ଵ,ଶ, 𝑝ଵ,ଷ, 𝑝ଵ,ସ…𝑝௡,௡

Fig. 6. Computing steps of CPU parallel version of similarity analysis.

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

425

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Fig. 7. Possible 8-block B(i, j) division of computed matrices in
GPU version of similarity analysis.

assessments of the sequential version, the CPU parallel version
that utilizes Python’s Multiprocessing module and Pool class,
and the GPU version using CUDA.
These algorithms are tested on a PC with 16GB RAM; in
the GPU parallel version, NVIDIA GeForce GTX 960M (4
GB, 640 cores, GDDR5, 1253 MHz) laptop graphic card was
utilized. Additionally, the time spent for device-to-host and
host-to-device data transfer was also included in the calculated
time costs. Moreover, in the CPU parallel version, Intel Core
i7-6700HQ CPU (2.60GHz) was used and each performance
test is run with 8 threads (1 thread per core).
In this performance evaluation we used the Blog Authorship
corpus, which consists of posts gathered from 19,320 bloggers
on blogger.com. The corpus incorporates a total of 681,288
posts and over 140 million words [22].
Due to hardware resource limitations and the nature of the
probabilistic similarity analysis algorithm, the serial, CPU
parallel and GPU parallel versions of algorithms have reached
an upper limit for processed text length that are respectively
73000 words for serial version, 134000 words for the CPU
parallel, and 313000 words for the GPU parallel version.

0 10 20 30 40 50 60 70
Text Length(Word No)1E+3

0

2000

4000

6000

8000

Co
m

pu
tin

g
Ti

m
e

(s
)

Performance Test
Serial
CPU parallel
GPU parallel

Fig. 8. Computing time of GPU, CPU parallel and serial execution
of probabilistic similarity analysis for various text lengths.

Fig. 8 demonstrates the performance comparison of serial,
CPU parallel and GPU parallel algorithms by conducting
probabilistic similarity analysis. Each algorithm performed

TABLE I
COMPUTING TIME VALUES OF SERIAL, CPU PARALLEL AND GPU

PARALLEL VERSIONS OF ANALYSIS.

Word Count Sequential CPU Parallel GPU Parallel
1K-word 4.67 8.17 0.5
2K-word 17.66 14.45 0.93

10K-word 307.95 174.79 11.52
20K-word 1098.58 777.61 40.56
30K-word 2146.1 1701.46 86.62
40K-word 3395.67 2732.19 155.94
50K-word 5060.01 4265.16 275.19
60K-word 7026.09 6129.2 576.18
70K-word 9324.22 8276.45 648.48

analyses on the same text and number of words increased
during each iteration by 10K. For this case, the maximum text
length is 70K words due to the serial version’s upper limit.
The sequential version that serially attains necessary measures
and extracts connectivity features of text scores lower com-
puting time than the parallel CPU version for text length less
than 2K words. In serial version, computing time then starts
increasing drastically for larger data, illustrating quadratic
complexity of similarity analysis in accordance with vocab-
ulary set, hence length of text.
The CPU parallel version performs poorly with regard to
computing time for text with word number less than 2K since
forking data across CPU cores and then joining results of par-
allel threads creates additional time cost and overheads. This
result confirms that using parallel processing and multicore
CPUs is not always guaranteed to provide speedup for all sizes
of datasets. In order to get benefit of parallel processing, the
amount of processed data needs to be increased to monitor
speedup and gain performance as shown in Fig. 8.
The GPU version of the analysis shows best performance in
Fig. 8 for all text lengths. This outcome is produced by instant
computing of multiple data blocks simultaneously without lost
computing time for initialization procedures as seen in CPU
parallel version. Utilizing GPU cores by CUDA for conducting
probabilistic similarity analysis offers minimum processing
time in comparison to other versions of the algorithm re-
gardless of data size, hence reducing proportional association
between text length and computing time.
Table I shows computing time values that are utilized to create
the Fig. 8.

To conclude, Table I shows that the serial version is 1.7
times faster than the CPU parallel version and the GPU parallel
CUDA version is 9.3 times faster than the serial version for
text length of 1K words. On the other hand, the CPU parallel
version is at least 1.2 times (2K words) and at most 1.1 times
(70K words) faster than the serial version. The GPU CUDA
version is 14.4 times faster than the sequential version. Also,
the GPU version is 12.8 times faster than the CPU parallel
version for text length of 70K words.
To further explore the results of the CPU parallel and GPU
parallel versions, time cost of both versions for text length
bigger than 70K words have been processed as shown in
Fig. 9. These results are obtained by conducting probabilistic
similarity analysis for CPU and GPU parallel versions of
the algorithm on the same text starting from 80K to 130K-

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

426

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

80 90 100 110 120 130
Text Length(Word No)1E+3

0

2500

5000

7500

10000

12500

15000

17500

20000
Co

m
pu

tin
g

Ti
m

e
(s

)

Performance Test
CPU parallel
GPU parallel

Fig. 9. Computing time of GPU and CPU parallel execution of
probabilistic similarity analysis.

TABLE II
COMPUTING TIME VALUES OF SERIAL, CPU PARALLEL AND GPU

PARALLEL VERSIONS OF ANALYSIS.

Word Count CPU Parallel GPU Parallel
80K-word 10731.88 863.31
90K-word 12273.78 1122.23

100K-word 13963.98 1091.58
110K-word 15881.9 1189.49
120K-word 17660.96 1370.83
130K-word 19990.45 1578.51

word length. Similar to analysis in Fig. 8, each algorithm
processed the same data and the number of processed words
was increased by 10K words during each iteration.

Table II demonstrates that the GPU parallel version is at
least 12.43 times (80K words) and at most 12.66 times (130K
words) faster than the CPU parallel version.To sum up, these
results show that parallel versions of probabilistic similarity
analysis algorithms are promising to utilize applications of
similarity based NLP text analysis.

VI. CONCLUSION

In this study, we presented a semantic similarity analysis to
indicate relevance of co-related words in text. In linguistics,
frequency of co-related lexemes in short text can be useful
to utilize probabilistic features of connectivity patterns
for semantic elicitation of knowledge conveyed in text.
Probabilistic associations of word pairs provide an insight
to the textual structure of lexeme sequences. CS and MSE
measures can be obtained from input and output-word vectors
to denote probabilistic relational similarity of word vector
pairs. Moreover, parallel computing is another important
aspect in data processing and analytics since the concept of
parallel computing has been applied in semantic similarity
analysis. In this paper, first, a sequential version is proposed,
and then a CPU parallel version is developed and last a GPU
parallel CUDA version implemented to get benefits of parallel
processing for probabilistic semantics analysis. The results
presented in section V indicate that performance limitations of
serial similarity analysis are significantly reduced by proposed
CPU parallel and GPU parallel versions. Furthermore, this
study infers efficiency of utilizing parallel processing

techniques and applying graphic processor resources to
expand capacity of analyzing probabilistic relations and its
indication of similarity analysis among lexemes.

REFERENCES

[1] A. A. Aydin and G. Alaghband, “Sequential and parallel hybrid approach
for nonrecursive most significant digit radix sort,” in 10th International
Conference on Applied Computing, 2013, pp. 51–58.

[2] S. Berkovich and E. Berkovich, “Methods and apparatus for concurrent
execution of serial computing instructions using combinatorial architec-
ture for program partitioning,” Apr. 8 1997, uS Patent 5,619,680.

[3] A. A. Aydin, “Performance benchmarking of sequential, parallel and
hybrid radix sort algorithms and analyzing impact of sub vectors, created
on each level,on hybrid msd radix sort’s runtime,” 2012, mS Thesis,
University of Colorado Denver.

[4] B. Parhami, “Parallel processing with big data.” 2019.
[5] D. Demirol, R. Das, and D. Hanbay, “Büyük veri üzerine perspektif bir

bakış,” in 2019 International Artificial Intelligence and Data Processing
Symposium (IDAP). IEEE, 2019, pp. 1–9.

[6] J. Hromkovič, Communication complexity and parallel computing.
Springer Science & Business Media, 2013.

[7] A. Aydin and K. Anderson, “Batch to real-time: Incremental data
collection & analytics platform,” 2017.

[8] S. H. Roosta, “Artificial intelligence and parallel processing,” in Parallel
Processing and Parallel Algorithms. Springer, 2000, pp. 501–534.

[9] T. Strzalkowski, F. Lin, J. Wang, and J. Perez-Carballo, “Evaluating
natural language processing techniques in information retrieval,” in
Natural language information retrieval. Springer, 1999, pp. 113–145.

[10] S. Gupta and M. R. Babu, “Performance analysis of gpu compared
to single-core and multi-core cpu for natural language applications,”
IJACSA Editorial, 2011.

[11] D. Alnahas and B. B. Alagoz, “Probabilistic relational connectivity
analysis of bigram models,” in 2019 International Artificial Intelligence
and Data Processing Symposium (IDAP). IEEE, 2019, pp. 1–6.

[12] I. Dagan, L. Lee, and F. C. Pereira, “Similarity-based models of word
cooccurrence probabilities,” Machine learning, vol. 34, no. 1, pp. 43–69,
1999.

[13] A. M. Schakel and B. J. Wilson, “Measuring word significance using
distributed representations of words,” arXiv preprint arXiv:1508.02297,
2015.

[14] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[15] Y. Yin, D. Feng, Z. Shi, and L. Ouyang, “Text recommendation based
on time series and multi-label information,” 2020.

[16] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed
representations of words and phrases and their compositionality,” arXiv
preprint arXiv:1310.4546, 2013.

[17] S. Zhou, X. Xu, Y. Liu, R. Chang, and Y. Xiao, “Text similarity
measurement of semantic cognition based on word vector distance
decentralization with clustering analysis,” IEEE Access, vol. 7, pp.
107 247–107 258, 2019.

[18] E. Strubell, A. Ganesh, and A. McCallum, “Energy and policy con-
siderations for deep learning in nlp,” arXiv preprint arXiv:1906.02243,
2019.

[19] R. Raina, A. Madhavan, and A. Y. Ng, “Large-scale deep unsupervised
learning using graphics processors,” in Proceedings of the 26th annual
international conference on machine learning, 2009, pp. 873–880.

[20] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “Nvidia tesla:
A unified graphics and computing architecture,” IEEE micro, vol. 28,
no. 2, pp. 39–55, 2008.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with cuda: Is cuda the parallel programming model that
application developers have been waiting for?” Queue, vol. 6, no. 2, pp.
40–53, 2008.

[22] J. Schler, M. Koppel, S. Argamon, and J. Pennebaker, “Effects of
age and gender on blogging. aaai spring symposium on computational
approaches for analyzing weblogs,” 2006.

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

427

https://dergipark.org.tr/bajece

BALKAN JOURNAL OF ELECTRICAL & COMPUTER ENGINEERING, Vol. 10, No. 4, October 2022

Dr. Ahmet Arif Aydin is an assistant professor
of the Computer Engineering Department at Inonu
University. He earned his Ph.D. in Computer Science
at the University of Colorado Boulder in 2016 with
a specialization in ”Architectural Design for Data
Analytics Platforms”. His current research interests
include software engineering, data-intensive system
design, crisis informatics, big data analytics, data
modeling, algorithm design for analytics, parallel
processing, and machine learning.

Dima Alnahas currently works as a Software Devel-
opment and AI Team Leader at Infina Software Inc.
She is pursuing her Masters’ Degree at Computer
Engineering Department in Kadir Has University.
She also attends Baden-Wuerttemberg Cooperative
State University (DHBW) as an exchange masters’
student with research interests in Natural Language
Processing and Machine Learning.

Copyright © BAJECE ISSN: 2147-284X https://dergipark.org.tr/bajece

428

https://dergipark.org.tr/bajece

	Introduction
	Related Work
	Methodology
	Probabilistic Relation Graph Model of Short Text for Semantic Similarity Analysis
	Relational Similarity Measures Application on Vectorized Representation of Lexemes
	An Explanatory Example of Probabilistic Relations Analysis in Short Text

	Implementation
	Sequential Probabilistic Similarity Analysis
	Parallel Computing Approaches for Probabilistic Similarity Analysis
	Multicore CPU Version
	A GPU Version

	Results and Evaluations
	Conclusion
	References
	Biographies
	Dr. Ahmet Arif Aydin
	Dima Alnahas

