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Abstract 

 

In this study, a new constitutive equation that includes the characteristic nonlinear 

anisotropic response of arteries is proposed. The measurement of the relationship 

between arterial diameter and arterial pressure is important part of the general 

problem of blood flow measurements. This relationship was examined in the human 

thoracic aorta. The clinical data that obtained from literature provide only a pressure-

diameter relationship. To determine the parameters of the constitutive formulations, 

nonlinear regression analysis was used on these data. 
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Damarların Mekanik Davranışları için Şekil Değiştirme Enerjisi 

Fonksiyonuna Yeni Bir Yaklaşım 
 

 

Özet 

 

Bu çalışmada, damarların lineer olmayan, anizotropik davranışını karakterize eden 

yeni bir bünye denklemi önerilmiştir. Damar çapı ile iç basıncı arasındaki ilişkiyi 

belirlemek genel kan akışı probleminin önemli bir parçasıdır. Bu ilişki insan torakik 

aortunda incelenmiştir. Literatürden elde edilen klinik veriler sadece iç basınç-çap 

ilişkisini sağlamaktadır. Bu veriler kullanılarak lineer olmayan regresyon analizi ile 

bünye denkleminin parametreleri belirlenmiştir. 

 

Anahtar Kelimeler: insan; damarlar; bünye denklemleri. 
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1. Introduction 

 

In the modern world, human health has become a field where scientists work most 

intensively. Today, the increase of health threatening factors such as environmental and 

harmful effects brought about by technology have come with rapid progress in the field 

of bio-engineering and biomaterials. In this study, a model that is expected to adapt 

itself to the real artery has been determined by assessing the mechanical properties of 

artery materials obtained from experimental values. 

 

Many researchers have carried out experiments to determine the mechanical 

characteristic of human arteries in living tissues. In these studies, they have tried to 

determine the changing diameter of arteries over time, by means of various visualization 

methods such as intravenous visualization [1], by the cine-angiography method [2] and 

measured the diameter of arteries by intravenous artery ultrasonography with the help of 

a special catheter [3]. It is showed that the artery, independent of internal pressure, is 

exposed to stable axial strain and force [4-5]. Many researchers described the complex 

material characteristic of the artery in strain energy function. However, they discussed 

the mechanical characteristics of the artery physically and ignored the characteristics of 

the biological tissue [6-11].  As seen directly, the large deformation theory takes us to 

the nonlinear differential equation in a high order, and the solution of these can only be 

made in some special cases. A stability issue arises as to whether the equilibrium 

position of the system, exposed to great deformations and stabilized under external 

forces, is the only equilibrium position. In recent studies, the artery material is regarded 

as incompressible, homogeneous, elastic [12], [13] or viscoelastic [14,15,17] and [16], 

isotropic and in some cases anisotropic [18,9] and [19]. 

 

In fact, when morphological structures are taken into account, arteries are observed to 

have a homogeneous structure and at the same time, their mechanical characteristics are 

observed to change in both axial and radial directions. Therefore, when the internal 

structure of the aorta and results of experimental measures are evaluated, strain energy 

function in this study has been used to characterize the mechanical behavior. The 

function discussed has been developed as a model in which there are collagen fibers, 

and as a model that reflects the mechanical characteristics of arteries. A cylindrical 

unilaminar shell model, in which there are collagen fibers, has been introduced for the 

artery by using finite elasticity theory. Material parameters that belong to the model that 

is discussed, as a model of collagen and unilaminar, have been obtained by using the 

Levenberg–Marquardt algorithm that makes the non-linear parametric functions 

minimum for the pressure and radius relation given in the experimental study [20]. 

Finally, stresses made by using radial inflation results and axial extension, under the 

influence of cylindrical shell physiological forces, belong to this model. 

 

 

2. Governing equations 

 

Let us assume that the motion and the inverse motion in a three dimensional physical 

space are described by 
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, , , , det 0, 1,2,3k

K

x
t t k

X
x x X X X x  (1) 

The velocity and the acceleration vectors are given by 

,,k k
k k k m m

x v
v a v v

t t
 (2) 

Here the comma shows the covariant differentiation with respect to coordinates. 

Conservation of mass is defined as  

,
0k k

v
t

 (3) 

Where  is the mass density of the body. The balance of linear momentum of the 

continuous medium is stated as  

, 0,kl k l l kl lkt f a t t  (4) 

Where 
klt  is the symmetric stress tensor, 

lf  volume force density. The balance of 

energy may be written in the local form as 

,kl lk k kt d q h  (5) 

Where  is the internal energy density, 
kq  is the heat flux vector, h  is the volume heat 

source and 
lkd  is the deformation rate tensor defined by 

, ,

1

2
kl k l l kd v v  (6) 

Second law of thermodynamics is written in local form as 

,
0

k k

kl lk

q
t d  (7) 

Where  is entropy volume density,  is absolute temperature of the continuous 

medium and Helmholtz free energy density defined by . 

 

 

3. Constitutive equations 

 

Let us assume that the constitutive dependent variables are functions of deformation 

gradient /kK k KF x X , and the temperature. 

, , ; , , ; , , ; , ,kl kl kK kK k k kK kK kK kK kK kKt t F F q q F F F F F F  (8) 

Introducing (8) into (7) and if nonlinear terms for the variables , ,k  and kKF  are 

neglected, we get 

,

, 0
k k

kl kK l k kK

lK kK

q
t F v F

F F
 (9) 

In order for this inequality to be valid for arbitrary variables, the coefficients  

, 0kq , 0
kKF

 (10) 

must vanish. Hence, (9) become 

, 0kl kK l k

lK

t F v
F

  (11) 
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Green deformation tensor and Green deformation rate tensor are defined by 

KL kK kLC F F , 2KL kl kK kLC d F F  respectively, introducing into (11) we have 

2kl kK lL

KL

t F F
C

 (12) 

We shall assume that the strain energy function (SEF) is defined by 0, ,C X  and 

under constant temperature (12) becomes 

2kl kK lL

KL

t F F
C

 (13) 

Green deformation tensor 
KLC  is expressed in terms of invariants of itself. Thus, stress 

tensor takes the following form 

1

2
n

kl kK lL

KL

I
t F F

I C
 (14) 

For non-isotropic, hyper-elastic body, different from zero invariants are
1I , 

3I , 
4I  and 

6I .  Since the material is assumed to be incompressible, 
3 1I .  

We assume that the artery is exposed to a constant axial stretch and an internal pressure. 

In this condition deformation may be described by 
1

2 2

, ,
R

r B z Z  (16) 

Where , ,R Z  and , ,r z  are the cylindrical polar coordinates of a material point 

before and after final deformation, respectively. B  is integral constant,  is constant 

axial stretch. Thus green deformation tensor may be given by 
2

2

2

2

0 0

0 0 ,

0 0

r

r dr
r

R dR
C  (17) 

 

 

4. Constitutive model for the artery 

 

We assume that material of the arteries may be considered as a composite reinforced by 

two families of (collagen) fibers which are arranged in symmetrical spirals shown in 

Figure 1.  

 

Figure 1. Geometrical properties of arteries. 
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We suggest two-part SEF that the first part of SEF associated with isotropic 

deformations and the second part of SEF associated with anisotropic deformations. 

Hence, SEF is written as  

iso aniso1 2 1 2
C,a ,a C C,a ,a  (18) 

Where 
1a  and 

2a  are introduced to the families of collagenous fibers of direction 

vectors, and described by 

1

0

cos

sin

a , 
2

0

cos

sin

a  (19) 

Hence, invariants of the anisotropic part are written as form 

2 2 2

4 6 2

1
cos sin anisoI I I

r
1 1

a C a  (20) 

where /r r R  is a parameter without dimensions. Invariant of the isotropic part is 

written as  
2

2

1 2 2

1r
I

r
 (21) 

Introducing (20) and (21) into (14) the following result is obtained 

1

1 4 6

2 1 2kl kl kl kl klt P c d d
I I I

 (22) 

where p is hydrostatic pressure, 
1kld  and 

2kld  are defined by 

1 1 2 21 , 2kl KL kK lL kl KL kK lLd a a F F d a a F F  (23) 

The general approach is a single strain energy function [21]. However this function is 

insufficient to describe the material. Another approach is a separation of the strain 

energy function into isotropic and anisotropic parts [10]. We have proposed a two part 

strain energy function. One part of the strain energy function is to represent non-linear 

elastic and isotropic behavior, and the other one to represent non-linear fibrous and 

anisotropic behavior. The isotropic part and the anisotropic part of (18) are proposed by 

2 1 31

2

e 1
2

k I

iso

k

k
, 

2

4 13

4

e 1anisok I

aniso

k

k
 (24) 

1 2 3, ,k k k  and 
4k  are constant material parameters and do not depend on the geometry. 

Introducing (24) into (22) the physical components of stress tensor we have 
2

42 1 131
32 e 1 1 2

2

anisok Ik I

kl kl kl aniso kl kl

k
t P c k I e d d  (25) 

The non-zero physical component in terms of cylindrical coordinates may be given by 
2

1 2rr

r
t P F I , 

2

1 2 2

1 1
cosanisot P F I F I

r r
 

2 2 2

1 sinzz anisot P F I F I  (26) 

2 1 3

1 1

k I
F I k e , 

2

4 1

34 1 anisok I

aniso anisoF I k I e  

In the absence of body forces, axial symmetry of geometry the equilibrium equation in 

cylindrical coordinates is 

1
0rr

rr

t
t t

r r
 (27) 

The boundary conditions are 
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i
rr ir r

t P , 0
o

rr r r
t  (28) 

Where 
ir  and 

or  are inner and outer radii of the artery respectively. Introducing (26) 

into (27) under conditions (28) we have, 
o

i

r

rr

i

r

t t
P dr

r
 (29) 

The modeled radii were determined by numerically solving (29) for the radius at the 

corresponding experimental pressure. Pressure-radius relationships were fitted to the 

experimental data by minimizing the function (least squares) 

2
mod exp

1

1 n

i i

i

r r
n

 (30) 

Where i is the data point index and n is the total of experimental points measured in the 

pressure-radius relationship. On the radii r the indices mod and exp are used to denote 

the model and experimental values, respectively. Pressure–diameter (29) relationships 

were fitted to the experimental data by minimizing the (30). The Levenberg–Marquardt 

algorithm was used to determine the constitutive parameters as best-fit parameters. 

Experimental data are taken from a clinical study [3] for the thoracic aorta of a 

hypertensive subject. In order to investigate pressure- internal radius relations, the 

material and geometrical data in table 1 are considered. 
ir  is internal radius before 

deformation,  is axial stretch and  is angle between two families of (collagen) fibers 

for the thoracic aorta are represented in Table 1. 

 

Table 1: Material and geometrical parameters 

 

ir  [mm]  [-]  [o] 

9 1.14 29 

 

 

5. Results 

 

Numerical results were obtained by using the Mathematica 5.0 Wolfram Research, Inc. 

USA Programme on a Personal Computer. Computed constitutive parameters proposed 

model 
1k , 

2k , 
3k  and 

4k  are stated in Table 2. 

 

Table 2: Computed constitutive parameters in represent of (25) 

 

1k  [kPa] 
2k  [-] 

3k [kPa] 
4k  [-] 2R  

1.56 38.45 2.52 21.55 0.92 

 

Figure 2 shows a contour plot of the potential (25) with the material parameters 

computed and represented in Table 2. SEF is convex for the fitted parameters. 

Convexity means that the second derivative with respect to e is positive definite.  
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Figure 2. Contour plot of strain energy function. 

 

The recommended approach has been introduced to the results that have been obtained 

from the clinical experiments carried out on the thoracic aorta, and the pressure-internal 

diameter relation is stated in Figure 3 [3]. The Figure 3, drawn by using the proposed 

constitutive equation, is found to be consistent with the data obtained from the clinical 

studies.  

 

 

Figure 3. Pressure–internal radius relationship. Circles indicate clinical data; solid line 

indicates calculated result from constitutive model. 

 

The parameters stated in Table 2 and in (26) Cauchy stress components have been 

measured according to the deformed artery r-ri and have been stated in Figure 4. Here r 

indicates deformed radial coordination and ri  indicates deformed internal radius. Axial 
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stretch has been discussed as =1.14. Tangential and axial tension decreases from 

internal radius to external radius, and radial tension components, as expected, converge 

to zero. 

 

 
 

Figure 4. Plots of the principal Cauchy stresses vs. 
ir r  at 1.14 . 

 

In this study, the aim is to be able to obtain the mechanical behaviors of arteries in a 

form that can be used in the field of vascular medical. As a result, by using the results 

obtained from clinical studies, a new model has been introduced and at the same time 

rates that have been obtained from experimental studies (axial tension and axial force) 

have also been used in the studies. These rates have been obtained from the experiments 

that have been carried out for various purposes and they have been adapted to the 

human arteries, and determined roughly. If we get these data from actual experiments in 

the human arteries, we will produce better models.  
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