NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci., 2022; 11(4), 871-878

m““%

1992
-

g

MUHENDISLIK FAKULTESI

W

of OMER g

i

Nigde Omer Halisdemir Universitesi Miihendislik Bilimleri Dergisi
Nigde Omer Halisdemir University Journal of Engineering Sciences

Aragtirma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

Parallel solution of Lambert’s problem using modified Chebyshev-Picard
iteration method

Lambert probleminin modifiye Chebyshev-Picard yineleme yontemini kullanarak
paralel ¢coziumii

Majd Ajroudi®

, F. Siikrii Torun®”

Y2 Ankara Yildirim Beyazit University, Department of Computer Engineering, 06020, Ankara, Turkey,

Abstract

Lambert’s problem is one of the classical methods for
solving the multiple revolution problem in orbit
determination. With the increasing interest in space
exploration programs and using satellite networks, it is
important to provide an accurate and rapid method that will
provide the network control center with information
regarding the orbit of each satellite in the network and help
the satellites improve routing decisions in onboard
processing satellites. Lambert’s problem is one of the
methods that solve the problem iteratively and this iteration
was originally done using Newton’s iteration method. In
recent studies, it is recommended to use the Chebyshev-
Picard iteration method to solve this problem. Since the aim
here is to provide a method that solves the problem rapidly,
the Chebyshev-Picard iteration method serves our objective
since it is highly parallelizable. In this work, we have
developed a parallel algorithm that solves Lambert’s
problem in a parallel environment. We have conducted
experiments to demonstrate the parallel scalability of the
algorithm on both shared and distributed memory
architectures. The experimental results show that the parallel
algorithm achieves 8.26- and 3.94-times faster execution
time on distributed memory and shared memory
architectures, respectively.

Keywords: High performance computing, Lambert’s
problem, Modified Chebyshev-Picard iteration, Orbit
determination, Parallel computing.

1 Introduction

Today, astronomy, astronautics, artificial satellites,
satellite navigation systems [1], and orbital calculations are
fields of increasing importance. When sending a satellite into
orbit, it is essential to have a method that can predict the state
vector of the satellite at any given time. Once a state vector
of the satellite is determined, the six classical orbital
elements that define an orbit can be calculated [2]. This
procedure is called orbit determination. Lambert’s problem
is one of the classical methods of determining a preliminary
orbit of celestial objects from two position vectors and the
time of flight between the two points, which makes it a
Boundary Value Problem (BVP) [3] and requires solving the
differential as shown in Equation (1). The basic idea of
Lambert’s problem is to calculate the trajectory that connects

Oz

Lambert problemi, yoringe belirlemede c¢oklu devir
problemini ¢ézmek igin kullanilan klasik yontemlerden
biridir. Uzay arastirma programlarina ve uydu aglarimin
kullanimina olan ilginin artmasiyla, ag kontrol merkezine
agdaki her bir uydunun yoriingesine iliskin bilgileri
saglayacak ve uydularin yonlendirme kararlarim
tyilestirmesine yardimci olacak dogru ve hizli bir yontemin
saglanmast Onemlidir. Lambert problemi, bu problemi
yinelemeli olarak ¢dzen yontemlerden biridir ve bu yineleme
onceki yillarda Newton'un yineleme yontemi kullanilarak
yapilmaktaydi. Daha giincel aragtirmalarda bu problemi
¢ozmek i¢in Chebyshev-Picard yineleme yontemi
kullanilmast Onerilmektedir. Onerilen metot ¢dziim
siiresinde iyilestirmeler —sunmasmna ragmen biyik
problemlerde ¢oziim ¢ok uzun siireler alabilmektedir. Bu
calismada, Lambert problemini paralel programlama
teknikleri kullanarak daha hizli ¢bzen yeni bir paralel
algoritma Onerilmistir. Ayrica algoritmanin paralel
Olceklenebilirligini gostermek i¢in 2 farkli paralel sistemde;
paylasimli ve dagitik bellek mimarilerinde deneyler
yapilmistir. Deneysel sonuglar, paralel algoritmanin dagitik
bellek ve paylasimli bellek mimarilerinde sirasiyla 8.26 ve
3.94 kat daha hizl1 ¢6zlim siiresine ulagtigini gostermektedir.

Anahtar kelimeler: Yiksek performansli hesaplama,
Lambert problemi, Modifiye Chebyshev-Picard yinelemesi,
Yoriinge belirleme, Paralel hesaplama.

two points where the initial and final time is given, as shown
in Figure 1.

A

T

Some recent studies [3, 4] have shown a significant
improvement in the performance of the Chebyshev-Picard
iterative method after developing an approach to run the
method in a parallel environment. Chebyshev-Picard
iterative method [3] is a method that uses Chebyshev
polynomials to approximate the state trajectory in a Picard
iteration, where the boundary conditions are preserved by
constraining the Chebyshev polynomials coefficients. This
new approach is called Modified Chebyshev-Picard Iteration
(MCPI). Solving Lambert’s Problem using MCPI is

* Sorumlu yazar / Corresponding author, e-posta / e-mail: fstorun@aybu.edu.tr (F. S. Torun)
Gelis / Recieved: 07.02.2022 Kabul/ Accepted: 03.10.2022 Yayimlanma / Published: 14.10.2022

doi: 10.28948/ngmuh.1069509

871

https://orcid.org/0000-0002-7901-8945
https://orcid.org/0000-0002-6662-2502

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

proposed in [5], where a solution for multiple revolutions
perturbed Lambert’s problem was proposed, as will be
explained in the next section.

The original MCPI is a combination of the works of
Emile Picard (Picard iteration) [6] and Rafnuty Chebyshev
(Chebyshev polynomials) [7]. Since Chebyshev function
approximation is orthogonal, Clenshaw and Norton found it
beneficial to combine it with Picard iteration in a
simultaneous manner to provide a solution to non-linear
ordinary differential equations [8].

P2

Figure 1. Trajectory calculation using Lambert’s problem.

The MCPI algorithm is quite prone to parallel processing,
and several early studies proposed different approaches [3,
9, 10, 11] to the method. Additionally, [3] demonstrates the
efficiency of MCPI in non-linear IVP and BVP when
compared to other solvers, as will be discussed in the next
section.

The time taken to calculate a highly-accurate position of
a single satellite using this algorithm is often acceptable
depending on the case. However, when working with a
satellite constellation such as Starlink [12], which forms a
network of more than 3000 thousand satellites constantly
communicating with each other, such calculations can be
quite exhaustive. Parallel computing techniques should be
considered to accomplish these tasks in a reasonable time.

This work aims to use the approach of MCPI to solve the
second-order differential equation of Lambert’s problem,
shown in Equation (1), in a parallel environment provided by
the Message Passing Interface (MPI) [13]. Similar
applications of MCPI exist in the literature [3, 4, 5];
however, these studies lack the discussion of the problem
from the computer science perspective, thus the work
presented in this paper emphasizes this by discussing the
detailed parallelization of the problem along with comparing
the performance in two different computer architectures.

In the rest of this paper, we begin with discussing related
works. Next, the proposed algorithm and the implementation
details are presented. Finally, we discuss the results and
conclude the work.

2 Related works

Solving Initial Value Problems (IVP) and Boundary
Value Problems (BVP) using a combination of Picard
iteration and Chebyshev polynomials is first proposed in [8],
where a method to approximate the trajectory and the
integrand by the same set of discrete Chebyshev polynomials
is proposed. The Chebyshev polynomials in approximating
the integrand of Picard iteration along the it" trajectory gives
an efficient and accurate approximation [8].

The parallelization of the Chebyshev-Picard iteration is
mentioned in many studies [10, 14, 15, 17]. One of the recent
works is Bai’s Ph.D. dissertation [4] which proves the great
capability of the method by extending the earlier works to
show an outperforming ODESs' numerical integration in the
sequential computing environment. The improvement of the
Chebyshev-Picard iterations method encouraged its
application to classical methods and problems to improve
their performance, such as Lambert’s Problem as we will see
later in the rest of this section.

Junkin and Bai extend their previous work on developing
parallel structured MCPI in [5]. The authors of the paper
have compared the results of solving single orbit propagation
between Runge-Kuttal2(10) versus MCPI for a different
number of nodes and various spherical harmonic orders. It is
explicitly mentioned that, although the results of the
experiments show a positive impact of MCPI, the
experiments were limited and should be generalized for other
cases.

The method of particular solutions and MCPI are
combined in [5] to solve the multiple revolutions perturbed
Lambert’s problem for orbit transfer of a satellite. According
to [5], solving the two-point boundary problems with the
method of particular solutions can be done using any
numerical integrator, however, MCPI increased the
efficiency that cannot be provided with step-by-step
integrators.

An implementation of MCPI in a parallel environment to
solve a perturbed orbital trajectory is presented in [16]. The
framework of this research is divided into three modules: a
control module, a set of worker modules, and a renderer
module. The control module ensures the coordination using
the database and sends jobs to MCPI working processes,
which propagate an orbit trajectory and report the propagated
data to the renderer module and the control module for
catalog update. The main module and MCPI workers can run
on any multi-core CPU machine.

Recent studies used MCPI in a parallel environment to
improve Space Situational Awareness by applying it to the
process of Conjunction Assessment [17-18]. The work
provided in [17] compared the MCPI method with the single
satellite method using SGP4 and has shown that MCPI-aided
conjunction analysis provided approximately a 50% increase
in the speed. These findings can potentially protect space
assets by providing timely warnings of potential collisions.

872

NOHU Miih. Bilim. Derg. /
M. Ajroudi

NOHU J. Eng. Sci. 2022; 11(4), 871-878
,F.S. Torun

3 Proposed algorithm and implementation details

3.1.1 Introduction to MCPI

The first form of the method introduced by Emile Picard
for path approximation is presented as

x(0) = f(&,x(@®),

with the initial condition x(t,). Then the form can be
rearranged to:

x(t) = x(ty) + ffo f(r,x(0) dr.)

It has been stated that the convergence of Picard iteration
was bounded to a time interval t — ¢, less than &, this time
interval for computing the satellite trajectories in Earth orbit
can approach 20,000 seconds, which is more than three
periods of a typical low Earth orbit satellite [4].

Chebyshev polynomials can be obtained by the following
recurrence relation:

To(x)=1
Ti(x) = x @)
T(x) = 2xTy_y — Th_a.

Note that the first Chebyshev polynomials T are defined
by the first two relations and the rest of the polynomials can
be calculated using the recurrence relation.

In the MCPI algorithm, Chebyshev polynomials are used
to approximate unknown trajectory and the integrand of
Picard iteration. The discrete nodes t used for the
approximation of the state are the Chebyshev-Gauss-Lobatto
nodes and are given by

T, = —COS (7;]—”) ,

To(to) Ti(7o) Ty (7o) (5)
Ty (T1) T, (T1) T (T1) Ty (T1)

n=012.. N ()

Ty (TN) T (TN) Ty (TN)

where N is the total number of nodes throughout the
trajectory. Notice that each row in the previous matrix is
separate from the other rows, thus the calculation of this
matrix can be done in parallel, where a row-wise partitioning
method is performed, and each process takes an equal
number of rows. The second and the third functions that are
computed in parallel are the coefficient vector and the

g (‘[xi- 1(‘[)) ~= Fé o () + SKENFEFIT (7)), (6)
where
YKNFO T (0) = FIMT (@) + -+ F Ty (). (1)

integrand approximation, as shown in Equations (6) and (8).

-1

R = 2 g (rox @) Tiro)
Jj=N

+ g (T]-,x"‘l(‘r)) T.(t;) (8
7=0

+2 9 (2 671 Teo),

where

-
I
=

-1

g (’L’j, xi‘l(r)) T (7))

=g (T1» xt (T)) Ty (z1)
+g (TN—lt xi_l(f)) Ty (Ty-1)-

-
]
(=]

©)

The function that calculates the coefficient vector F takes
two inputs, vector G, and Chebyshev polynomials matrix T,
each row for these two inputs independently results in one
entry of F. Thus, row-wise partitioning is done to those two
inputs and then distributed to the processes where each
worker process performs its tasks before the master process
collects the results and returns them as one vector. We note
that the overall time of the execution is mostly dominated by
the function which is responsible for the calculation of F.
Then the trajectory vector for it" iteration is calculated using

xH (1) = xo + ZF’ 1] T(s)ds,
(10)

=—nm+znnm

where x, is shown in Equations (11). The first and last
entries of the trajectory vector represent the boundary
conditions stated for the problem. These two entries are
found by applying the value of in the boundary conditions,
namelyt = —1andt = 1.

rm(n——n(n+znn(n 11)

(12)
%_mn-—nm+znnm

In Equations (11) and (12), y is a coefficient vector that is
updated in each iteration. This coefficient can be calculated
using the following formulae, which are derived in [3]:

i—-1
Fy=i

o (13)

Ya =

873

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

N ,
ﬁ:EE@K}—ﬁﬁMmkszwN—l (14)

Y= X+ X =202+ VatVvet) (15)
L Xp—x
V1= ! 0_(V3+V5+V7+"')- (16)

2

3.1.2 MCPI for second-order ODE

The challenging part of Lambert’s problem is that the
differential equation is a second-order ODE, and thus, the
position vector x along with the velocity vector v will be
updated in each iteration.

The second-order ODE has the form of Equation (17) and
can be solved using a cascaded MCPI formulation. In this
formulation, the velocity calculation is done following the
approach mentioned in the previous subsection, and the
position is integrated directly from the approximated
velocity.

In the case of the first-order ODE, x is updated using the
formula

d?x)
E = f(t' X, X) . (17)

To perform the second integration, we use the fact that
the velocity is the time derivative of the position to obtain
the second differential equation. Thus, our main differential
equations become:

Z—: = g(t,x,v) (18)
and,
Z=v. (19)

Then using the fundamentals of Picard iteration, these
two equations can be transformed to the following:

vi(T) = vy + fjlg (s,xi‘l(s),vi‘l(s)) ds, 20)

fori =1,2,...,

xH (1) = xo + f_Tl v(s)dsi—:. (21)

3.1.3 Matrix-Vector form

Since our calculations are done for each node along the
trajectory, we can organize our results regarding each
function in a matrix form. This matrix-vector form provides
the possibility of solving the problem in parallel by dividing
the tasks on multiple processors.

The solution update formulas for the velocity and
position are shown below:

Vi = Cxcagprev. + Cx®v0 4 (22)

. te—t .
X =00, + o, @3

where V¢ and X! are the i*" solutions for the velocity and
position, respectively. C, and C, are constant matrices that
are determined by the number of nodes n only, g,y is the
approximation of the integrand and @, is a vector of the
boundary conditions for ¥V and X. The flowchart for the
second-order matrix-vector approach is shown in Figure 2.

Constant Matrix Initialization (C,and Cy) and '
set the tolerance &
] = Initial Guess
OV = (), v (), e, v ()]

—l = Force function evaluation

Gprev. = lg (Tu- v! I(To)) N (T1. vt l(rl)), e (TN‘ vt I(TN))]T
J = Velocity Update

vi= C,\-Coc.gprw. + (04

ml_h. > Position Update

i_b b i
Xt= TCIC“V + C,0y
lu Evaluate Error

e =max(|[Vi - vt |lxf = x=)
JT

J N Yes
. Stop

Figure 2. Matrix-vector approach of MCPI algorithm for
second-order differential equations

3.1.4 Proposed solution

As mentioned in the previous sections, the MCPI
algorithm is implemented through several functions, some of
which are iterated several times. In this section, we discuss
those that were written in parallel and the data that was
transferred between processors. This exchange of data was
done using Message Passing Interface (MPI) [13] library.
Parallel algorithms that are implemented with the MPI
library can work on both shared memory and distributed
memory architectures efficiently. Applying MPI to the
algorithm allows the implementation of data parallelism by
distributing the matrices’ rows or columns among several
processors and similar instructions are executed over the
distributed data.

Chebyshev polynomials matrix: This function depends
on the range of nodes distributed over the interval [-1, 1],
which are stored in the array 7. Chebyshev polynomials of
order M are generated for each node as mentioned in
Equation (3). Since the polynomials for each node are
independent of the other rows, we can divide the values of

874

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

the array 7 among several processors, of which each
processor would be responsible for generating Chebyshev
polynomials for the nodes that were sent to it. The data
distribution of this function is described in Figure 3.

Force function: The parallelization of this function is the
most fundamental process in the proposed solution since it
defines the ODE that is being solved. In our case, we are
working with a 3D problem, meaning that this function is
called three times in each iteration. Each entry of the
resulting column-vector is the result of the sum of
multiplications of the coefficient’s vector with its
corresponding Chebyshev polynomials entry. Thus, the
function is parallelized by sending the vector of the
coefficient to each process and the rows of the Chebyshev
polynomials matrix to the process responsible for them.

7 T
p Ty To(To) | ... | .. o | e | Tw(T0) p
! T To(m) | .. NETS) !
’) ”
Ty-1 .
pl’l
™ To(tn) o o | Tvlw) P

Figure 3. Description of the parallel Chebyshev polynomials
function

Chebyshev coefficients: The result of this function is a
column vector containing coefficients for each order of the
Chebyshev polynomials. The computation of the result of
this function is similar to the force function; thus, the
parallelization is implemented similarly.

The matrix partitioning, data distribution, and
parallelization of the Chebyshev coefficient’s function and
the force function are described in Figure 4. Here, each
processor p; is responsible for computations of subsequent
rows of the matrix and consecutive entries of the vector
according to the owner-compute rule.

c, T

1 P

1 2]
Senttoall
processes

C: Column-vector

T: Chebyshev polynomial matrix
n: Number of processes

Pq: Process of order g

Figure 4. Data distribution of the parallel force function and
coefficient function

3.1.5 Implementation details

The parallel algorithm is implemented with the Python
programming language. We have used the MPI library to
distribute, synchronize, and gather data between distributed
processes in our parallel algorithm. We have exploited the
MPI4Py package which provides bindings of the MPI
routines for Python, allowing it to exploit multiple
distributed processors. In the experiments, Python version
3.0 and OpenMPI version 4.0.0 MPI implementations were
used.

4 Experimental results

The results that are presented in this section are discussed
and analyzed in terms of two main concepts: speed-up and
efficiency. Speed-up is the factor of reduction in the
execution time of the parallel implementation against the
sequential implementation. According to the values of
speed-up, it can be categorized into three types; linear: if the
value of speed-up is equal to the number of processors, sub-
linear: if the value of the speed-up is less than the number of
processors, and super-linear: if the value of speed-up is
larger than the number of processors. Speed-up values can
be obtained using the following equation:

Time of the sequential algorithm

Speed-up = (24)

Time of the parallel algorithm '

The parallel efficiency measures the effectiveness of the
algorithm in a parallel environment. In other words, the
efficiency can be used to measure the computing power
deficiency in parallel execution. This ratio is obtained by the
following formula:

Speed-up

Efficiency = (25)

Number of processors '

The experiments were conducted on two different
architectures. The first experiment was conducted on a
shared memory architecture with Intel i7-5930K 6-core CPU
and 32GB memory and for the second we used a distributed
memory HPC cluster named Barbun HPC Supercomputer in
TUBITAK ULAKBIM High Performance and Grid
Computing Center (TRUBA), where each computation node
has the following configuration: 2 sockets, 20 cores per
socket, Intel Xeon Gold 6148 CPU and 384 GBs of main
memory. In both experiments, the number of trajectory
nodes was set to N = 5000 and the tolerance value to 0.0001.
In operational cases, the number of trajectory nodes decided
depends on the accuracy of the trajectory intended to be
found.

Tables 1 and 2 show the execution time alongside the
speed-up and the efficiency for the experiment on the shared
memory machine and the HPC cluster, respectively. As can
be seen in the tables, the speed-up values increase when the
number of cores used in the parallel run increases. The
proposed parallel algorithm gets sub-linear speed-up values
for all test cases since the obtained speed-up values are less

875

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

than the number of processors used, and the efficiency is
always less than one.

The proposed algorithm achieves the highest speed-up on
the shared memory machine with 3.94 when it uses 6 cores,
and the efficiency is 0.66 for this test. The proposed
algorithm achieves the highest speed-up on the HPC cluster
with 8.26 speed-up on 80 processors with an efficiency of
0.10. According to Amdahl’s law [19], this experimental
finding is expected since the sequential portion of the
algorithm cannot be parallelized, and the portion of the
sequential part increases proportionally for large number of
processes. Furthermore, for large number of processors, the
communication overhead increases as well. These two
factors limit the speed-up for the larger number of cores, and
it causes lower efficiency values in the parallel system.

Table 1. Speed-up and efficiency results for the shared
memory system

#Cores ETxier);:leJt(is)n Speed-up Efficiency
1 147.50 1.00 1.00
2 82.52 179 0.89
3 59.37 2.48 0.83
4 52.06 2.83 0.71
5 42.05 351 0.70
6 37.48 3.94 0.66

Table 2. Speed-up and efficiency results for the HPC cluster

#Cores E.I.Xii:gt(ign Speed-up Efficiency
1 163.66 1.00 1.00
4 57.20 2.86 0.72
8 42.90 3.82 0.48
16 30.75 5.32 0.33
32 26.49 6.18 0.19
48 20.93 7.82 0.16
64 20.12 8.13 0.13
80 19.82 8.26 0.10

Figures 5 and 7 depict the obtained speed-up values for
each number of cores respectively for the shared memory
and HPC platforms. Additionally, Figures 6 and 8 show the
respective efficiency values for each number of cores. As
seen in the figures, when the number of processors increases
the speed-up increases for both cases. However, the speed-
up starts to stabilize in the HPC cluster with an increasing
number of processors. In addition to these experiments, we
have conducted extra experiments with larger problems
where the number of trajectory nodes was set to N = 10.000
and N = 20.000 in the HPC cluster by using 80 cores. Since
we increased the granularity of the problem in these tests, we
got higher efficiency values of 0.11 and 0.15 respectively for
N = 10000 and N = 20000 as expected.

Shared memory 394

Speed-up
N
()]

1 2 3 4 5 6
Number of processes

Figure 5. Speed-up versus the number of processes for
shared memory machine

Shared Memory
0.89

0.83

o
[}

0.66

Efficiency
o o
B~ o)}

o
N

1 2 3 4 5 6
Number of processes

Figure 6. Efficiency versus the number of processes for
shared-memory machine

Distributed memory
782 8.13 8.26

Speed-up
P N W ks 01O N 0O ©

1 4 8 16 32 48 64 80
Number of proceses

Figure 7. Speed-up versus the number of processes for HPC
cluster

876

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

Distributed Memory

0.72

0,8
0,6

Efficiency

04

0,2

1 4 8 16 32 48 64 80
Number of processes

Figure 6. Efficiency versus Number of processes for HPC
cluster

5 Discussion

The experimental results obtained in this work show a
considerable improvement in the execution time of the MCPI
algorithm on two different parallel architectures. These
findings also confirm the results obtained in previous studies
[4,5]. Additionally, in [5], the performance of MCPI is
compared with the Runge-Kuttal2 (10) algorithm and it is
reported that MCPI is 11 times faster than the other
algorithm. GPU-based parallelism is also proposed in [3] for
the MCPI algorithm. In [3], for performance analysis, the
execution time of a sequential MATLAB program is
compared with a CUDA-based parallel program written in
C/C++ programming language. When N is set to 511, it is
reported that the CUDA-based algorithm is 34 times faster
than the corresponding MATLAB program by using Nvidia
9400 GT (includes 16 CUDA cores) GPU card. Although it
seems a high speed-up of 34 is achieved, we note that
MATLAB programs are known to be much slower than
similar C programs. For instance, one recent study [20]
reports that their MATLAB program is approximately 30
times slower than the corresponding C++ program.

6 Conclusions

This study presents the parallelization of the solution of
Lambert’s problem using the Modified Chebyshev-Picard
Iteration (MCPI) algorithm. It provides a parallel algorithm
and its implementation details for astrodynamics methods by
applying the parallel version of the MCPI solver to the
famous Lambert’s problem. Since the problem is three-
dimensional, the biggest challenge is reorganizing the data in
each iteration to avoid the corruption of data in the
communication step between the parallel processes. We have
conducted experimental results and presented the
performance of the algorithm on two different parallel
architectures. The experimental results on an HPC cluster
show that the proposed parallel algorithm achieves 8.26
times faster execution time compared to the sequential
algorithm. The proposed algorithm also achieves 3.83 times
faster execution time compared to the sequential algorithm
on a 6-core shared memory system. As future work, we

intend to improve the parallel solution time further by
parallelizing the integrand approximation function.

Acknowledgment

The numerical calculations reported in this paper were
fully/partially performed at TUBITAK ULAKBIM, High
Performance and Grid Computing Center (TRUBA
resources).

Conflict of interest
The authors declare that there is no conflict of interest.

Similarity rate (iThenticate): 11%

References

[1] C. Inal, B. Bilgen, S. Biilbiil and M. Basbiik, Farkli
uydu sistemi kombinasyonlarinin ger¢ek zamanli
hassas nokta konumlamaya etkisi. Nigde Omer
Halisdemir Universitesi Miihendislik Bilimleri Dergisi,
11(1), 109-115, 2022. https://doi.org/10.28948/
ngumuh.996018

[21 H. D. Curtis, Orbital mechanics for engineering
students, Elsevier, Florida, 2005. https://doi.org/
10.1016/B978-0-08-097747-8.00003-7

[3] X. Bai, Modified Chebyshev-Picard iteration method
for solution of boundary value problems. Ph.D
dissertation, Texas A&M University, Texas, 2010.

[4] J. L.Junkins, A. B. Younes, R. M. Woollands, and X.
Bai, Picard iteration, Chebyshev polynomials and
Chebyshev-Picard methods: Application in
astrodynamics. The Journal of Astronautical Sciences,
vol. 60, no. 3-4, pp. 623-653, 2013.
https://doi.org/10.1007/s40295-015-0061-1

[5] R. M. Woollands, J. L. Read, A. B. Probe, and J. L.
Junkins, Multiple revolution solutions for the
perturbed lambert problem using the method of
particular solutions and Picard iteration. The Journal of
Astronautical Sciences, vol. 64, no. 4, pp. 361-378,
2017. https://doi.org/10.1007/s40295-017-0116-6

[6] P. B. Bailey, Nonlinear two point boundary value
problems, 1st ed., vol. 44, NX Amsterdam, The
Netherlands: Elsevier B.V., pp. 2149, 1968.
https://doi.org/10.1090/S0002-9904-1969-12263-9

[71 J. C. Mason and D. Handscomb, Chebyshev
polynomials. Boca Raton: Chapman & Hall/CRC,
2003. https://doi.org/10.1201/9781420036114

[8] C. W. Clenshaw and H. J. Norton, The solution of
nonlinear ordinary differential equations in Chebyshev
series. The Computer Journal, vol. 6, no. 1, pp. 88-92,
1963. https://doi.org/10.1093/comjnl/6.1.88

[9] T. Feagin and P. Nacozy, Matrix formulation of the
Picard method for parallel computation. Celestial
Mechanics and Dynamical Astronomy, vol. 29, no. 2,
pp. 107-115, 1983. https://doi.org/10.1007/
BF01232802

[10] J. Shaver, Formulation and evaluation of parallel
algorithms for the orbit determination problem. Ph.D
dissertation, United States Airforce, 1980.

[11] T.Fukushima, Vector integration of dynamical motions
by the Picard-Chebyshev method. The Astronomical

877

https://doi.org/10.28948/
https://doi.org/
https://doi.org/10.1007/

NOHU Miih. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878
M. Ajroudi , F. S. Torun

[12]

[13]

[14]

[15]

[16]

Journal, vol. 113, p. 2325, 1997.
10.1086/118443

J. C. McDowell, The low earth orbit satellite population
and impacts of the SpaceX Starlink constellation. The
Astrophysical Journal Letters 892.2 (2020): L36.
https://doi.org/10.3847/2041-8213/ab8016

W. Gropp, E. Lusk, N. Doss and A. Skjellum. A high-
performance, portable implementation of the MPI
message passing interface standard. Parallel
Computing, vol. 22, no. 6, pp. 789-828, 1996.
https://doi.org/10.1016/0167-8191(96)00024-5

T. Fukushima, Picard iteration method, Chebyshev
polynomial approximation, and global numerical
integration of dynamical motions. The Astronomical
Journal, wvol. 113, pp. 1909-1914, 1997.
https://doi.org/10.1086/118404

G. Miel, Numerical solution on parallel processors of
two-point boundary-value problems of astrodynamics.
Numerical Solution of Integral Equations. Springer,
Boston, MA, 1990. pp, 131-182. https://doi.org/
10.1007/978-1-4899-2593-0_4

B. Macomber, A. Probe, R. Woollands, and J. L.
Junkins, Parallel Modified-Chebyshev Picard iteration

https://doi.org/

[17]

[18]

[19]

[20]

for orbit catalog propagation and Monte Carlo analysis.
38th Annual AAS/AIAA Guidance and Control
Conference, Breckenridge, USA, Jan 2015.

A. Probe, B. Macomber, J. Read, R. Woollands, A.
Masher, and J. Junkins, Efficient conjunction
assessment using modified Chebyshev picard iteration.
Proceedings of the Advanced Maui Optical and Space
Surveillance Technologies Conference, Maui, Hawaii,
2015.

C. T. Shelton, Adaptive and orbital element methods
for conjunction analysis. Ph.D dissertation, Texas
A&M University, Texas, 2020.

G. M. Amdahl, Computer architecture and Amdahl's
law. Computer 46.12, 2013. https://doi.org/10.1109/
MC.2013.418

Q. Do, S. Acuiia, J. I. Kristiansen, K. Agarwal and P.
H. Ha, Highly efficient and scalable framework for
high-speed super-resolution microscopy. IEEE Access,
vol. 9, pp. 97053-97067, 2021. https://doi.org/
10.1109/ACCESS.2021.3094840

878

https://doi.org/
https://doi.org/
https://doi.org/10.1109/
https://doi.org/

	1 Introduction
	2 Related works
	3 Proposed algorithm and implementation details
	3.1.1 Introduction to MCPI
	3.1.2 MCPI for second-order ODE
	3.1.3 Matrix-Vector form
	3.1.4 Proposed solution
	3.1.5 Implementation details

	4 Experimental results
	5 Discussion
	6 Conclusions
	Acknowledgment
	Conflict of interest
	Similarity rate (iThenticate): 11%
	References

