

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2022; 11(4), 871-878

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: fstorun@aybu.edu.tr (F. S. Torun)
Geliş / Recieved: 07.02.2022 Kabul / Accepted: 03.10.2022 Yayımlanma / Published: 14.10.2022

doi: 10.28948/ngmuh.1069509

871

Parallel solution of Lambert’s problem using modified Chebyshev-Picard

iteration method

Lambert probleminin modifiye Chebyshev-Picard yineleme yöntemini kullanarak

paralel çözümü

Majd Ajroudi1, , F. Şükrü Torun2,*

1,2 Ankara Yıldırım Beyazıt University, Department of Computer Engineering, 06020, Ankara, Turkey,

Abstract Öz

Lambert’s problem is one of the classical methods for

solving the multiple revolution problem in orbit

determination. With the increasing interest in space

exploration programs and using satellite networks, it is

important to provide an accurate and rapid method that will

provide the network control center with information

regarding the orbit of each satellite in the network and help

the satellites improve routing decisions in onboard

processing satellites. Lambert’s problem is one of the

methods that solve the problem iteratively and this iteration

was originally done using Newton’s iteration method. In

recent studies, it is recommended to use the Chebyshev-

Picard iteration method to solve this problem. Since the aim

here is to provide a method that solves the problem rapidly,

the Chebyshev-Picard iteration method serves our objective

since it is highly parallelizable. In this work, we have

developed a parallel algorithm that solves Lambert’s

problem in a parallel environment. We have conducted

experiments to demonstrate the parallel scalability of the

algorithm on both shared and distributed memory

architectures. The experimental results show that the parallel

algorithm achieves 8.26- and 3.94-times faster execution

time on distributed memory and shared memory

architectures, respectively.

 Lambert problemi, yörünge belirlemede çoklu devir

problemini çözmek için kullanılan klasik yöntemlerden

biridir. Uzay araştırma programlarına ve uydu ağlarının

kullanımına olan ilginin artmasıyla, ağ kontrol merkezine

ağdaki her bir uydunun yörüngesine ilişkin bilgileri

sağlayacak ve uyduların yönlendirme kararlarını

iyileştirmesine yardımcı olacak doğru ve hızlı bir yöntemin

sağlanması önemlidir. Lambert problemi, bu problemi

yinelemeli olarak çözen yöntemlerden biridir ve bu yineleme

önceki yıllarda Newton'un yineleme yöntemi kullanılarak

yapılmaktaydı. Daha güncel araştırmalarda bu problemi

çözmek için Chebyshev-Picard yineleme yöntemi

kullanılması önerilmektedir. Önerilen metot çözüm

süresinde iyileştirmeler sunmasına rağmen büyük

problemlerde çözüm çok uzun süreler alabilmektedir. Bu

çalışmada, Lambert problemini paralel programlama

teknikleri kullanarak daha hızlı çözen yeni bir paralel

algoritma önerilmiştir. Ayrıca algoritmanın paralel

ölçeklenebilirliğini göstermek için 2 farklı paralel sistemde;

paylaşımlı ve dağıtık bellek mimarilerinde deneyler

yapılmıştır. Deneysel sonuçlar, paralel algoritmanın dağıtık

bellek ve paylaşımlı bellek mimarilerinde sırasıyla 8.26 ve

3.94 kat daha hızlı çözüm süresine ulaştığını göstermektedir.

Keywords: High performance computing, Lambert’s

problem, Modified Chebyshev-Picard iteration, Orbit

determination, Parallel computing.

 Anahtar kelimeler: Yüksek performanslı hesaplama,

Lambert problemi, Modifiye Chebyshev-Picard yinelemesi,

Yörünge belirleme, Paralel hesaplama.

1 Introduction

Today, astronomy, astronautics, artificial satellites,

satellite navigation systems [1], and orbital calculations are

fields of increasing importance. When sending a satellite into

orbit, it is essential to have a method that can predict the state

vector of the satellite at any given time. Once a state vector

of the satellite is determined, the six classical orbital

elements that define an orbit can be calculated [2]. This

procedure is called orbit determination. Lambert’s problem

is one of the classical methods of determining a preliminary

orbit of celestial objects from two position vectors and the

time of flight between the two points, which makes it a

Boundary Value Problem (BVP) [3] and requires solving the

differential as shown in Equation (1). The basic idea of

Lambert’s problem is to calculate the trajectory that connects

two points where the initial and final time is given, as shown

in Figure 1.

�̈� = − 𝜇 .
�̂�

𝑟2
 (1)

Some recent studies [3, 4] have shown a significant

improvement in the performance of the Chebyshev-Picard

iterative method after developing an approach to run the

method in a parallel environment. Chebyshev-Picard

iterative method [3] is a method that uses Chebyshev

polynomials to approximate the state trajectory in a Picard

iteration, where the boundary conditions are preserved by

constraining the Chebyshev polynomials coefficients. This

new approach is called Modified Chebyshev-Picard Iteration

(MCPI). Solving Lambert’s Problem using MCPI is

https://orcid.org/0000-0002-7901-8945
https://orcid.org/0000-0002-6662-2502

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

872

proposed in [5], where a solution for multiple revolutions

perturbed Lambert’s problem was proposed, as will be

explained in the next section.

The original MCPI is a combination of the works of

Emile Picard (Picard iteration) [6] and Rafnuty Chebyshev

(Chebyshev polynomials) [7]. Since Chebyshev function

approximation is orthogonal, Clenshaw and Norton found it

beneficial to combine it with Picard iteration in a

simultaneous manner to provide a solution to non-linear

ordinary differential equations [8].

Figure 1. Trajectory calculation using Lambert’s problem.

The MCPI algorithm is quite prone to parallel processing,

and several early studies proposed different approaches [3,

9, 10, 11] to the method. Additionally, [3] demonstrates the

efficiency of MCPI in non-linear IVP and BVP when

compared to other solvers, as will be discussed in the next

section.

The time taken to calculate a highly-accurate position of

a single satellite using this algorithm is often acceptable

depending on the case. However, when working with a

satellite constellation such as Starlink [12], which forms a

network of more than 3000 thousand satellites constantly

communicating with each other, such calculations can be

quite exhaustive. Parallel computing techniques should be

considered to accomplish these tasks in a reasonable time.

This work aims to use the approach of MCPI to solve the

second-order differential equation of Lambert’s problem,

shown in Equation (1), in a parallel environment provided by

the Message Passing Interface (MPI) [13]. Similar

applications of MCPI exist in the literature [3, 4, 5];

however, these studies lack the discussion of the problem

from the computer science perspective, thus the work

presented in this paper emphasizes this by discussing the

detailed parallelization of the problem along with comparing

the performance in two different computer architectures.

In the rest of this paper, we begin with discussing related

works. Next, the proposed algorithm and the implementation

details are presented. Finally, we discuss the results and

conclude the work.

2 Related works

Solving Initial Value Problems (IVP) and Boundary

Value Problems (BVP) using a combination of Picard

iteration and Chebyshev polynomials is first proposed in [8],

where a method to approximate the trajectory and the

integrand by the same set of discrete Chebyshev polynomials

is proposed. The Chebyshev polynomials in approximating

the integrand of Picard iteration along the 𝑖𝑡ℎ trajectory gives

an efficient and accurate approximation [8].

The parallelization of the Chebyshev-Picard iteration is

mentioned in many studies [10, 14, 15, 17]. One of the recent

works is Bai’s Ph.D. dissertation [4] which proves the great

capability of the method by extending the earlier works to

show an outperforming ODEs' numerical integration in the

sequential computing environment. The improvement of the

Chebyshev-Picard iterations method encouraged its

application to classical methods and problems to improve

their performance, such as Lambert’s Problem as we will see

later in the rest of this section.

Junkin and Bai extend their previous work on developing

parallel structured MCPI in [5]. The authors of the paper

have compared the results of solving single orbit propagation

between Runge-Kutta12(10) versus MCPI for a different

number of nodes and various spherical harmonic orders. It is

explicitly mentioned that, although the results of the

experiments show a positive impact of MCPI, the

experiments were limited and should be generalized for other

cases.

The method of particular solutions and MCPI are

combined in [5] to solve the multiple revolutions perturbed

Lambert’s problem for orbit transfer of a satellite. According

to [5], solving the two-point boundary problems with the

method of particular solutions can be done using any

numerical integrator, however, MCPI increased the

efficiency that cannot be provided with step-by-step

integrators.

An implementation of MCPI in a parallel environment to

solve a perturbed orbital trajectory is presented in [16]. The

framework of this research is divided into three modules: a

control module, a set of worker modules, and a renderer

module. The control module ensures the coordination using

the database and sends jobs to MCPI working processes,

which propagate an orbit trajectory and report the propagated

data to the renderer module and the control module for

catalog update. The main module and MCPI workers can run

on any multi-core CPU machine.

Recent studies used MCPI in a parallel environment to

improve Space Situational Awareness by applying it to the

process of Conjunction Assessment [17-18]. The work

provided in [17] compared the MCPI method with the single

satellite method using SGP4 and has shown that MCPI-aided

conjunction analysis provided approximately a 50% increase

in the speed. These findings can potentially protect space

assets by providing timely warnings of potential collisions.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

873

3 Proposed algorithm and implementation details

3.1.1 Introduction to MCPI

The first form of the method introduced by Emile Picard

for path approximation is presented as

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡)),

with the initial condition 𝑥(𝑡0). Then the form can be

rearranged to:

𝑥(𝑡) = 𝑥(𝑡0) + ∫ 𝑓(𝜏, 𝑥(𝜏)) 𝑑𝜏
𝑡

𝑡0
. (2)

It has been stated that the convergence of Picard iteration

was bounded to a time interval 𝑡 − 𝑡0 less than 𝛿, this time

interval for computing the satellite trajectories in Earth orbit

can approach 20,000 seconds, which is more than three

periods of a typical low Earth orbit satellite [4].

Chebyshev polynomials can be obtained by the following

recurrence relation:

𝑇0(𝑥) = 1

𝑇1(𝑥) = 𝑥

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1 − 𝑇𝑛−2.

(3)

Note that the first Chebyshev polynomials 𝑇 are defined

by the first two relations and the rest of the polynomials can

be calculated using the recurrence relation.

In the MCPI algorithm, Chebyshev polynomials are used

to approximate unknown trajectory and the integrand of

Picard iteration. The discrete nodes 𝜏 used for the

approximation of the state are the Chebyshev-Gauss-Lobatto

nodes and are given by

𝜏𝑛 = −𝑐𝑜𝑠 (
𝑛𝜋

𝑁
) , 𝑛 = 0, 1, 2, … , 𝑁 (4)

[

𝑇0(𝜏0) 𝑇1(𝜏0) … 𝑇𝑁(𝜏0)

𝑇0(𝜏1) 𝑇1(𝜏1) 𝑇1(𝜏1) 𝑇𝑁(𝜏1)
⋮ ⋮ ⋱ ⋮

𝑇0(𝜏𝑁) 𝑇1(𝜏𝑁) … 𝑇𝑁(𝜏𝑁)

],

(5)

where N is the total number of nodes throughout the

trajectory. Notice that each row in the previous matrix is

separate from the other rows, thus the calculation of this

matrix can be done in parallel, where a row-wise partitioning

method is performed, and each process takes an equal

number of rows. The second and the third functions that are

computed in parallel are the coefficient vector and the

integrand approximation, as shown in Equations (6) and (8).

The function that calculates the coefficient vector 𝐹 takes

two inputs, vector 𝐺, and Chebyshev polynomials matrix 𝑇,

each row for these two inputs independently results in one

entry of 𝐹. Thus, row-wise partitioning is done to those two

inputs and then distributed to the processes where each

worker process performs its tasks before the master process

collects the results and returns them as one vector. We note

that the overall time of the execution is mostly dominated by

the function which is responsible for the calculation of 𝐹.

Then the trajectory vector for 𝑖𝑡ℎ iteration is calculated using

 𝑥𝑖(𝜏) = 𝑥0 + ∑ 𝐹𝑗
𝑖−1

𝑁−1

𝑗=0

∫ 𝑇(𝑠)𝑑𝑠 ,
𝜏

−1

=
𝛾0

𝑖

2
𝑇0(𝜏) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(𝜏)

𝑁

𝑘=1

 ,

(10)

where 𝑥0 is shown in Equations (11). The first and last

entries of the trajectory vector represent the boundary

conditions stated for the problem. These two entries are

found by applying the value of 𝜏 in the boundary conditions,

namely 𝜏 = −1 and 𝜏 = 1.

𝑥0 = 𝑥(−1) =
𝛾0

𝑖

2
𝑇0(−1) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(−1)

𝑁

𝑘=1

 (11)

𝑥𝑓 = 𝑥(1) =
𝛾0

𝑖

2
𝑇0(1) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(1)

𝑁

𝑘=1

(12)

In Equations (11) and (12), 𝛾 is a coefficient vector that is

updated in each iteration. This coefficient can be calculated

using the following formulae, which are derived in [3]:

𝛾𝑁
𝑖 =

𝐹𝑁−1
𝑖−1

2𝑁
 (13)

𝑔 (𝜏, 𝑥𝑖−1(𝜏)) ~
1

2
 𝐹0

𝑖−1𝑇0(𝜏) + ∑ 𝐹𝑘
𝑖−1𝑇𝑘(𝜏)𝑘=𝑁

𝑘=1 , (6)

where

∑ 𝐹𝑘
𝑖−1𝑇𝑘(𝜏)𝑘=𝑁

𝑘=1 = 𝐹1
𝑖−1𝑇1(𝜏) + ⋯ + 𝐹𝑁

𝑖−1𝑇𝑁(𝜏). (7)

 𝐹𝑘
𝑖−1 =

1

2
 𝑔 (𝜏0, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏0)

+ ∑ 𝑔 (𝜏𝑗, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑗)

𝑗=𝑁−1

𝑗=0

+
1

2
 𝑔 (𝜏𝑁 , 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑁),

(8)

where

∑ 𝑔 (𝜏𝑗 , 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑗)

𝑗=𝑁−1

𝑗=0

= 𝑔 (𝜏1, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏1)

+ 𝑔 (𝜏𝑁−1, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑁−1).

(9)

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

874

𝛾𝑘
𝑖 =

1

2𝑘
 (𝐹𝑘−1

𝑖−1 − 𝐹𝑘+1
𝑖−1), for 𝑘 = 1,2, … , 𝑁 − 1 (14)

𝛾0
𝑖 = 𝑥𝑓 + 𝑥0 − 2(𝛾2 + 𝛾4 + 𝛾6 + ⋯) (15)

𝛾1
𝑖 =

𝑥𝑓 − 𝑥0

2
− (𝛾3 + 𝛾5 + 𝛾7 + ⋯) . (16)

3.1.2 MCPI for second-order ODE

The challenging part of Lambert’s problem is that the

differential equation is a second-order ODE, and thus, the

position vector 𝑥 along with the velocity vector 𝑣 will be

updated in each iteration.

The second-order ODE has the form of Equation (17) and

can be solved using a cascaded MCPI formulation. In this

formulation, the velocity calculation is done following the

approach mentioned in the previous subsection, and the

position is integrated directly from the approximated

velocity.

In the case of the first-order ODE, 𝑥 is updated using the

formula

𝑑2𝑥

𝑑𝑡2
= 𝑓(𝑡, 𝑥, �̇�) . (17)

To perform the second integration, we use the fact that

the velocity is the time derivative of the position to obtain

the second differential equation. Thus, our main differential

equations become:

𝑑𝑣

𝑑𝜏
= 𝑔(𝜏, 𝑥, 𝑣) (18)

and,

𝑑𝑥

𝑑𝜏
= 𝑣. (19)

Then using the fundamentals of Picard iteration, these

two equations can be transformed to the following:

𝑣𝑖(𝜏) = 𝑣0 + ∫ 𝑔 (𝑠, 𝑥𝑖−1(𝑠), 𝑣𝑖−1(𝑠)) 𝑑𝑠
𝜏

−1

,

for 𝑖 = 1,2, … ,

(20)

𝑥𝑖(𝜏) = 𝑥0 + ∫ 𝑣(𝑠)𝑑𝑠
𝜏

−1

𝑑𝑥

𝑑𝜏
 . (21)

3.1.3 Matrix-Vector form

Since our calculations are done for each node along the

trajectory, we can organize our results regarding each

function in a matrix form. This matrix-vector form provides

the possibility of solving the problem in parallel by dividing

the tasks on multiple processors.

The solution update formulas for the velocity and

position are shown below:

𝑉𝑖 = 𝐶𝑥𝐶𝛼𝑔𝑝𝑟𝑒𝑣. + 𝐶𝑥Θ𝑣0 , (22)

𝑋𝑖 =
𝑡𝑓 − 𝑡0

2
𝐶𝑥𝐶𝛼(𝑉𝑖) + 𝐶𝑥Θ𝑥0, (23)

where 𝑉𝑖 and 𝑋𝑖 are the 𝑖𝑡ℎ solutions for the velocity and

position, respectively. 𝐶𝑥 and 𝐶𝛼 are constant matrices that

are determined by the number of nodes 𝑛 only, 𝑔𝑝𝑟𝑒𝑣. is the

approximation of the integrand and Θ0 is a vector of the

boundary conditions for 𝑉 and 𝑋. The flowchart for the

second-order matrix-vector approach is shown in Figure 2.

Figure 2. Matrix-vector approach of MCPI algorithm for

second-order differential equations

3.1.4 Proposed solution

As mentioned in the previous sections, the MCPI

algorithm is implemented through several functions, some of

which are iterated several times. In this section, we discuss

those that were written in parallel and the data that was

transferred between processors. This exchange of data was

done using Message Passing Interface (MPI) [13] library.

Parallel algorithms that are implemented with the MPI

library can work on both shared memory and distributed

memory architectures efficiently. Applying MPI to the

algorithm allows the implementation of data parallelism by

distributing the matrices’ rows or columns among several

processors and similar instructions are executed over the

distributed data.

Chebyshev polynomials matrix: This function depends

on the range of nodes distributed over the interval [-1, 1],

which are stored in the array 𝜏. Chebyshev polynomials of

order 𝑀 are generated for each node as mentioned in

Equation (3). Since the polynomials for each node are

independent of the other rows, we can divide the values of

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

875

the array 𝜏 among several processors, of which each

processor would be responsible for generating Chebyshev

polynomials for the nodes that were sent to it. The data

distribution of this function is described in Figure 3.

Force function: The parallelization of this function is the

most fundamental process in the proposed solution since it

defines the ODE that is being solved. In our case, we are

working with a 3D problem, meaning that this function is

called three times in each iteration. Each entry of the

resulting column-vector is the result of the sum of

multiplications of the coefficient’s vector with its

corresponding Chebyshev polynomials entry. Thus, the

function is parallelized by sending the vector of the

coefficient to each process and the rows of the Chebyshev

polynomials matrix to the process responsible for them.

Figure 3. Description of the parallel Chebyshev polynomials

function

Chebyshev coefficients: The result of this function is a

column vector containing coefficients for each order of the

Chebyshev polynomials. The computation of the result of

this function is similar to the force function; thus, the

parallelization is implemented similarly.

The matrix partitioning, data distribution, and

parallelization of the Chebyshev coefficient’s function and

the force function are described in Figure 4. Here, each

processor 𝑝𝑖 is responsible for computations of subsequent

rows of the matrix and consecutive entries of the vector

according to the owner-compute rule.

Figure 4. Data distribution of the parallel force function and

coefficient function

3.1.5 Implementation details

The parallel algorithm is implemented with the Python

programming language. We have used the MPI library to

distribute, synchronize, and gather data between distributed

processes in our parallel algorithm. We have exploited the

MPI4Py package which provides bindings of the MPI

routines for Python, allowing it to exploit multiple

distributed processors. In the experiments, Python version

3.0 and OpenMPI version 4.0.0 MPI implementations were

used.

4 Experimental results

The results that are presented in this section are discussed

and analyzed in terms of two main concepts: speed-up and

efficiency. Speed-up is the factor of reduction in the

execution time of the parallel implementation against the

sequential implementation. According to the values of

speed-up, it can be categorized into three types; linear: if the

value of speed-up is equal to the number of processors, sub-

linear: if the value of the speed-up is less than the number of

processors, and super-linear: if the value of speed-up is

larger than the number of processors. Speed-up values can

be obtained using the following equation:

𝑆𝑝𝑒𝑒𝑑-𝑢𝑝 =
𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
. (24)

The parallel efficiency measures the effectiveness of the

algorithm in a parallel environment. In other words, the

efficiency can be used to measure the computing power

deficiency in parallel execution. This ratio is obtained by the

following formula:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑-𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 . (25)

The experiments were conducted on two different

architectures. The first experiment was conducted on a

shared memory architecture with Intel i7-5930K 6-core CPU

and 32GB memory and for the second we used a distributed

memory HPC cluster named Barbun HPC Supercomputer in

TUBITAK ULAKBIM High Performance and Grid

Computing Center (TRUBA), where each computation node

has the following configuration: 2 sockets, 20 cores per

socket, Intel Xeon Gold 6148 CPU and 384 GBs of main

memory. In both experiments, the number of trajectory

nodes was set to N = 5000 and the tolerance value to 0.0001.

In operational cases, the number of trajectory nodes decided

depends on the accuracy of the trajectory intended to be

found.

Tables 1 and 2 show the execution time alongside the

speed-up and the efficiency for the experiment on the shared

memory machine and the HPC cluster, respectively. As can

be seen in the tables, the speed-up values increase when the

number of cores used in the parallel run increases. The

proposed parallel algorithm gets sub-linear speed-up values

for all test cases since the obtained speed-up values are less

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

876

than the number of processors used, and the efficiency is

always less than one.

The proposed algorithm achieves the highest speed-up on

the shared memory machine with 3.94 when it uses 6 cores,

and the efficiency is 0.66 for this test. The proposed

algorithm achieves the highest speed-up on the HPC cluster

with 8.26 speed-up on 80 processors with an efficiency of

0.10. According to Amdahl’s law [19], this experimental

finding is expected since the sequential portion of the

algorithm cannot be parallelized, and the portion of the

sequential part increases proportionally for large number of

processes. Furthermore, for large number of processors, the

communication overhead increases as well. These two

factors limit the speed-up for the larger number of cores, and

it causes lower efficiency values in the parallel system.

Table 1. Speed-up and efficiency results for the shared

memory system

#Cores
Execution
Time (s)

Speed-up Efficiency

1 147.50 1.00 1.00

2 82.52 1.79 0.89

3 59.37 2.48 0.83

4 52.06 2.83 0.71

5 42.05 3.51 0.70

6 37.48 3.94 0.66

Table 2. Speed-up and efficiency results for the HPC cluster

#Cores
Execution

Time (s)
Speed-up Efficiency

1 163.66 1.00 1.00

4 57.20 2.86 0.72

8 42.90 3.82 0.48

16 30.75 5.32 0.33

32 26.49 6.18 0.19

48 20.93 7.82 0.16

64 20.12 8.13 0.13

80 19.82 8.26 0.10

Figures 5 and 7 depict the obtained speed-up values for

each number of cores respectively for the shared memory

and HPC platforms. Additionally, Figures 6 and 8 show the

respective efficiency values for each number of cores. As

seen in the figures, when the number of processors increases

the speed-up increases for both cases. However, the speed-

up starts to stabilize in the HPC cluster with an increasing

number of processors. In addition to these experiments, we

have conducted extra experiments with larger problems

where the number of trajectory nodes was set to N = 10.000

and N = 20.000 in the HPC cluster by using 80 cores. Since

we increased the granularity of the problem in these tests, we

got higher efficiency values of 0.11 and 0.15 respectively for

N = 10000 and N = 20000 as expected.

Figure 5. Speed-up versus the number of processes for

shared memory machine

Figure 6. Efficiency versus the number of processes for

shared-memory machine

Figure 7. Speed-up versus the number of processes for HPC

cluster

1.79

2.48

2.89

3.51

3.94

1

1,5

2

2,5

3

3,5

4

1 2 3 4 5 6

S
p

ee
d

-u
p

Number of processes

Shared memory

0.89
0.83

0.72 0.70
0.66

0

0,2

0,4

0,6

0,8

1

1 2 3 4 5 6

E
ff

ic
ie

n
cy

Number of processes

Shared Memory

2.86

3.82

5.32

6.18

7.82
8.13 8.26

1

2

3

4

5

6

7

8

9

1 4 8 16 32 48 64 80

S
p

ee
d

-u
p

Number of proceses

Distributed memory

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

877

Figure 6. Efficiency versus Number of processes for HPC

cluster

5 Discussion

The experimental results obtained in this work show a

considerable improvement in the execution time of the MCPI

algorithm on two different parallel architectures. These

findings also confirm the results obtained in previous studies

[4,5]. Additionally, in [5], the performance of MCPI is

compared with the Runge-Kutta12 (10) algorithm and it is

reported that MCPI is 11 times faster than the other

algorithm. GPU-based parallelism is also proposed in [3] for

the MCPI algorithm. In [3], for performance analysis, the

execution time of a sequential MATLAB program is

compared with a CUDA-based parallel program written in

C/C++ programming language. When N is set to 511, it is

reported that the CUDA-based algorithm is 34 times faster

than the corresponding MATLAB program by using Nvidia

9400 GT (includes 16 CUDA cores) GPU card. Although it

seems a high speed-up of 34 is achieved, we note that

MATLAB programs are known to be much slower than

similar C programs. For instance, one recent study [20]

reports that their MATLAB program is approximately 30

times slower than the corresponding C++ program.

6 Conclusions

This study presents the parallelization of the solution of

Lambert’s problem using the Modified Chebyshev-Picard

Iteration (MCPI) algorithm. It provides a parallel algorithm

and its implementation details for astrodynamics methods by

applying the parallel version of the MCPI solver to the

famous Lambert’s problem. Since the problem is three-

dimensional, the biggest challenge is reorganizing the data in

each iteration to avoid the corruption of data in the

communication step between the parallel processes. We have

conducted experimental results and presented the

performance of the algorithm on two different parallel

architectures. The experimental results on an HPC cluster

show that the proposed parallel algorithm achieves 8.26

times faster execution time compared to the sequential

algorithm. The proposed algorithm also achieves 3.83 times

faster execution time compared to the sequential algorithm

on a 6-core shared memory system. As future work, we

intend to improve the parallel solution time further by

parallelizing the integrand approximation function.

Acknowledgment

The numerical calculations reported in this paper were

fully/partially performed at TUBITAK ULAKBIM, High

Performance and Grid Computing Center (TRUBA

resources).

Conflict of interest

The authors declare that there is no conflict of interest.

Similarity rate (iThenticate): 11%

References

[1] C. İnal, B. Bilgen, S. Bülbül and M. Başbük, Farklı

uydu sistemi kombinasyonlarının gerçek zamanlı

hassas nokta konumlamaya etkisi. Niğde Ömer

Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi,

11(1), 109-115, 2022. https://doi.org/10.28948/

ngumuh.996018

[2] H. D. Curtis, Orbital mechanics for engineering

students, Elsevier, Florida, 2005. https://doi.org/

10.1016/B978-0-08-097747-8.00003-7

[3] X. Bai, Modified Chebyshev-Picard iteration method

for solution of boundary value problems. Ph.D

dissertation, Texas A&M University, Texas, 2010.

[4] J. L. Junkins, A. B. Younes, R. M. Woollands, and X.

Bai, Picard iteration, Chebyshev polynomials and

Chebyshev-Picard methods: Application in

astrodynamics. The Journal of Astronautical Sciences,

vol. 60, no. 3–4, pp. 623–653, 2013.

https://doi.org/10.1007/s40295-015-0061-1

[5] R. M. Woollands, J. L. Read, A. B. Probe, and J. L.

Junkins, Multiple revolution solutions for the

perturbed lambert problem using the method of

particular solutions and Picard iteration. The Journal of

Astronautical Sciences, vol. 64, no. 4, pp. 361–378,

2017. https://doi.org/10.1007/s40295-017-0116-6

[6] P. B. Bailey, Nonlinear two point boundary value

problems, 1st ed., vol. 44, NX Amsterdam, The

Netherlands: Elsevier B.V., pp. 21–49, 1968.

https://doi.org/10.1090/S0002-9904-1969-12263-9

[7] J. C. Mason and D. Handscomb, Chebyshev

polynomials. Boca Raton: Chapman & Hall/CRC,

2003. https://doi.org/10.1201/9781420036114

[8] C. W. Clenshaw and H. J. Norton, The solution of

nonlinear ordinary differential equations in Chebyshev

series. The Computer Journal, vol. 6, no. 1, pp. 88–92,

1963. https://doi.org/10.1093/comjnl/6.1.88

[9] T. Feagin and P. Nacozy, Matrix formulation of the

Picard method for parallel computation. Celestial

Mechanics and Dynamical Astronomy, vol. 29, no. 2,

pp. 107–115, 1983. https://doi.org/10.1007/

BF01232802

[10] J. Shaver, Formulation and evaluation of parallel

algorithms for the orbit determination problem. Ph.D

dissertation, United States Airforce, 1980.

[11] T. Fukushima, Vector integration of dynamical motions

by the Picard-Chebyshev method. The Astronomical

0.72

0.48

0.33

0.19 0.16 0.13 0.10

0

0,2

0,4

0,6

0,8

1

1 4 8 16 32 48 64 80

E
ff

ic
ie

n
cy

Number of processes

Distributed Memory

https://doi.org/10.28948/
https://doi.org/
https://doi.org/10.1007/

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2022; 11(4), 871-878

M. Ajroudi , F. S. Torun

878

Journal, vol. 113, p. 2325, 1997. https://doi.org/

10.1086/118443

[12] J. C. McDowell, The low earth orbit satellite population

and impacts of the SpaceX Starlink constellation. The

Astrophysical Journal Letters 892.2 (2020): L36.

https://doi.org/10.3847/2041-8213/ab8016

[13] W. Gropp, E. Lusk, N. Doss and A. Skjellum. A high-

performance, portable implementation of the MPI

message passing interface standard. Parallel

Computing, vol. 22, no. 6, pp. 789–828, 1996.

https://doi.org/10.1016/0167-8191(96)00024-5

[14] T. Fukushima, Picard iteration method, Chebyshev

polynomial approximation, and global numerical

integration of dynamical motions. The Astronomical

Journal, vol. 113, pp. 1909–1914, 1997.

https://doi.org/10.1086/118404

[15] G. Miel, Numerical solution on parallel processors of

two-point boundary-value problems of astrodynamics.

Numerical Solution of Integral Equations. Springer,

Boston, MA, 1990. pp, 131-182. https://doi.org/

10.1007/978-1-4899-2593-0_4

[16] B. Macomber, A. Probe, R. Woollands, and J. L.

Junkins, Parallel Modified-Chebyshev Picard iteration

for orbit catalog propagation and Monte Carlo analysis.

38th Annual AAS/AIAA Guidance and Control

Conference, Breckenridge, USA, Jan 2015.

[17] A. Probe, B. Macomber, J. Read, R. Woollands, A.

Masher, and J. Junkins, Efficient conjunction

assessment using modified Chebyshev picard iteration.

Proceedings of the Advanced Maui Optical and Space

Surveillance Technologies Conference, Maui, Hawaii,

2015.

[18] C. T. Shelton, Adaptive and orbital element methods

for conjunction analysis. Ph.D dissertation, Texas

A&M University, Texas, 2020.

[19] G. M. Amdahl, Computer architecture and Amdahl's

law. Computer 46.12, 2013. https://doi.org/10.1109/

MC.2013.418

[20] Q. Do, S. Acuña, J. I. Kristiansen, K. Agarwal and P.

H. Ha, Highly efficient and scalable framework for

high-speed super-resolution microscopy. IEEE Access,

vol. 9, pp. 97053-97067, 2021. https://doi.org/

10.1109/ACCESS.2021.3094840

https://doi.org/
https://doi.org/
https://doi.org/10.1109/
https://doi.org/

	1 Introduction
	2 Related works
	3 Proposed algorithm and implementation details
	3.1.1 Introduction to MCPI
	3.1.2 MCPI for second-order ODE
	3.1.3 Matrix-Vector form
	3.1.4 Proposed solution
	3.1.5 Implementation details

	4 Experimental results
	5 Discussion
	6 Conclusions
	Acknowledgment
	Conflict of interest
	Similarity rate (iThenticate): 11%
	References

