
 

 
NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2022; 11(4), 871-878 

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi 

Niğde Ömer Halisdemir University Journal of Engineering Sciences 

Araştırma makalesi / Research article 

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh 

 

 

 

* Sorumlu yazar / Corresponding author, e-posta / e-mail: fstorun@aybu.edu.tr (F. S. Torun) 
Geliş / Recieved:  07.02.2022   Kabul / Accepted: 03.10.2022    Yayımlanma / Published: 14.10.2022 

doi: 10.28948/ngmuh.1069509 

871 

Parallel solution of Lambert’s problem using modified Chebyshev-Picard 

iteration method  

Lambert probleminin modifiye Chebyshev-Picard yineleme yöntemini kullanarak 

paralel çözümü 

 

Majd Ajroudi1, , F. Şükrü Torun2,*  

1,2 Ankara Yıldırım Beyazıt University, Department of Computer Engineering, 06020, Ankara, Turkey,  

 

Abstract   Öz 

Lambert’s problem is one of the classical methods for 

solving the multiple revolution problem in orbit 

determination. With the increasing interest in space 

exploration programs and using satellite networks, it is 

important to provide an accurate and rapid method that will 

provide the network control center with information 

regarding the orbit of each satellite in the network and help 

the satellites improve routing decisions in onboard 

processing satellites. Lambert’s problem is one of the 

methods that solve the problem iteratively and this iteration 

was originally done using Newton’s iteration method. In 

recent studies, it is recommended to use the Chebyshev-

Picard iteration method to solve this problem. Since the aim 

here is to provide a method that solves the problem rapidly, 

the Chebyshev-Picard iteration method serves our objective 

since it is highly parallelizable. In this work, we have 

developed a parallel algorithm that solves Lambert’s 

problem in a parallel environment. We have conducted 

experiments to demonstrate the parallel scalability of the 

algorithm on both shared and distributed memory 

architectures. The experimental results show that the parallel 

algorithm achieves 8.26- and 3.94-times faster execution 

time on distributed memory and shared memory 

architectures, respectively. 

 Lambert problemi, yörünge belirlemede çoklu devir 

problemini çözmek için kullanılan klasik yöntemlerden 

biridir. Uzay araştırma programlarına ve uydu ağlarının 

kullanımına olan ilginin artmasıyla, ağ kontrol merkezine 

ağdaki her bir uydunun yörüngesine ilişkin bilgileri 

sağlayacak ve uyduların yönlendirme kararlarını 

iyileştirmesine yardımcı olacak doğru ve hızlı bir yöntemin 

sağlanması önemlidir. Lambert problemi, bu problemi 

yinelemeli olarak çözen yöntemlerden biridir ve bu yineleme 

önceki yıllarda Newton'un yineleme yöntemi kullanılarak 

yapılmaktaydı. Daha güncel araştırmalarda bu problemi 

çözmek için Chebyshev-Picard yineleme yöntemi 

kullanılması önerilmektedir.  Önerilen metot çözüm 

süresinde iyileştirmeler sunmasına rağmen büyük 

problemlerde çözüm çok uzun süreler alabilmektedir. Bu 

çalışmada, Lambert problemini paralel programlama 

teknikleri kullanarak daha hızlı çözen yeni bir paralel 

algoritma önerilmiştir. Ayrıca algoritmanın paralel 

ölçeklenebilirliğini göstermek için 2 farklı paralel sistemde; 

paylaşımlı ve dağıtık bellek mimarilerinde deneyler 

yapılmıştır. Deneysel sonuçlar, paralel algoritmanın dağıtık 

bellek ve paylaşımlı bellek mimarilerinde sırasıyla 8.26 ve 

3.94 kat daha hızlı çözüm süresine ulaştığını göstermektedir. 

Keywords: High performance computing, Lambert’s 

problem, Modified Chebyshev-Picard iteration, Orbit 

determination, Parallel computing. 

 Anahtar kelimeler: Yüksek performanslı hesaplama, 

Lambert problemi, Modifiye Chebyshev-Picard yinelemesi, 

Yörünge belirleme, Paralel hesaplama. 

1 Introduction 

Today, astronomy, astronautics, artificial satellites, 

satellite navigation systems [1], and orbital calculations are 

fields of increasing importance. When sending a satellite into 

orbit, it is essential to have a method that can predict the state 

vector of the satellite at any given time. Once a state vector 

of the satellite is determined, the six classical orbital 

elements that define an orbit can be calculated [2]. This 

procedure is called orbit determination. Lambert’s problem 

is one of the classical methods of determining a preliminary 

orbit of celestial objects from two position vectors and the 

time of flight between the two points, which makes it a 

Boundary Value Problem (BVP) [3] and requires solving the 

differential as shown in Equation (1). The basic idea of 

Lambert’s problem is to calculate the trajectory that connects 

two points where the initial and final time is given, as shown 

in Figure 1. 

�̈� =  − 𝜇 .
�̂�

𝑟2
 (1) 

Some recent studies [3, 4] have shown a significant 

improvement in the performance of the Chebyshev-Picard 

iterative method after developing an approach to run the 

method in a parallel environment. Chebyshev-Picard 

iterative method [3] is a method that uses Chebyshev 

polynomials to approximate the state trajectory in a Picard 

iteration, where the boundary conditions are preserved by 

constraining the Chebyshev polynomials coefficients. This 

new approach is called Modified Chebyshev-Picard Iteration 

(MCPI). Solving Lambert’s Problem using MCPI is 

https://orcid.org/0000-0002-7901-8945
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proposed in [5], where a solution for multiple revolutions 

perturbed Lambert’s problem was proposed, as will be 

explained in the next section. 

The original MCPI is a combination of the works of 

Emile Picard (Picard iteration) [6] and Rafnuty Chebyshev 

(Chebyshev polynomials) [7]. Since Chebyshev function 

approximation is orthogonal, Clenshaw and Norton found it 

beneficial to combine it with Picard iteration in a 

simultaneous manner to provide a solution to non-linear 

ordinary differential equations [8]. 

 

 

Figure 1. Trajectory calculation using Lambert’s problem. 

 

The MCPI algorithm is quite prone to parallel processing, 

and several early studies proposed different approaches [3, 

9, 10, 11] to the method. Additionally, [3] demonstrates the 

efficiency of MCPI in non-linear IVP and BVP when 

compared to other solvers, as will be discussed in the next 

section. 

The time taken to calculate a highly-accurate position of 

a single satellite using this algorithm is often acceptable 

depending on the case. However, when working with a 

satellite constellation such as Starlink [12], which forms a 

network of more than 3000 thousand satellites constantly 

communicating with each other, such calculations can be 

quite exhaustive. Parallel computing techniques should be 

considered to accomplish these tasks in a reasonable time.  

This work aims to use the approach of MCPI to solve the 

second-order differential equation of Lambert’s problem, 

shown in Equation (1), in a parallel environment provided by 

the Message Passing Interface (MPI) [13]. Similar 

applications of MCPI exist in the literature [3, 4, 5]; 

however, these studies lack the discussion of the problem 

from the computer science perspective, thus the work 

presented in this paper emphasizes this by discussing the 

detailed parallelization of the problem along with comparing 

the performance in two different computer architectures. 

In the rest of this paper, we begin with discussing related 

works. Next, the proposed algorithm and the implementation 

details are presented. Finally, we discuss the results and 

conclude the work. 

2 Related works 

Solving Initial Value Problems (IVP) and Boundary 

Value Problems (BVP) using a combination of Picard 

iteration and Chebyshev polynomials is first proposed in [8], 

where a method to approximate the trajectory and the 

integrand by the same set of discrete Chebyshev polynomials 

is proposed. The Chebyshev polynomials in approximating 

the integrand of Picard iteration along the 𝑖𝑡ℎ trajectory gives 

an efficient and accurate approximation [8]. 

The parallelization of the Chebyshev-Picard iteration is 

mentioned in many studies [10, 14, 15, 17]. One of the recent 

works is Bai’s Ph.D. dissertation [4] which proves the great 

capability of the method by extending the earlier works to 

show an outperforming ODEs' numerical integration in the 

sequential computing environment. The improvement of the 

Chebyshev-Picard iterations method encouraged its 

application to classical methods and problems to improve 

their performance, such as Lambert’s Problem as we will see 

later in the rest of this section. 

Junkin and Bai extend their previous work on developing 

parallel structured MCPI in [5]. The authors of the paper 

have compared the results of solving single orbit propagation 

between Runge-Kutta12(10) versus MCPI for a different 

number of nodes and various spherical harmonic orders. It is 

explicitly mentioned that, although the results of the 

experiments show a positive impact of MCPI, the 

experiments were limited and should be generalized for other 

cases.  

The method of particular solutions and MCPI are 

combined in [5] to solve the multiple revolutions perturbed 

Lambert’s problem for orbit transfer of a satellite. According 

to [5], solving the two-point boundary problems with the 

method of particular solutions can be done using any 

numerical integrator, however, MCPI increased the 

efficiency that cannot be provided with step-by-step 

integrators. 

An implementation of MCPI in a parallel environment to 

solve a perturbed orbital trajectory is presented in [16]. The 

framework of this research is divided into three modules: a 

control module, a set of worker modules, and a renderer 

module. The control module ensures the coordination using 

the database and sends jobs to MCPI working processes, 

which propagate an orbit trajectory and report the propagated 

data to the renderer module and the control module for 

catalog update. The main module and MCPI workers can run 

on any multi-core CPU machine.  

Recent studies used MCPI in a parallel environment to 

improve Space Situational Awareness by applying it to the 

process of Conjunction Assessment [17-18]. The work 

provided in [17] compared the MCPI method with the single 

satellite method using SGP4 and has shown that MCPI-aided 

conjunction analysis provided approximately a 50% increase 

in the speed. These findings can potentially protect space 

assets by providing timely warnings of potential collisions. 
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3 Proposed algorithm and implementation details 

3.1.1 Introduction to MCPI 

The first form of the method introduced by Emile Picard 

for path approximation is presented as 

 

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡)), 
 

with the initial condition 𝑥(𝑡0). Then the form can be 

rearranged to:  

 

𝑥(𝑡) = 𝑥(𝑡0) + ∫ 𝑓(𝜏, 𝑥(𝜏)) 𝑑𝜏
𝑡

𝑡0
. (2) 

It has been stated that the convergence of Picard iteration 

was bounded to a time interval 𝑡 −  𝑡0 less than 𝛿, this time 

interval for computing the satellite trajectories in Earth orbit 

can approach 20,000 seconds, which is more than three 

periods of a typical low Earth orbit satellite [4]. 

Chebyshev polynomials can be obtained by the following 

recurrence relation: 

 

𝑇0(𝑥) = 1 

𝑇1(𝑥) = 𝑥 

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1 −  𝑇𝑛−2. 

(3) 

 

Note that the first Chebyshev polynomials 𝑇 are defined 

by the first two relations and the rest of the polynomials can 

be calculated using the recurrence relation.  

In the MCPI algorithm, Chebyshev polynomials are used 

to approximate unknown trajectory and the integrand of 

Picard iteration. The discrete nodes 𝜏 used for the 

approximation of the state are the Chebyshev-Gauss-Lobatto 

nodes and are given by 

 

𝜏𝑛 =  −𝑐𝑜𝑠 (
𝑛𝜋

𝑁
) , 𝑛 = 0, 1, 2, … , 𝑁 (4) 

 

[

𝑇0(𝜏0) 𝑇1(𝜏0) … 𝑇𝑁(𝜏0)

𝑇0(𝜏1) 𝑇1(𝜏1) 𝑇1(𝜏1) 𝑇𝑁(𝜏1)
⋮ ⋮ ⋱ ⋮

𝑇0(𝜏𝑁) 𝑇1(𝜏𝑁) … 𝑇𝑁(𝜏𝑁)

], 

(5) 

 

where N is the total number of nodes throughout the 

trajectory. Notice that each row in the previous matrix is 

separate from the other rows, thus the calculation of this 

matrix can be done in parallel, where a row-wise partitioning 

method is performed, and each process takes an equal 

number of rows. The second and the third functions that are 

computed in parallel are the coefficient vector and the 

integrand approximation, as shown in Equations (6) and (8). 

 

 

The function that calculates the coefficient vector 𝐹 takes 

two inputs, vector 𝐺, and Chebyshev polynomials matrix 𝑇, 

each row for these two inputs independently results in one 

entry of 𝐹. Thus, row-wise partitioning is done to those two 

inputs and then distributed to the processes where each 

worker process performs its tasks before the master process 

collects the results and returns them as one vector. We note 

that the overall time of the execution is mostly dominated by 

the function which is responsible for the calculation of 𝐹. 

Then the trajectory vector for 𝑖𝑡ℎ iteration is calculated using 

 

           𝑥𝑖(𝜏) =  𝑥0 +  ∑ 𝐹𝑗
𝑖−1 

𝑁−1

𝑗=0

∫ 𝑇(𝑠)𝑑𝑠 ,
𝜏

−1

=  
𝛾0

𝑖

2
𝑇0(𝜏) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(𝜏)

𝑁

𝑘=1

 , 

(10) 

 

where 𝑥0 is shown in Equations (11). The first and last 

entries of the trajectory vector represent the boundary 

conditions stated for the problem. These two entries are 

found by applying the value of 𝜏 in the boundary conditions, 

namely 𝜏 = −1 and 𝜏 = 1. 

 

𝑥0 = 𝑥(−1) =  
𝛾0

𝑖

2
𝑇0(−1) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(−1)

𝑁

𝑘=1

 (11) 

𝑥𝑓 = 𝑥(1) =  
𝛾0

𝑖

2
𝑇0(1) + ∑ 𝛾𝑘

𝑖 𝑇𝑘(1)

𝑁

𝑘=1

 

(12) 

 

In Equations (11) and (12), 𝛾 is a coefficient vector that is 

updated in each iteration. This coefficient can be calculated 

using the following formulae, which are derived in [3]: 

𝛾𝑁
𝑖 =  

𝐹𝑁−1
𝑖−1

2𝑁
 (13) 

𝑔 (𝜏, 𝑥𝑖−1(𝜏)) ~ 
1

2
 𝐹0

𝑖−1𝑇0(𝜏) + ∑ 𝐹𝑘
𝑖−1𝑇𝑘(𝜏)𝑘=𝑁

𝑘=1  ,  (6) 

where  

∑ 𝐹𝑘
𝑖−1𝑇𝑘(𝜏)𝑘=𝑁

𝑘=1 =  𝐹1
𝑖−1𝑇1(𝜏) + ⋯ + 𝐹𝑁

𝑖−1𝑇𝑁(𝜏). (7) 

                      𝐹𝑘
𝑖−1 =  

1

2
 𝑔 (𝜏0, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏0)

+ ∑ 𝑔 (𝜏𝑗, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑗)

𝑗=𝑁−1

𝑗=0

+
1

2
 𝑔 (𝜏𝑁 , 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑁), 

(8) 

where  

∑ 𝑔 (𝜏𝑗 , 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑗)

𝑗=𝑁−1

𝑗=0

= 𝑔 (𝜏1, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏1)

+  𝑔 (𝜏𝑁−1, 𝑥𝑖−1(𝜏)) 𝑇𝑘(𝜏𝑁−1). 

(9) 
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𝛾𝑘
𝑖 =  

1

2𝑘
 (𝐹𝑘−1

𝑖−1 −  𝐹𝑘+1
𝑖−1), for  𝑘 = 1,2, … , 𝑁 − 1 (14) 

𝛾0
𝑖 =  𝑥𝑓 + 𝑥0 − 2(𝛾2 + 𝛾4 + 𝛾6 + ⋯ ) (15) 

𝛾1
𝑖 =  

𝑥𝑓 − 𝑥0

2
− (𝛾3 + 𝛾5 + 𝛾7 + ⋯ ) . (16) 

 

3.1.2 MCPI for second-order ODE  

The challenging part of Lambert’s problem is that the 

differential equation is a second-order ODE, and thus, the 

position vector 𝑥 along with the velocity vector 𝑣 will be 

updated in each iteration.  

The second-order ODE has the form of Equation (17) and 

can be solved using a cascaded MCPI formulation. In this 

formulation, the velocity calculation is done following the 

approach mentioned in the previous subsection, and the 

position is integrated directly from the approximated 

velocity.  

In the case of the first-order ODE, 𝑥 is updated using the 

formula 

 

𝑑2𝑥

𝑑𝑡2
=  𝑓(𝑡, 𝑥, �̇�) . (17) 

To perform the second integration, we use the fact that 

the velocity is the time derivative of the position to obtain 

the second differential equation. Thus, our main differential 

equations become: 

 
𝑑𝑣

𝑑𝜏
=  𝑔(𝜏, 𝑥, 𝑣)  (18) 

and,  

𝑑𝑥

𝑑𝜏
= 𝑣. (19) 

 

Then using the fundamentals of Picard iteration, these 

two equations can be transformed to the following: 

 

𝑣𝑖(𝜏) = 𝑣0 + ∫ 𝑔 (𝑠, 𝑥𝑖−1(𝑠), 𝑣𝑖−1(𝑠)) 𝑑𝑠
𝜏

−1

,  

for 𝑖 = 1,2, … , 

(20) 

𝑥𝑖(𝜏) =  𝑥0 +  ∫ 𝑣(𝑠)𝑑𝑠
𝜏

−1

𝑑𝑥

𝑑𝜏
 . (21) 

3.1.3 Matrix-Vector form 

Since our calculations are done for each node along the 

trajectory, we can organize our results regarding each 

function in a matrix form. This matrix-vector form provides 

the possibility of solving the problem in parallel by dividing 

the tasks on multiple processors. 

The solution update formulas for the velocity and 

position are shown below: 

𝑉𝑖 =  𝐶𝑥𝐶𝛼𝑔𝑝𝑟𝑒𝑣. + 𝐶𝑥Θ𝑣0 , (22) 

𝑋𝑖 =
𝑡𝑓 − 𝑡0

2
𝐶𝑥𝐶𝛼(𝑉𝑖) + 𝐶𝑥Θ𝑥0, (23) 

where 𝑉𝑖 and 𝑋𝑖 are the 𝑖𝑡ℎ solutions for the velocity and 

position, respectively. 𝐶𝑥 and 𝐶𝛼 are constant matrices that 

are determined by the number of nodes 𝑛 only, 𝑔𝑝𝑟𝑒𝑣. is the 

approximation of the integrand and Θ0 is a vector of the 

boundary conditions for 𝑉 and 𝑋. The flowchart for the 

second-order matrix-vector approach is shown in Figure 2.  

 

 

Figure 2. Matrix-vector approach of MCPI algorithm for 

second-order differential equations 

 

3.1.4 Proposed solution 

As mentioned in the previous sections, the MCPI 

algorithm is implemented through several functions, some of 

which are iterated several times. In this section, we discuss 

those that were written in parallel and the data that was 

transferred between processors. This exchange of data was 

done using Message Passing Interface (MPI) [13] library. 

Parallel algorithms that are implemented with the MPI 

library can work on both shared memory and distributed 

memory architectures efficiently. Applying MPI to the 

algorithm allows the implementation of data parallelism by 

distributing the matrices’ rows or columns among several 

processors and similar instructions are executed over the 

distributed data. 

Chebyshev polynomials matrix: This function depends 

on the range of nodes distributed over the interval [-1, 1], 

which are stored in the array 𝜏. Chebyshev polynomials of 

order 𝑀 are generated for each node as mentioned in 

Equation (3). Since the polynomials for each node are 

independent of the other rows, we can divide the values of 
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the array 𝜏 among several processors, of which each 

processor would be responsible for generating Chebyshev 

polynomials for the nodes that were sent to it. The data 

distribution of this function is described in Figure 3. 

Force function: The parallelization of this function is the 

most fundamental process in the proposed solution since it 

defines the ODE that is being solved. In our case, we are 

working with a 3D problem, meaning that this function is 

called three times in each iteration. Each entry of the 

resulting column-vector is the result of the sum of 

multiplications of the coefficient’s vector with its 

corresponding Chebyshev polynomials entry. Thus, the 

function is parallelized by sending the vector of the 

coefficient to each process and the rows of the Chebyshev 

polynomials matrix to the process responsible for them. 

 

 

Figure 3. Description of the parallel Chebyshev polynomials 

function 

 

Chebyshev coefficients: The result of this function is a 

column vector containing coefficients for each order of the 

Chebyshev polynomials. The computation of the result of 

this function is similar to the force function; thus, the 

parallelization is implemented similarly.  

The matrix partitioning, data distribution, and 

parallelization of the Chebyshev coefficient’s function and 

the force function are described in Figure 4. Here, each 

processor 𝑝𝑖  is responsible for computations of subsequent 

rows of the matrix and consecutive entries of the vector 

according to the owner-compute rule.  

 

 
Figure 4. Data distribution of the parallel force function and 

coefficient function 

3.1.5 Implementation details 

The parallel algorithm is implemented with the Python 

programming language. We have used the MPI library to 

distribute, synchronize, and gather data between distributed 

processes in our parallel algorithm. We have exploited the 

MPI4Py package which provides bindings of the MPI 

routines for Python, allowing it to exploit multiple 

distributed processors. In the experiments, Python version 

3.0 and OpenMPI version 4.0.0 MPI implementations were 

used. 

4  Experimental results 

The results that are presented in this section are discussed 

and analyzed in terms of two main concepts: speed-up and 

efficiency. Speed-up is the factor of reduction in the 

execution time of the parallel implementation against the 

sequential implementation. According to the values of 

speed-up, it can be categorized into three types; linear: if the 

value of speed-up is equal to the number of processors, sub-

linear: if the value of the speed-up is less than the number of 

processors, and super-linear: if the value of speed-up is 

larger than the number of processors. Speed-up values can 

be obtained using the following equation: 

 

𝑆𝑝𝑒𝑒𝑑-𝑢𝑝 =  
𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚

𝑇𝑖𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚
. (24) 

 

The parallel efficiency measures the effectiveness of the 

algorithm in a parallel environment. In other words, the 

efficiency can be used to measure the computing power 

deficiency in parallel execution. This ratio is obtained by the 

following formula: 

 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  
𝑆𝑝𝑒𝑒𝑑-𝑢𝑝

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
 . (25) 

 

The experiments were conducted on two different 

architectures. The first experiment was conducted on a 

shared memory architecture with Intel i7-5930K 6-core CPU 

and 32GB memory and for the second we used a distributed 

memory HPC cluster named Barbun HPC Supercomputer in 

TUBITAK ULAKBIM High Performance and Grid 

Computing Center (TRUBA), where each computation node 

has the following configuration: 2 sockets, 20 cores per 

socket, Intel Xeon Gold 6148 CPU and 384 GBs of main 

memory. In both experiments, the number of trajectory 

nodes was set to N = 5000 and the tolerance value to 0.0001. 

In operational cases, the number of trajectory nodes decided 

depends on the accuracy of the trajectory intended to be 

found.  

Tables 1 and 2 show the execution time alongside the 

speed-up and the efficiency for the experiment on the shared 

memory machine and the HPC cluster, respectively. As can 

be seen in the tables, the speed-up values increase when the 

number of cores used in the parallel run increases. The 

proposed parallel algorithm gets sub-linear speed-up values 

for all test cases since the obtained speed-up values are less 
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than the number of processors used, and the efficiency is 

always less than one. 

The proposed algorithm achieves the highest speed-up on 

the shared memory machine with 3.94 when it uses 6 cores, 

and the efficiency is 0.66 for this test. The proposed 

algorithm achieves the highest speed-up on the HPC cluster 

with 8.26 speed-up on 80 processors with an efficiency of 

0.10. According to Amdahl’s law [19], this experimental 

finding is expected since the sequential portion of the 

algorithm cannot be parallelized, and the portion of the 

sequential part increases proportionally for large number of 

processes. Furthermore, for large number of processors, the 

communication overhead increases as well. These two 

factors limit the speed-up for the larger number of cores, and 

it causes lower efficiency values in the parallel system.  

 

Table 1. Speed-up and efficiency results for the shared 

memory system 

#Cores 
Execution 
Time (s) 

Speed-up Efficiency 

1 147.50 1.00 1.00 

2 82.52 1.79 0.89 

3 59.37 2.48 0.83 

4 52.06 2.83 0.71 

5 42.05 3.51 0.70 

6 37.48 3.94 0.66 

 

Table 2. Speed-up and efficiency results for the HPC cluster  

#Cores 
Execution 

Time (s) 
Speed-up Efficiency 

1 163.66 1.00 1.00 

4 57.20 2.86 0.72 

8 42.90 3.82 0.48 

16 30.75 5.32 0.33 

32 26.49 6.18 0.19 

48 20.93 7.82 0.16 

64 20.12 8.13 0.13 

80 19.82 8.26 0.10 

 

Figures 5 and 7 depict the obtained speed-up values for 

each number of cores respectively for the shared memory 

and HPC platforms. Additionally, Figures 6 and 8 show the 

respective efficiency values for each number of cores. As 

seen in the figures, when the number of processors increases 

the speed-up increases for both cases. However, the speed-

up starts to stabilize in the HPC cluster with an increasing 

number of processors. In addition to these experiments, we 

have conducted extra experiments with larger problems 

where the number of trajectory nodes was set to N = 10.000 

and N = 20.000 in the HPC cluster by using 80 cores. Since 

we increased the granularity of the problem in these tests, we 

got higher efficiency values of 0.11 and 0.15 respectively for 

N = 10000 and N = 20000 as expected.   

 

Figure 5. Speed-up versus the number of processes for 

shared memory machine 

 
Figure 6. Efficiency versus the number of processes for 

shared-memory machine 

 

Figure 7. Speed-up versus the number of processes for HPC 

cluster 
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Figure 6. Efficiency versus Number of processes for HPC 

cluster 

 

5 Discussion 

The experimental results obtained in this work show a 

considerable improvement in the execution time of the MCPI 

algorithm on two different parallel architectures. These 

findings also confirm the results obtained in previous studies 

[4,5]. Additionally, in [5], the performance of MCPI is 

compared with the Runge-Kutta12 (10) algorithm and it is 

reported that MCPI is 11 times faster than the other 

algorithm. GPU-based parallelism is also proposed in [3] for 

the MCPI algorithm. In [3], for performance analysis, the 

execution time of a sequential MATLAB program is 

compared with a CUDA-based parallel program written in 

C/C++ programming language. When N is set to 511, it is 

reported that the CUDA-based algorithm is 34 times faster 

than the corresponding MATLAB program by using Nvidia 

9400 GT (includes 16 CUDA cores) GPU card. Although it 

seems a high speed-up of 34 is achieved, we note that 

MATLAB programs are known to be much slower than 

similar C programs. For instance, one recent study [20] 

reports that their MATLAB program is approximately 30 

times slower than the corresponding C++ program. 

6 Conclusions 

This study presents the parallelization of the solution of 

Lambert’s problem using the Modified Chebyshev-Picard 

Iteration (MCPI) algorithm. It provides a parallel algorithm 

and its implementation details for astrodynamics methods by 

applying the parallel version of the MCPI solver to the 

famous Lambert’s problem. Since the problem is three-

dimensional, the biggest challenge is reorganizing the data in 

each iteration to avoid the corruption of data in the 

communication step between the parallel processes. We have 

conducted experimental results and presented the 

performance of the algorithm on two different parallel 

architectures. The experimental results on an HPC cluster 

show that the proposed parallel algorithm achieves 8.26 

times faster execution time compared to the sequential 

algorithm. The proposed algorithm also achieves 3.83 times 

faster execution time compared to the sequential algorithm 

on a 6-core shared memory system. As future work, we 

intend to improve the parallel solution time further by 

parallelizing the integrand approximation function. 
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