

Fundamental Journal of Mathematics and Applications

Journal Homepage: www.dergipark.org.tr/en/pub/fujma ISSN: 2645-8845 doi: https://dx.doi.org/10.33401/fujma.1069957

The Finiteness of Smooth Curves of Degree ≤ 11 and Genus ≤ 3 on a General Complete Intersection of a Quadric and a Quartic in \mathbb{P}^5

Edoardo Ballico

Department of Mathematics, University of Trento, via Sommarive 14, 38123 Trento (TN), Italy

Article Info	Abstract
Keywords: Calabi-Yau threefold, Curves, Curves in a Calabi-Yau threefold 2010 AMS: 14H50, 14J32, 14M10 Received: 8 February 2022 Accepted: 7 August 2022 Available online: X XXXXXX XXXX	Let $W \subset \mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper, we prove that W contains only finitely many smooth curves $C \subset \mathbb{P}^5$ such that $d := \deg(C) \le 11$, $g := p_a(C) \le 3$ and $h^1(\mathscr{O}_C(1)) = 0$.

1. Introduction

The aim of this paper is to prove the following result.

Theorem 1.1. Let $W \subset \mathbb{P}^5$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. Then W contains only finitely many smooth curves $C \subset \mathbb{P}^5$ such that $d := \deg(C) \le 11$, $g := p_a(C) \le 3$ and $h^1(\mathcal{O}_C(1)) = 0$.

We recall that *W* is a Calabi-Yau threefold and that there are several papers considering finiteness results for rational curves on certain Calabi-Yau threefolds (see [1]-[6] for the general quintic hypersurface of \mathbb{P}^4 , the topic of the Clemens conjecture, which ask about the finiteness of rational curves of any fixed degree on such a general quintic). This finiteness result is not true for an arbitrary Calabi-Yau threefold [7, Remark 3.24]. For other complete intersection Calabi-Yau threefolds there are results of two types: existence results of good curves on the Calabi-Yau threefold [8, Theorem 2], [9, Theorem 1.2] and finiteness results in very restricted ranges. As in [4] our classical approach to Theorem 1.1 cannot be applied when $\binom{10}{5} \ge 4d + 1 - g$. There are also papers on 3-folds of general type ([10]-[12] and see [13] and references therein for arithmetically Cohen-Macaulay codimension 2 subvarieties).

The upper bound $d \le 11$ comes from the proof at a few critical steps, but in many lemmas d = 12 or even d = 13 may be handled. The approach used in this paper (as the one for quintic 3-folds introduced in [4]) requires that $126 = h^0(\mathcal{O}_{\mathbb{P}^5}(4)) > 4d + 1 - g$ or, working with a fixed smooth quadric hypersurface $Q \subset \mathbb{P}^5$, $\binom{9}{5} - \binom{7}{5} = h^0(\mathcal{O}_Q(4)) > 4d + 1 - g$. The upper bound $g \le 3$ may be weakened in certain steps, but we are sure that new idea are needed to handle pairs (d,g) such that $4d + 1 - g \ge 126$. Theorem 1.1 is a negative result, a non-existence result. We point out that similar statements are very important, higher genera cases of the count of rational curves of fixed degree on Calabi-Yau manifolds, which is related to Mirror Symmetry [6, 14, 15]. For the Calabi-Yau threefold $X \subset \mathbb{P}^4$, X a very general quintic hypersurface, there is an explicit integer n_d for the number of the degree d rational curves contained in X [14, 15]. At the moment nobody is able to prove the finiteness of such rational curves of a given degree d, except for very low d.

Email address and ORCID number: edoardo.ballico@unitn.it, 0000-0002-1432-7413

1.1. A roadmap of the proof

For all integers d > 0 and $g \ge 0$ let $M_{d,g}$ denote the locally closed subscheme of the Hilbert scheme of \mathbb{P}^5 parametrizing all smooth curves $C \subset \mathbb{P}^5$ such that deg(C) = d, $p_a(C) = g$ and $h^1(\mathscr{O}_C(1)) = 0$. The scheme $M_{d,g}$ is an irreducible quasi-projective variety of dimension 6d + 2 - 2g. Let \mathbb{W} be the set of all smooth threefolds $W \subset \mathbb{P}^5$, which are the complete intersection of a hypersurface of degree 2 and a hypersurface of degree 4. For each $W \in \mathbb{W}$ we have $\operatorname{Pic}(W) = \mathbb{Z}\mathscr{O}_W(1)$, its normal bundle N_{W,\mathbb{P}^5} is isomorphic to $\mathscr{O}_W(2) \oplus \mathscr{O}_W(4)$, and the quadric hypersurface, Q, containing W is unique. Standard exact sequences give $h^0(\mathscr{O}_W(2)) \oplus \mathscr{O}_W(4) = 1 + h^0(\mathscr{O}_W(4)) = 20 + h^0(\mathscr{O}_Q(4)) - h^0(\mathscr{O}_Q(2)) = \binom{9}{4} - \binom{7}{2} = 124$. Since $h^1(N_{W,\mathbb{P}^5}) = 0$, the set \mathbb{W} is a smooth variety of dimension 124. The set \mathbb{W} is obviously irreducible. For a general $W \in \mathbb{W}$ the quadric associated to W is smooth. Since all smooth quadric hypersurfaces of \mathbb{P}^5 are projectively equivalent, we may fix a smooth quadric hypersurface Q and look only at the set $M_{d,g}(Q) := \{C \in M_{d,g} \mid C \subset Q\}$. To prove Theorem 1.1 we see which elements of $M_{d,g}(Q)$ are contained in a smooth element of $|\mathscr{O}_Q(4)|$. Let \mathbb{W} denote the set of all smooth elements of $|\mathscr{O}_Q(4)|$. To prove Theorem 1.1 for the pair (d,g) it is sufficient to prove that a general element of $|\mathscr{O}_Q(4)|$ contains only finitely many elements of $M_{d,g}(Q)$. We need to study the schemes $M_{d,g}(Q)$ and this is done in Section 3 (see in particular Remark 3.3).

A key idea in this paper is that the smooth quadric hypersurface $Q \subset \mathbb{P}^5$ is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear subspace of a 4-dimensional vector spaces. By the universal properties of the Grassmannians each map $C \to Q, C \in M_{d,g}$, corresponds to a pair (E, V) with E a rank 2 spanned vector bundle on C and $V \subseteq H^0(E)$ a linear subspace spanning E. Section 3 shows how to use this correspondence between embeddings $C \subset Q$ and rank 2 vector bundles on C. Remark 3.3 first gives some elementary statements on rank 2 vector bundles and relate them to our main idea. Then (again in Remark 3.3) we consider separately each low genus. In part (a) we finish the known case g = 0. Steps (b), (c) and (d) considers curves of genus 1, 2 and 3, respectively. Lemmas in later sections prove key statements for these genera, but Remark 3.3 is the key first step for them. Thus the proof is done as a case by case proof in which for any smooth curve $C \subset \mathbb{P}^5$ we distinguish the genus of C and the dimension (at most 5) of the linear space $\langle C \rangle$ spanned by C. If $\langle C \rangle$ is a plane we also distinguish if $\langle C \rangle$ is contained in Q or not. If (E, V) is the pair giving the embedding $C \hookrightarrow Q$ the integer dim $\langle C \rangle$ is the dimension of the image of $\wedge^2(V)$ into $H^0(\mathscr{O}_C(1))$.

Using this section and later lemmas we prove that all $M_{d,g}(Q)$ are irreducible of dimension 4d + 1 - g, smooth if $g \le 2$, while we describe the singular locus of $M_{d,3}(Q)$ (it contains only hyperelliptic curves). We stress again that to prove these results we use that Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear subspaces of \mathbb{C}^4 . In the case (d,g) = (6,3)we see that all curves $C \subset W$ are hyperelliptic and that they have $h^1(\mathscr{I}_C(2)) = 1$, although $2d + 1 - g < \binom{7}{2}$ (Remark 4.5). In section 2 we study $M_{d,g}(Q)$, $g \le 3$, and check all cases with $d \le 7$ (Lemmas 4.3, 4.4, 4.6, 4.7) and all curves spanning a linear subspace of \mathbb{P}^5 of dimension ≤ 3 . In section 5 we prove that if $d \le 14$ a general element of $M_{d,g}(Q)$ has $h^1(\mathscr{I}_C(4)) = 0$ (Lemma 5.5). Lemma 5.3 do the same for a smooth hyperplane section of Q and its proof may be adapted to a singular hyperplane section of Q. In section 6 we handle the non-degenerate curves $C \in M_{d,g}$ with $h^1(\mathscr{I}_C(4)) > 0$. In the last section we handle the curves $C \in M_{d,g}$ with $h^1(\mathscr{I}_C(4)) > 0$ and spanning a hyperplane of \mathbb{P}^5 .

2. Notation

For any $r \in \{1, 2, 3, 4, 5\}$ set $M_{d,g}(r) := \{C \in M_{d,g} : \dim(\langle C \rangle) = r\}$, where for any set $S \subset \mathbb{P}^5$, $\langle S \rangle$ denote the linear span of S. Let \mathbb{W} be the set of all smooth complete intersection $W \subset \mathbb{P}^5$ of a quadric hypersurface and a quartic hypersurface. If we fix a smooth quadric hypersurface $Q \subset \mathbb{P}^5$, then we call \mathbb{W} the set of all smooth elements of $|\mathcal{O}_Q(4)|$.

3. Uses of vector bundles

The 4-dimensional smooth quadric hypersurface Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear subspaces of \mathbb{C}^4 . Hence for any projective curve X to get a morphism $\phi : X \to Q$ we need to take a rank 2 vector bundle E on X and a linear map $u : \mathbb{C}^4 \to H^0(E)$ such that $u(\mathbb{C}^4)$ spans E. To explain the proof here we assume that u is injective and instead of (E, u) we use (E, V) with $V := u(\mathbb{C}^4)$ (see Remark 3.1 for the case in which u is not injective). Assume that X is smooth. It is easy to check if ϕ is an embedding; indeed if we know that V spans E the map ϕ is an embedding if and only if $\dim(H^0(E(-Z)) \cap V) \leq 1$ for every degree 2 zero-dimensional scheme $Z \subset C$. Assume that ϕ is an embedding and call C its image. Let

$$0 \to \mathscr{F}^{\vee} \to \mathscr{O}_{O}^{\oplus 4} \to \mathscr{E} \to 0$$

denote the tautological exact sequence of Q = G(2,4) with rank $(\mathscr{E}) = \operatorname{rank}(\mathscr{F}) = 2$ and $\det(\mathscr{E}) \cong \det(\mathscr{F}) \cong \mathscr{O}_Q(1)$. Identifying *X* and *C*, i.e. seeing *E* as a vector bundle on *C*, we have $E = \mathscr{E}_{|C}$, while $F^{\vee} := \mathscr{F}_{|C}^{\vee}$ is the kernel of the surjection $V \otimes \mathscr{O}_C \to E$. Note that \mathscr{F} and *F* are spanned.

Remark 3.1. Assume that $u : \mathbb{C}^4 \to H^0(E)$ is not injective, but that $V := \operatorname{Im}(u)$ spans E. Since E has rank 2, then $2 \leq \dim(V) \leq 3$ and $\dim(V) = 2$ if and only if $E \cong \mathscr{O}_X^{\oplus 2}$ and hence the associated map $\phi : X \to Q$ is constant. If $\dim(V) = 3$, then $\operatorname{Im}(\phi)$ is contained in a plane with $T\mathbb{P}^2(-1)$ as universal rank 2 quotient bundle and $\mathscr{O}_{\mathbb{P}^2}(-1)$ as universal rank 1 subbundle. Hence $\phi(X) \in M_{d,g}(2)$. This case is settled in Lemma 4.4.

Remark 3.2. Assume $E \cong \mathcal{O}_C \oplus L$ for some line bundle L. In this case $L \cong \mathcal{O}_C(1)$. Write $V = \mathbb{C} \oplus V_1$ with $\mathbb{C} = H^0(\mathcal{O}_C)$. Hence C is contained in a certain Schubert cell of Q, i.e., a 2-dimensional linear subspace contained in Q. Hence $C \in M_{d,g}(2)$. This case is solved in Lemma 4.4. If $F \cong \mathcal{O}_C \oplus \mathcal{O}_C(1)$, then C is contained in the other family of planes contained in Q and so $C \in M_{d,g}(2)$.

In the next remark we point out some irreducibility and smoothness results for $M_{d,g}(Q)$.

Remark 3.3. Since $TQ \cong \mathscr{E} \otimes \mathscr{F}$, we have $TQ_{|C} \cong E \otimes F$. In many cases with low g we have $h^1(E \otimes F) = 0$. In this case we have $h^1(N_{C,Q}) = 0$ and hence the Hilbert scheme $\operatorname{Hilb}(Q)$ of Q at [C] is smooth of dimension 4d + 1 - g, where $d := \deg(C)$ and $g := p_a(C)$.

Claim 1: If either $h^{1}(E) = 0$ or $h^{1}(F) = 0$, then $h^{1}(E \otimes F) = 0$.

Proof of Claim 1: Assume for instance $h^1(E) = 0$. Since F is spanned, the evaluation map $e_F : H^0(F) \otimes \mathcal{O}_C \to F$ is surjective. Set $K := \ker(e_F)$. Since dimC = 1, $h^2(K \otimes E) = 0$. Hence the exact sequence

$$0 \to K \otimes E \to H^0(F) \otimes E \to E \otimes F \to 0$$

proves Claim 1.

Claim 2: In any genus $g \ge 2$ the set of all $C \in M_{d,g}(Q)$ with $h^1(E) = 0$ is an open, smooth and irreducible subset of $M_{d,g}(Q)$ with dimension 4d + 1 - g.

Proof of Claim 2: The openness part follows from the semicontinuity of cohomology. Since C is a curve and F is spanned, the vanishing of $h^1(E)$ implies the vanishing of $h^1(E \otimes F)$. Hence this part of $M_{d,g}(Q)$ is smooth and everywhere of dimension 4d + 1 - g. Since $g \ge 2$, any vector bundle on a smooth curve C is a flat limit of a family of stable bundles [16, Proposition 2.6]. If $h^1(E) = 0$, then E is a flat limit of a family of stable bundles with vanishing cohomology. The claim follows from the irreducibility of \mathcal{M}_g and the irreducibility of the set of all stable vector bundles with rank two and degree d on a fixed smooth curve of genus $g \ge 2$. This set has dimension 4g - 3.

(a) If g = 0, then $h^1(E \otimes F) = 0$, because $E \otimes F$ is spanned and hence a direct sum of line bundles of degree ≥ 0 . The scheme $M_{d,0}(Q)$ is irreducible, because both E and F are specializations with constant cohomology of the rigid bundle with rank 2 and degree d (the direct sum of the line bundle of degree $\lceil d/2 \rceil$ and the one of degree $\lfloor d/2 \rfloor$).

(b) Assume g = 1.

Claim 3: We claim that $h^1(E \otimes F) = 0$, unless $E \cong \mathscr{O}_C \oplus \mathscr{O}_C(1)$ and $F \cong \mathscr{O}_C \oplus \mathscr{O}_C(1)$.

Proof of Claim 3: Since $E \otimes F \cong F \otimes E$, it is sufficient to prove that $E \cong \mathscr{O}_C \oplus \mathscr{O}_C(1)$. Since E is spanned, it is a direct sum of indecomposable and spanned vector bundles of degree ≥ 0 and if one of them has degree zero, it is a factor \mathscr{O}_C of E. By Atiyah's classifications of vector bundles on elliptic curves ([17, Part II]) every indecomposable vector bundle G with $\deg(G) > 0$ satisfies $h^1(G) = 0$, concluding the proof of Claim 3.

This part of $M_{d,1}(Q)$ is irreducible for the following reasons. By Atiyah's classification of vector bundles on an elliptic curve ([17, Part II]), E is a specialization with constant cohomology of semistable bundles. Therefore to check that $M_{d,1}(Q)$ is irreducible, it is sufficient to test the cases with E semistable. If E is semistable, then $h^1(E \otimes F) = 0$ for any spanned bundle F by Claim 3. If d is odd, then we use that any two stable bundle with same rank and degree only differ by a twist with an element of Pic⁰(C). If d is even, then either $E \cong R \oplus L$ with $R, L \in Pic^{(d/2)}(C)$ and $R \otimes L \cong \mathcal{O}_C(1)$ or E is a non-trivial extension of R by itself and $R^{\otimes 2} \cong \mathcal{O}_C(1)$. The latter case is a specialization of the former one (at least varying C), because $M_{d,1}(Q)$ is smooth and equidimensional and the indecomposable bundles have a smaller dimension.

(c) Assume g = 2. By Remark 3.2 and Lemma 4.4 we may assume $E \neq \mathscr{O}_C \oplus \mathscr{O}_C(1)$ and $F \neq \mathscr{O}_C \oplus \mathscr{O}_C(1)$.

Now assume g = 2 and $h^1(E) > 0$. By duality we get a non-zero map $v : E \to \omega_C$. Since E is spanned, $\operatorname{Im}(v)$ is spanned. Hence either v is surjective or $\operatorname{Im}(v) \cong \mathcal{O}_C$. The latter case is not possible, because (since E is spanned), it would give that E has \mathcal{O}_C as a factor. Thus v is surjective. Set $A := \ker(v)$. We have $A \cong \mathcal{O}_C(1) \otimes \omega_C^{\vee}$. Since $\mathcal{O}_C(1)$ is very ample, we have d > 4. Hence $h^1(A) = 0$. If $d \ge 6$, A is spanned. If $d \ge 7$, then $h^1(A \otimes \omega_C^{\vee}) = 0$ and hence $E \cong A \oplus \omega_C$. Assume also $h^1(F) > 0$. We get that F is an extension of ω_C by $\mathcal{O}_C(1) \otimes \omega_C$. Since $h^1(\omega_C^{\otimes 2}) = 0$, we get $h^1(E \otimes F) = 0$ and so $h^1(N_{C,Q}) = 0$. Hence $M_{d,2}(Q)$ is smooth and of pure dimension 4d + 1 - g. To check the irreducibility of $M_{d,2}$, it is sufficient to prove that the bundles with $h^1(E) > 0$ do not fill a connected component of $M_{d,2}$. If $d \le 6$, see Lemma 4.6 and Lemma 4.8. If $d \ge 7$, then $E \cong A \oplus \omega_C$ and so on a fixed curve C this set is isomorphic to $\operatorname{Pic}^{d-2}(C)$; we write g for the genus, because the same argument is needed when g = 3. Fix $C \in \mathcal{M}_g$ and take $E \cong A \oplus \omega_C$ with $A \in \operatorname{Pic}^2(C)$. This family of bundles is irreducible and (since $M_{d,g}(Q)$ is smooth along all these bundles) we only need to exclude that $M_{d,g}(Q)$ has two connected components, one formed by bundles E_1 with $h^1(E_1) = 0$ and the other ones with bundles with $h^1(E) = 1$. We have $h^1(E) = 1$ and so $h^0(E) = d + 3 - 2g$. If $h^1(E_1) = 0$, then $h^0(E_1) = d + 2 - 2g$. We have $\dim(G(4, d + 1 + 2(1 - g))) = \dim(G(4, d + 2(1 - g)) + 4$. Thus each bundle E with $h^1(E) > 0$ has the property that $H^0(E)$ has a family of 4-dimensional linear subspaces with higher dimension. For $g \ge 3$ it is sufficient to note that for a fixed C the possible E depends on $A \in \operatorname{Pic}^{d-g}(C)$, the set of all rank 2 stable bundles on C with degree d have dimension 4g - 3 and g + 4 < 4g - 3. When g = 2 we also need to factorize the huge a

(d) Assume g = 3. By Remark 3.2 and Lemma 4.4 we may assume $E \neq \mathcal{O}_C \oplus \mathcal{O}_C(1)$ and $F \neq \mathcal{O}_C \oplus \mathcal{O}_C(1)$. We also assume $d \ge 8$, leaving the cases $d \le 7$ to Remark 4.7. All cases with $h^1(E) = 0$ are done as in Claim 2. Assume $h^1(E) > 0$ and $h^1(F) > 0$. As in step (b) we get non-zero maps $v_1 : E \to \omega_C$ and $v_2 : F \to \omega_C$ with $\operatorname{Im}(v_i)$ a non-trivial and spanned line bundle. Hence either v_i is surjective or C is not hyperelliptic and $\operatorname{Im}(v_i) = \omega_C(-p)$ for some $p \in C$ or C is hyperelliptic

and $\text{Im}(v_i)$ is the g_2^1 of C. In all cases ker (v_i) is spanned and non-special, because we assumed $d \ge 9$. The case in which $E \cong A \oplus \omega_C$ is handled as in step (c). If either C is not hyperelliptic or at least one among Im(v₁) and Im(v₂) is not the g_2^1 on *C*, we have $h^1(E \otimes F) = 0$ and so $h^1(N_{C,O}) = 0$. So $M_{d,3}(Q)$ is smooth and of dimension 4d + 1 - g = 4d - 2 at [C]. Hence $h^1(E \otimes F) > 0$ if and only if C is hyperelliptic and $\text{Im}(v_1)$ and $\text{Im}(v_2)$ are the g_2^1 , R, on C. In this case we have $E \cong A \oplus R$ and $F \cong B \oplus R$ with deg(A) = deg(B) = d - 2 and so $h^1(E \times F) = 1$. Therefore every irreducible component of $M_{d,3}(Q)$ containing [C] has dimension at least 4d + 1 - g and at most 4d + 2 - g. To check that these points are singular points of $M_{d,3}(Q)$ and hence that $M_{d,3}(Q)$ has pure dimension 4d-2, it is sufficient to prove that these bundles do not fill a subset of $M_{d,3}(Q)$ of dimension $\geq 4d-2$; we will prove that these bundles fill in a family of dimension $\leq 4d-3$, because this is needed to prove the irreducibility of $M_{d,3}(Q)$. The set of these bundles only depends on the choice of a hyperelliptic curve C, the choice of $A \in \text{Pic}^{d-2}(C)$ and the choice of a 4-dimensional linear subspace of $H^0(A \oplus R)$. We have $h^1(A \oplus R) = h^1(R) = 1$ and so $h^0(A \oplus R) = d + 2 - 2g$. Since there ∞^5 hyperelliptic curves and $\text{Pic}^{d-2}(C)$ has dimension 3, it is sufficient to use that 5+4+3 < 6+4g-3. Then the proof in step (c) handles all bundles of the form $A \oplus \omega_C$. It remains to handle the bundles E with *C* not hyperelliptic and $\operatorname{Im}(v_1) \cong \omega_{\mathbb{C}}(-p)$ for some $p \in \mathbb{C}$. Set $A := \ker(v_1) \in \operatorname{Pic}^{d-3}(\mathbb{C})$. Note that $h^1(\mathbb{E}) = 1$ and $h^1(\mathbb{F}) = 0$. Hence these bundles are in the smooth part of $M_{d,3}(Q)$. We have $h^0(E) = h^0(E_1) + 1$ when $h^1(E_1)$ and so the Grassamannian of all 4-dimensional linear subspaces has dimension 4 + z, where z is the dimension of all 4-dimensional linear subspaces of $H^0(E_1)$. The bundles E_1 depends on 4g-3=9 parameters. The bundles E depends on A (g=3) parameters, on $p \in C$ (one parameter) and an extension classes of $\omega_{C}(-p)$ by A. For the trivial extensions we use that 4 + g + 1 < 4g - 3. Two non-trivial, but proportional extensions, give the same bundle, up to isomorphisms. Hence the bundles E with $h^1(A \otimes \omega_C^{\vee}(p)) \leq 1$, do not fill a connected component of $M_{d,3}(Q)$. We have $\deg(A \otimes \omega_C^{\vee}) = d - 6$. Since C is not hyperelliptic, we have $h^1(A \otimes \omega_C^{\vee}(p)) \leq 1$ for all $d \ge 8$. See Remark 4.7 for the case $d \le 7$.

4. Preliminary lemmas

The following lemma is proved as in [6, page 153].

Lemma 4.1. Fix (d,g) such that $2d \le 19 + g$ and $h^1(\mathscr{I}_C(2)) = 0$ for all $C \in M_{d,g}$. Then a general $W \in \mathbb{W}$ contains finitely many elements of $M_{d,g}$ and the incidence variety $I_{d,g} \subset M_{d,g} \times \mathbb{W}$ is irreducible.

Remark 4.2. Unfortunately in several interesting cases many curves satisfies $h^1(\mathscr{I}_C(2)) > 0$ (e.g. if 2d + 1 - g > 15 this is the case for all curves spanning a hyperplane of \mathbb{P}^5). Working with $M_{d,g}(Q)$ we only need to check if $h^1(\mathscr{I}_C(4)) = 0$. This is true for all $C \in M_{d,g}(Q)$ for some more pairs (d,g). We divide $M_{d,g}(Q)$ in the one with $h^1(\mathscr{I}_C(4)) = 0$ and in the ones with $h^1(\mathscr{I}_C(4)) > 0$. We need to prove that for C in a non-empty open subset of $M_{d,g}(Q)$ we have $h^1(\mathscr{I}_C(4)) = 0$ (Lemma 5.5). The last two sections of this paper tackle the case $h^1(\mathscr{I}_C(4)) > 0$.

Remark 4.3. $M_{d,g}(1) \neq \emptyset$ if and only if d = 1 and g = 0. By Lemma 4.1 a general W has only finitely many lines.

Lemma 4.4. $M_{d,g}(2) \neq \emptyset$ if and only if either d = 2 and g = 0 or d = 3 and g = 1. In the cases $(d,g) \in \{(2,0), (3,1)\}$ a general W contains finitely many elements of $M_{d,g}(2)$.

Proof. Since the curves in $M_{d,g}$ are non-special, $M_{d,g}(2) \neq \emptyset$ if and only if either d = 2 and g = 0 or d = 3 and g = 1. The second assertion follows from Lemma 4.1.

Remark 4.5. Set $\Gamma := \{C \in M_{6,3} : C \text{ is hyperelliptic}\}$. Γ is an irreducible divisor of the 32-dimensional variety $M_{6,3}$. Fix a smooth quadric hypersurface $Q \subset \mathbb{P}^5$ and set $\Gamma' := \Gamma \cap M_{6,3}(Q)$. Fix $C \in M_{6,3}(Q)$. We have dim $(\langle C \rangle) = 3$. Since Q is smooth, $\langle C \rangle \nsubseteq Q$ and so $Q' := \langle C \rangle$ is an irreducible quadric surface containing C. Since all even degree smooth curves of a quadric cone of \mathbb{P}^3 are complete intersection [18, V Ex. 2.9], Q' is a smooth quadric. Since (d,g) = (6,3), then $C \in |\mathcal{O}_{Q'}(2,4)| \cup |\mathcal{O}_{Q'}(4,2)|$ and so C is hyperelliptic. Hence no $C \in M_{6,3}(Q) \setminus \Gamma'$ is contained in some $W \in \mathbb{W}$. Conversely, any hyperelliptic curve X may be embedded in $Q' = \mathbb{P}^1 \times \mathbb{P}^1$ as an element of $|\mathcal{O}_{Q'}(2,4)|$ using the g_2^1 , R, of X to get one morphism $X \to \mathbb{P}^1$ and a general $A \in \operatorname{Pic}^4(X)$ for the other map $X \to \mathbb{P}^1$ so that $A \otimes R$ is very ample). Hence for a fixed X the set of all such embeddings is parametrized by an irreducible variety of dimension 3. Fix $C \in \Gamma'$, say with $C \in |\mathcal{O}_{Q'}(2,4)|$. We have $N_{C,Q} \cong \mathcal{O}_C(1)^{\oplus 2} \oplus \mathcal{O}_C(2,4)$ and hence $h^1(N_{C,Q}) = 0$. So $M_{6,3}(Q)$ is smooth at [C] and of dimension 4d + 1 - g = 22. Since $|\mathcal{O}_{Q'}(2,4)|$ is irreducible and as $\langle C \rangle$ we may take any $\mathbb{P}^3 \subset \mathbb{P}^5$ transversal to Q, $M_{6,3}(Q)$ is irreducible. Call $\mathscr{I} \subset \Gamma' \times \mathbb{W}$ the incidence correspondence and let $\pi_1 : \mathscr{I} \to \Gamma'$ and $\pi_2 : \mathscr{I} \to \mathbb{W}$ denote the projections. We have $h^1(Q, \mathscr{I}_{C,Q}(4)) = 0$, because $h^1(Q', \mathscr{I}_{C,Q'}(4)) = h^1(Q', \mathcal{O}_{Q'}(2,0)) = 0$. Lemma 4.1 concludes the proof of the theorem for (d,g) = (6,3). In this case the incidence correspondence is irreducible, because the set of all hyperelliptic curves is irreducible and all these curves C have the same $h^0(\mathscr{I}_C(2))$ and $h^1(\mathscr{I}_C(4)) = 0$ (and so the incidence correspondence for $M_{6,3}(Q)$ is irreducible.

Lemma 4.6. We have $M_{d,g}(3) \neq \emptyset$ if and only if $d \ge g+3$. If $g \le 3$, then a general $W \in \mathbb{W}$ contains some $C \in M_{d,g}(3)$ only if $(d,g) \in \{(3,0), (4,1), (5,2), (6,3)\}$ and in each of these cases W contains only finitely many curves C.

Proof. Fix a smooth hyperquadric $Q, C \in M_{d,g}(3)$ and $W \in \mathbb{W}$ containing C. Set $U := \langle C \rangle$. Since Q is smooth, $U \nsubseteq Q$ and hence $Q' := Q \cap U$ is a quadric surface containing C. Since the irreducible curve C spans U and $C \subset Q', Q'$ is irreducible. If Q' is a quadric cone, then C is arithmetically normal [18, V Ex. 2.9] and hence $h^1(\mathscr{I}_C(t)) = 0$ for t = 2, 4, so that we may apply Lemma 4.1 to these curves) and we find pairs $(d,g) \in \{(3,0), (4,1), (5,2)\}$. If Q', up to a change of the ruling of Q' we get all $C \in |\mathscr{O}_{Q'}(2,g+1)|$ and so d = g+3. If $g \leq 4$ we have $h^1(\mathscr{I}_C(4)) = h^1(Q', \mathscr{I}_{C,Q'}(4)) = h^1(Q', \mathscr{O}_{Q'}(2,4-g-1)) = 0$. \Box

Lemma 4.7. Theorem 1.1 is true for g = 3 and $d \le 7$.

Proof. Take g = 3 and $d \le 7$. Since $h^1(\mathscr{O}_C(1)) = 0$, we have $6 \le d \le 7$. Remark 4.5 and Lemma 4.6 solve the case d = 6 and the case d = 7 in which $C \in M_{7,3}(3)$. Hence we may assume d = 7 and dim $(\langle C \rangle) = 4$. In this case *C* is linearly normal in its linear span and so $h^1(\mathscr{I}_C(t)) = 0$ for all $t \in \mathbb{N}$. Apply Lemma 4.1.

Lemma 4.8. Fix $C \in M_{d,g}(Q)(r)$ with $d \le 7$, $g \le 2$ and r = 4, 5. Then $h^1(N_{C,Q}) = h^1(\mathscr{I}_C(4)) = 0$. Moreover, these cases only contribute finitely many smooth curves to a general $W \in \mathbb{W}$.

Proof. Since $g \le 2$, we have $h^1(N_{C,Q}) = 0$. Since d < 4 + r, we have $h^1(\mathscr{I}_C(4)) = 0$ [19, Theorem at page 492] and hence these cases contributes only finitely smooth curves to a general $W \in \mathbb{W}$.

Lemma 4.9. A general $W \in \mathbb{W}$ contains no singular conic (reducible or a double line).

Proof. Take any conic $D \subset W$. Since $h^1(\mathscr{I}_{D,\mathbb{P}^5}(4)) = 0$, we have $h^1(Q, \mathscr{I}_{D,Q}(4)) = 0$ and hence $h^0(Q, \mathscr{I}_{D,Q}(4)) = h^0(D, \mathscr{I}_{D,Q}(4))$. Either D is contained in a plane contained in Q or it is the complete intersection of Q and a plane. In both cases we have $h^1(N_{D,Q}) = 0$. Thus a dimensional count gives that a general $W \in W$ contains only finitely many conics and that all these conics are smooth.

We recall the following well-known consequence of the bilinear lemma (it is a key tool in [2]).

Lemma 4.10. Fix integers $t \ge 2$, $r \ge 3$ and an integral and non-degenerate curve $T \subset \mathbb{P}^r$ such that $h^1(\mathscr{I}_T(t)) > 0$. Fix a linear subspace $V \subseteq H^0(\mathscr{O}_{\mathbb{P}^r}(1))$. Assume that $h^1(M, \mathscr{I}_{M\cap T,M}(t)) = 0$ for every hyperplane $M \in |V|$. Then $h^1(\mathscr{I}_T(t-1)) \ge h^1(\mathscr{I}_T(t)) + \dim(V) - 1$.

Proof. For any hyperplane $M \subset \mathbb{P}^r$ we have an exact sequence

$$0 \to \mathscr{I}_T(t-1) \to \mathscr{I}_T(t) \to \mathscr{I}_{T \cap M,M}(t) \to 0$$

Now assume that *V* contains an equation of *M*. Since $h^1(M, \mathscr{I}_{T,M}(t)) = 0$, the map $H^1(\mathscr{I}_T(t-1)) \to H^1(\mathscr{I}_T(t))$ is surjective and hence its dual $e_M : H^1(\mathscr{I}_T(t))^{\vee} \to H^1(\mathscr{I}_T(t-1))^{\vee}$ is injective. Taking the equations of all hyperplanes we get a bilinear map map $u : H^1(\mathscr{I}_T(t))^{\vee} \times V \to H^1(\mathscr{I}_T(t-1))^{\vee}$, which is injective with respect to the second variables, i.e. for every non-zero linear form ℓ the map $u_{|H^1(\mathscr{I}_T(t))^{\vee} \times \{\ell\}}$ is injective (it is e_M with $M := \{\ell = 0\}$). Hence if $(a, \ell) \in H^1(\mathscr{I}_T(t))^{\vee} \times V$ with $a \neq 0$ and $\ell \neq 0$, then $u(a, \ell) = e_M(a) \neq 0$. Therefore the bilinear map u is non-degenerate in each variable. Hence $h^1(\mathscr{I}_T(t-1)) \ge h^1(\mathscr{I}_T(t)) + \dim(V) - 1$ by the bilinear lemma. \Box

5. Good postulation in degree 4

In this section we prove for certain d, g the existence of a non-degenerate $C \in M_{d,g}(Q)$ with $h^1(\mathscr{I}_C(4)) = 0$.

Lemma 5.1. Fix $C \in M_{d,g}(Q)$ such that $h^1(N_{C,Q}) = 0$. Take an integer t > 0 and a smooth rational curve $T \subset Q$ such that $\deg(C \cap T) = 1$ and $\deg(T) = t$. Then $h^1(N_{C\cup T,Q}) = 0$ and $C \cup T$ is a flat limit of elements of $M_{d+t,g}(Q)$.

Proof. Set $\{p\} := C \cap T$. By assumption $h^1(\mathscr{O}_C(1)) = 0$. Since Q is homogeneous, its tangent bundle is spanned. Hence $N_{T,Q}$ is a direct sum of line bundles of degree ≥ 0 . Therefore $h^1(N_{T,Q}(-p)) = 0$. A Mayer-Vietoris exact sequence gives $h^1(\mathscr{O}_{C\cup T}(1)) = 0$. Hence if $C \cup T$ is smoothable inside Q, then it is a flat limit of a family of elements of $M_{d+t,g}(Q)$. Since $h^1(N_{T,Q}(-p)) = 0$, as in [20, Theorem 4.1] we get that $C \cup T$ is smoothable inside Q and $h^1(N_{C\cup T,Q}) = 0$.

Lemma 5.2. For all $g \in \{0, 1, 2, 3\}$ there is a non-degenerate $C \in M_{g+5,g}(Q)$ and any such C is projectively normal.

Proof. Let $X \subset \mathbb{P}^5$ be a linearly normal smooth curve of genus $g \leq 3$ and degree g + 5. Since $g + 5 \geq 2g + 1$, X is projectively normal [21]. It is sufficient to prove that some X is contained in a smooth quadric hypersurface. Since $g \leq 3$, we start with a smooth quadric surface $Q_1 \subset Q$, a smooth curve $A \in |\mathscr{I}_{Q_1}(2,g+1)|$ and then we apply the case t = 2 of Lemma 5.1. \Box

Lemma 5.3. Let $Q' \subset \mathbb{P}^4$ be a smooth quadric hypersurface. Fix integers d, g such that $0 \le g \le 3$ and $d \ge g+4$. Let $M_{d,g}(Q')$ be the set of all non-special smooth curves $C \subset Q'$ of genus g and degree d.

(a) There is $C \in M_{g+4,g}(Q')$ which is projectively normal.

(b) If either $g + 4 \le d \le g + 6$ or $g \le 2$ and d = g + 7 or g = 0 and d = 8, then there is $C \in M_{d,g}(Q')$ such that $h^1(Q', \mathscr{I}_{C,Q'}(3)) = 0$.

(c) If either $g + 4 \le d \le g + 9$, or $g \le 2$ and d = g + 10 or g = 0 and d = 11, 12, then there is $C \in M_{d,g}(Q')$ such that $h^1(Q', \mathscr{I}_{C,Q'}(4)) = 0$.

Proof. The proof of part (a) is similar to the one Lemma 5.2. The same proof also gives the case d = g + 4 of part (b).

(i) Let $A \subset Q'$ be a smooth projectively normal curve of genus g and degree g + 4. Let $Q_1 \subset Q'$ be a general hyperplane section. Q_1 is a smooth quadric surface and $S := A \cap Q_1$ is a subset of Q_1 with degree g + 4, in uniform position and spanning the 3-dimensional linear space spanned by Q_1 . Fix $p \in S$ and set $S' := S \setminus \{p\}$. Let B be a general element of $|\mathscr{I}_{p,Q_1}(1,2)|$. Lemma 5.1 shows that $A \cup B$ is smoothable inside Q'. Hence to prove the case d = g + 7, $g \leq 2$, of part (b) it is sufficient to prove that $h^1(Q', \mathscr{I}_{A \cup B,Q'}(3)) = 0$. We have $\operatorname{Res}_{Q_1}(A \cup B) = A$. Since $h^1(Q', \mathscr{I}_{A,Q'}(2)) = 0$, the case t = 3 of the residual sequence

$$0 \to \mathscr{I}_{A,Q'}(t-1) \to \mathscr{I}_{A \cup B,Q'}(t) \to \mathscr{I}_{(A \cup B) \cap Q_1,Q_1}(t) \to 0$$

shows that it is sufficient to prove that $h^1(Q_1, \mathscr{I}_{(A\cup B)\cap Q_1,Q_1}(3)) = 0$. We have $Q_1 \cap (A \cup B) = S' \cup B$ and hence it is sufficient to prove that $h^1(Q_1, \mathscr{I}_{S',Q'}(2,1)) = 0$. S' is a set of $g + 3 \le 6$ points of Q_1 . Assume $e := h^1(Q_1, \mathscr{I}_{S',Q_1}(2,1)) > 0$. Hence $h^0(Q, \mathscr{I}_{S',Q_1}(2,1)) = e + 3 - g$. Since S is in uniform position, we get $h^0(Q_1, \mathscr{I}_{S,Q_1}(2,1)) = e + g - 3$. Fix a general $D \in |\mathscr{I}_{S,Q_1}(2,1)|$. First assume that D is irreducible. For any set $E \subset D$ with #(E) = 5, we have $h^0(Q_1, \mathscr{I}_{D,Q_1}(2,1)) = h^0(Q_1, \mathscr{I}_{E,Q_1}(2,1))$ and hence $h^1(Q_1, \mathscr{I}_{E,Q_1}(2,1)) = 0$. If $g \le 2$ we may take $S' \subseteq E$. Now assume that D is reducible. Since S is in uniform position, we may assume that no 2 of the points of S are contained in a line of Q_1 . Hence we get the existence of a smooth conic $D_1 \subset Q_1$ containing at least g + 4 points of S'. Since S is in uniform position, we get $S \subset D_1$. If g = 3 we use instead of B a curve $B' \in |\mathscr{I}_{P,Q_1}(1,1)|$ (in this case the equality $h^1(Q_1, \mathscr{I}_{S',Q_1}(2,2)) = 0$ may be proved using an elliptic curve $D' \in |\mathscr{O}_{Q_1}(2,2)|$, because $h^1(D, \mathscr{I}_{S',D_1}(2,2)) = 0$ for any set $E \subset D$ with $\#(E) \le 7$. Now assume g = 0 and d = 8. Instead of B we take a general $B_1 \in |\mathscr{I}_{P,Q_1}(1,3)|$. It is sufficient to prove that $h^1(Q, \mathscr{I}_{S',Q_1}(2,0)) = 0$. We have $\#(S') = 3 = h^0(Q_1, \mathscr{O}_{Q_1}(0,2))$, and it is sufficient to use again by the uniform position that no two points of S are on a line of Q_1 .

(ii) Now we prove part (c). Since in part (b) we get non-special curves, the same curves *C* have $h^1(Q', \mathscr{I}_{C,Q'}(4)) = 0$ by the Castelnuovo-Mumford's lemma. Hence we may assume that either $d \ge g + 8$ and $g \le 2$, or $d \ge g + 7$ and g = 3 or g = 0 and $d \ge 9$. Set t := 8 if g = 0, t := g + 7 if g = 1, 2 and t := 9 if g = 3. By part (b) there is $A \subset M_{t,g}(Q')$ such that $h^1(Q', \mathscr{I}_{A,Q'}(3)) = 0$. Take a general hyperplane section Q_1 of Q' and set $S := Q_1 \cap S$. S' is a subset of Q_1 with cardinality t, spanning a \mathbb{P}^3 and in uniform position. Fix $p \in S$ and set $S' := S \setminus \{p\}$. Fix a general $B \in |\mathscr{I}_{p,Q_1}(1,2)|$. As in step (i) it is sufficient to prove that $h^1(Q_1, \mathscr{I}_{S',Q}(3,2)) = 0$. In all cases we have $t - 1 \le 8$. The uniform position and the non-degeneracy of S' imply that no line of Q_1 contains at least 2 points of S' and no conic of Q_1 contains at least 4 points of S'.

Now take g = 0. In this case A may be dismantled into a union of lines. Fix a general line $L \subset Q'$. For each $q \in L$. The union of all lines of Q' trough q is the 2-dimensional quadric cone $T_q(Q') \cap Q'$. For a general $q \in L$ the curve $T_q(Q') \cap Q_1$ is a smooth element D_q of $|\mathscr{O}_{Q_1}(1,1)|$ and a general line in Q' passing through q meets Q_1 at a general point of Q_1 . Hence we get $h^0(Q_1, \mathscr{I}_{S'}(3,1)) = 0$ if $\#S' \leq 8$, i.e. if we start with a general $A \in_{d,0} (Q')$ with $d \leq 9$. Thus we get the case g = 0 of part (c).

Lemma 5.4. Let $Q' \subset \mathbb{P}^4$ be a smooth quadric hypersurface. Fix a set $S \subset Q'$ with $\#S \leq 10$ and S is in linearly general position. Take $p \in S$ and set $S' := S \setminus \{p\}$.

(a) If $1 \le d \le 4$, then there is $C \in M_{d,0}(Q')$ such that $C \cap S = \{p\}$ and $h^1(Q', \mathscr{I}_{S' \cup C,Q'}(3)) = 0$.

(b) If $1 \le d \le 9$, then there is $C \in M_{d,0}(Q')$ such that $C \cap S = \{p\}$ and $h^1(Q', \mathscr{I}_{S' \cup C,Q'}(4)) = 0$.

Proof. Let Q_1 be a general hyperplane section of Q' containing p. Q_1 is smooth and $Q_1 \cap S = \{p\}$. We have $h^1(Q', \mathscr{I}_{S',Q'}(2)) = 0$, because $\#S' \leq 9$ [22, Theorem 3.2]. To prove part (a) it is sufficient to take any smooth $C \in |\mathscr{I}_{p,Q_1}(1,3)|$. By Castelnuovo-Mumford's lemma to prove part (b) we may assume d > 4. Fix a general $A \in M_{4,0}(Q')$ containing p. Part (a) gives $h^1(Q', \mathscr{I}_{A \cup S',Q'}(3)) = 0$. Fix a general hyperplane section $Q_2 \subset Q'$. We have $Q_2 \cap S = \emptyset$ and the set $E := Q_2 \cap A$ is in linearly general position in the \mathbb{P}^3 spanned by Q_2 . Fix $q \in E$ and set $E' := E \setminus \{q\}$. Fix a general $B \in |\mathscr{I}_{q,Q_2}(1,4)|$. By Lemma 5.1 it is sufficient to prove that $h^1(\mathscr{I}_{S' \cup A \cup B,Q'}(4)) = 0$. Since $\operatorname{Res}_{Q_1}(S' \cup A \cup B) = S' \cup A$ and $h^1(\mathscr{I}_{A \cup S',Q'}(3)) = 0$, it is sufficient to prove that $h^1(Q_1, \mathscr{I}_{E' \cup B,Q_1}(4)) = 0$, i.e. $h^1(Q', \mathscr{I}_{E'}(3,0)) = 0$. This is true, because E' is formed by 3 points in uniform position.

Lemma 5.5. (a) For all integers d, g such that $0 \le g \le 3$ and $g+5 \le d \le g+9$ there is a non-degenerate $C \in M_{d,g}(Q)$ such that $h^1(\mathscr{I}_C(3)) = 0$.

(b) For all integers d,g such that either $0 \le g \le 3$ and $g+5 \le d \le 14$ there is a non-degenerate $C \in M_{d,g}(Q)$ such that $h^1(\mathscr{I}_C(4)) = 0$.

Proof. Fix a projectively normal $A \in M_{g+5,5}(Q)$. Fix a general hyperplane section $Q' \subset Q$. Since $h^1(Q, \mathscr{I}_{A,Q}(4)) = 0$, we may assume d > g+5. The set $S := A \cap Q_1$ is in linearly general position. Fix $p \in S$ and set $S' := S \setminus \{p\}$. Apply part (b) of Lemma 5.4 to get $T \in M_{d-g-5,0}(Q')$ such that $h^1(Q', \mathscr{I}_{S' \cup T}(4)) = 0$. Since $h^1(Q, \mathscr{I}_{A \cup T}(3)) = 0$ and $(A \cup T) \cap Q' = S' \cup T$, the residual sequence of Q' in Q gives $h^1(Q, \mathscr{I}_{A \cup B}(4)) = 0$. Use Lemma 5.1 and the semicontinuity theorem for cohomology to prove part (b). For part (a) we take T of degree ≤ 4 and use that $h^1(Q, \mathscr{I}_{A,Q}(2)) = 0$.

Remark 5.6. A general element of $M_{d,0}(Q')$ (resp. $M_{d,0}(Q)$) is a deformation of a tree contained in Q' (resp. Q). Using this observation we may improve parts (a) and (b) of Lemma 5.5, but for a range of integers d out of reach with our tools for the Clemen's conjecture.

6. Non-degenerate curves

In this section we consider non-degenerate curves *C* of $M_{d,g}$ or of $M_{d,g}(Q)$. By [19, Theorem at page 492] we have $h^1(\mathscr{I}_C(4)) = 0$ if either $d \le 8$ or d = 9 and g > 0 or d = 9, g = 0 and there is no line $R \subset \mathbb{P}^5$ with deg $(R \cap C) \ge 6$. By Lemma 5.5, the irreducibility of $M_{d,g}(Q)$ and the equality dim $(M_{d,g}(Q)) = 4d + 1 - g$ we may assume $h^1(\mathscr{I}_C(4)) > 0$.

Lemma 6.1. Assume $d \le 11$ and fix a non-degenerate $C \in M_{d,g}$ such that there is no line $R \subset \mathbb{P}^5$ with $\deg(R \cap C) \ge 6$. Then $h^1(M, \mathscr{I}_{C \cap M,M}(4)) = 0$ for every hyperplane $M \subset \mathbb{P}^5$.

Proof. Fix a hyperplane $M \subset \mathbb{P}^5$. Since *C* spans \mathbb{P}^5 , $Z := C \cap M$ is a curvilinear scheme spanning *M*. Assume $h^1(M, \mathscr{I}_{Z,M}(4)) > 0$. Let *N* be a hyperplane of *N* with maximal $a := \deg(Z \cap N)$. Since *Z* spans *M*, we have $a \ge 4$. Assume for the moment a = 4, i.e. assume that *Z* is in linearly general position. Since $d \le 17$, we have $h^1(M, \mathscr{I}_{Z,M}(4)) = 0$ [22, Theorem 3.2]. Hence we may assume $a \ge 5$.

(a) First assume $h^1(N, \mathscr{I}_{Z \cap N, N}(4)) > 0$. Since Z spans M, we have $a \le d - 1 \le 10$. The maximality property of N implies that $Z \cap N$ spans N. Hence $\deg(Z \cap U) \le 9$ for every plane $U \subset N$. Fix a plane $U \subset N$ with $b := \deg(Z \cap U)$ is maximal. If $h^1(U, \mathscr{I}_{Z \cap U, U}(4)) > 0$, then there is a line $R \subset U$ with $\deg(R \cap Z) \ge 6$. Hence we may assume $h^1(U, \mathscr{I}_{Z \cap U, U}(4)) = 0$. The residual sequence of U in N gives $h^1(N, \mathscr{I}_{\operatorname{Res}_U(Z \cap N), N}(3)) > 0$. We have $\deg(\operatorname{Res}_U(Z \cap N)) \le 10 - b \le 7$. By [23, Lemma 34] there is a line $L \subset N$ such that $\deg(L \cap \operatorname{Res}_U(Z)) \ge 5$. Hence $b \ge 6$. Hence $10 - b > \deg(L \cap \operatorname{Res}_U(Z))$, a contradiction.

(b) Now assume $h^1(N, \mathscr{I}_{Z \cap N}(4)) = 0$. The residual exact sequence

$$0 \to \mathscr{I}_{\operatorname{Res}_{N}(Z),M}(3) \to \mathscr{I}_{Z,M}(4) \to \mathscr{I}_{Z\cap N,N}(4) \to 0$$

gives $h^1(M, \mathscr{I}_{\text{Res}_N(Z),M}(3)) > 0$. Since $d - a \le 7$, then there is a line $L \subset M$ such that $\text{deg}(\text{Res}_N(Z)) \ge 5$ [23, Lemma 34]. By assumption we have $\text{deg}(L \cap Z) = 5$. Since $\text{deg}(Z \cap L) \ge 5$, the maximality property of *a* gives $a \ge 7$. Since $d - a \ge 5$, we get $d \ge 12$, a contradiction.

Lemma 6.2. Assume $d \le 11$ and fix a non-degenerate $C \in M_{d,g}$ such that there is no line $R \subset \mathbb{P}^5$ with $\deg(R \cap C) \ge 5$, no conic $D \subset \mathbb{P}^5$ with $\deg(D \cap C) \ge 8$, no plane cubic T with $\deg(T \cap C) = 9$ and $C \cap T \in |\mathcal{O}_T(3)|$. Then $h^1(M, \mathscr{I}_{C \cap M, M}(3)) = 0$ for every hyperplane $M \subset \mathbb{P}^5$.

Proof. Fix a hyperplane $M \subset \mathbb{P}^5$. Since *C* spans \mathbb{P}^5 , $Z := C \cap M$ is a curvilinear scheme spanning *M*. Assume $h^1(M, \mathscr{I}_{Z,M}(3)) > 0$. Let *N* be a hyperplane of *N* with maximal $a := \deg(Z \cap N)$. Since *Z* spans *M*, we have $a \ge 4$. Assume for the moment a = 4, i.e. assume that *Z* is in linearly general position. Since $d \le 13$, we have $h^1(M, \mathscr{I}_{Z,M}(3)) = 0$ [22, Theorem 3.2]. Hence we may assume $a \ge 5$.

(a) First assume $h^1(N, \mathscr{I}_{Z\cap N,N}(3)) > 0$. Since Z spans M, we have $a \le d-1 \le 10$. The maximality property of N implies that $Z \cap N$ spans N. Hence deg $(Z \cap U) \le 9$ for every plane $U \subset N$. Let $U \subset N$ be a plane such that $b := \deg(U \cap Z)$ is maximal. If $h^1(U, \mathscr{I}_{Z\cap U,U}(3)) > 0$, then [24, Corollaire 2] shows the existence of either R or D or T. Now assume $h^1(U, \mathscr{I}_{U\cap Z,U}(3)) = 0$. The residual sequence of U gives $h^1(N, \mathscr{I}_{\operatorname{Res}_U(N\cap Z),N}(2)) > 0$. Since deg $(\operatorname{Res}_U(N\cap Z)) \le 10 - b \le 7$, either there is a line $L \subset N$ with deg $(L \cap \operatorname{Res}_U(Z)) \ge 4$ or there is a conic $D \subset N$ with deg $(D \cap Z) \ge 6$. The latter case is impossible, because it implies $a - b \ge 6$ and $b \ge 6$, a contradiction. Hence there is a line L with deg $(L \cap \operatorname{Res}_U(Z)) \ge 4$. To prove the lemma we may assume deg $(Z \cap L) = 4$. Let $E \subset N$ be a plane containing L and with maximal $c := \deg(E \cap Z)$ among the planes containing L. If $h^1(E, \mathscr{I}_{E\cap Z, E}(3)) > 0$, then [24, Corollaire 2] shows the existence of either R or D or T. Now assume $h^1(E, \mathscr{I}_{E\cap Z, E}(3)) = 0$. The residual sequence of E gives $h^1(N, \mathscr{I}_{\operatorname{Res}_E(Z\cap N),N}(2)) > 0$. Since $c \ge 5$, there is a line $R \subset N$ such that deg $(R \cap \operatorname{Res}_U(Z \cap N) \ge 4$. To prove the lemma we may assume that deg $(R \cap \operatorname{Res}_U(Z \cap N) \ge 4$. To prove the lemma we may assume that deg $(R \cap \operatorname{Res}_U(Z \cap N) \ge 4$. To prove the lemma we may assume that deg $(R \cap Z) = 4$. First assume $R \cap L = \emptyset$. Let $Q' \subset N$ be a general quadric containing $L \cup R$. Note that Q' is a smooth quadric. Since Z is curvilinear and $\mathscr{I}_{L\cup R,N}(2)$ is spanned, we have $Z \cap Q' = Z \cap (R \cup L)$. Since $h^1(Q', \mathscr{I}_{Z \cap (L \cup R,Q'}(3)) = 0$, we get $h^1(N, \mathscr{I}_{\operatorname{Res}_{Q'}(Z \cap N),N}(1)) > 0$, contradicting the inequality deg(\operatorname{Res}_{Q'}(Z \cap N)) \le 2.

Now assume $R \cap L \neq \emptyset$ and $R \neq L$. Since deg $(R \cap \text{Res}_E(Z \cap N)) \ge 4$ and $E \supset L$, we have deg $(Z \cap (R \cup L)) \ge 8$ and so we may take $D := R \cup L$.

Now assume R = L. We may take $Z' \subseteq Z \cap N$ minimal among the subschemes such that $h^1(N, \mathscr{I}_{Z',M}(3)) > 0$. Let Q' be a quadric surface containing L in its singular locus. Since $\deg(\operatorname{Res}_{Q'}(Z')) \leq 10 - 4 - 4 = 2$, we have $h^1(M, \mathscr{I}_{\operatorname{Res}_Q(Z')}(1)) = 0$. Therefore the residual exact sequence of Q' gives $h^1(Q', \mathscr{I}_{Z'\cap Q',Q'}(t)) > 0$. The minimality of Z' gives $Z' \subset Q$. Since Z' is curvilinear we get $\deg(Z') = 8$ and that each connected component γ of Z' has even degree with $\deg(\gamma \cap L) = \deg(\gamma)/2$. Hence there is a plane $N' \supset L$ with $\deg(N \cap Z') > \deg(Z' \cap L) = 4$. We get $\deg(\operatorname{Res}_{N'}(Z')) \leq 3$ and hence by a residual exact sequence of N' gives $h^1(N, \mathscr{I}_{Z',M}(3)) = 0$, a contradiction.

(b) Now assume $h^1(N, \mathscr{I}_{Z\cap N}(3)) = 0$. A twist of the residual exact sequence in step (b) of the proof of Lemma 6.1 gives $h^1(M, \mathscr{I}_{\operatorname{Res}_N(Z),M}(2)) > 0$. If $d - a \le 5$, then there is a line $L \subset M$ such that deg $(\operatorname{Res}_N(Z)) \ge 4$ [23, Lemma 34]. By assumption we have deg $(L \cap Z) = 4$. Since deg $(Z \cap L) \ge 4$, the maximality property of *a* gives $a \ge 6$. Since $d - a \ge 5$, we also get d = 11. Let $U \subset M$ be a hyperplane such that $U \supset L$ and deg $(U \cap Z)$ is maximal. If $h^1(U, \mathscr{I}_{U\cap Z,U}(3)) > 0$, then we may repeat part (a). Now assume $h^1(U, \mathscr{I}_{U\cap Z,U}(3)) = 0$. The residual sequence of *U* gives $h^1(N, \mathscr{I}_{\operatorname{Res}_U(Z),N}(2)) > 0$. Since deg $(\operatorname{Res}_E(Z)) \le 4$, there is a line $R \subset N$ with $R \supset \operatorname{Res}_E(Z)$ and deg $(\operatorname{Res}_E(Z)) = 4$. We conclude as in step (a).

Lemma 6.3. Let $X \subset \mathbb{P}^5$ be an integral and non-degenerate curve of degree $d \leq 13$. Then $h^1(H, \mathscr{I}_{C \cap H, H}(t)) = 0$, t = 3, 4, for a general hyperplane $H \subset \mathbb{P}^5$.

Proof. The scheme $C \cap H$ spans H and it is in uniform position and in particular it is in linearly general position. Apply [22, Theorem 3.2].

Lemma 6.4. Let $X \subset \mathbb{P}^5$ be an integral and non-degenerate curve of degree $d \ge 9$ (resp. $5 \le d \le 8$). Then $h^0(\mathscr{I}_X(2)) \le 6$ (resp. $h^0(\mathscr{I}_X(2)) \le 15 - d$).

Proof. Fix a general hyperplane $H \subset \mathbb{P}^5$. The scheme $S := X \cap H$ spans H and it is formed by d points in linearly general position in H. Hence $h^0(H, \mathscr{I}_{S,H}(2)) \le 6$ if $d \ge 9$ and $h^0(H, \mathscr{I}_{S,H}(2)) = 15 - d$ if $d \le 8$. Use the exact sequence

$$0 \to \mathscr{I}_X(1) \to \mathscr{I}_X(2) \to \mathscr{I}_{X \cap H,H}(2) \to 0$$

and that *X* is non-degenerate, i.e., $h^0(\mathscr{I}_X(1)) = 0$.

Lemma 6.5. Assume $g \leq 3$ and $d \leq 11$. There is no non-degenerate $C \in M_{d,g}$ such that $h^1(\mathscr{I}_C(4)) > 0$ and there is no line $L \subset \mathbb{P}^5$ with deg $(L \cap C) \geq 5$, no conic D with deg $(C \cap D) \geq 8$ and no plane cubic T with deg $(T \cap C) = 9$ and $C \cap T \in |\mathscr{O}_T(3)|$.

Proof. Since $h^1(\mathscr{I}_C(4)) > 0$ and deg($R \cap C$) ≤ 5 for all lines R, we have $d \ge 9$ [19, Theorem at page 492]. By Lemmas 4.10, 6.1 and 6.2 we have $h^1(\mathscr{I}_C(3)) \ge 5 + h^1(\mathscr{I}_C(4)) \ge 10 + h^1(\mathscr{I}_C(5)) \ge 11$. By Lemma 6.3 we have $h^1(\mathscr{I}_C(2)) \ge h^1(\mathscr{I}_C(3))$. Hence $h^0(\mathscr{I}_C(2)) \ge 31 + g - 2d$. Use Lemma 6.4.

Lemma 6.6. Fix an integer a > 0 and assume $d \ge 2g - 1 + a$. Fix a zero-dimensional curvilinear scheme $Z \subset \mathbb{P}^5$ such that $\deg(Z) = a$. Set $E_Z := \{C \in M_{d,g} : Z \subset C\}$. Then every irreducible component of E_Z has dimension $\le 6d + 2 - 2g - 4a$.

Proof. If $E_Z = \emptyset$, then the lemma is true. Hence we may assume $E_Z \neq \emptyset$. Fix $C \in E_Z$. By [25, Theoreme 1.5] it is sufficient to prove that $h^1(N_C(-Z)) = 0$. Since *C* is smooth, N_C is a quotient of $T\mathbb{P}^5_{|C}$ and hence by the Euler's sequence of $T\mathbb{P}^5$ the bundle N_C is a quotient of $\mathcal{O}_C(1)^{\oplus 6}$. Since $d \ge 2g - 1 + a$, we have $h^1(\mathcal{O}_C(1)(-Z)) = 0$. Use that $h^2(\mathscr{G}) = 0$ for every coherent sheaf \mathscr{G} on *C*.

Corollary 6.7. Assume $d \ge 9$. Fix $a \in \{4,5,6\}$. Let \mathscr{A}_a be the set of all non-degenerate $C \in M_{d,g}$ such that there is a line $R \subset \mathbb{P}^5$ such that $\deg(C \cap R) \ge a$. Then every irreducible component of \mathscr{A}_a has dimension $\le 6d + 2 - 2g + 8 - 3a$

Proof. Fix a line $R \subset \mathbb{P}^5$ and a zero-dimensional scheme $Z \subset R$ with $\deg(Z) = a$. First apply Lemma 6.6, then use that R has ∞^a zero-dimensional schemes of degree a and then use that \mathbb{P}^5 contains ∞^8 lines.

Lemma 6.8. Assume $0 \le g \le 3$ and $d \le 11$. Let \mathscr{B} be the set of all non-degenerate $C \in M_{d,g}$ having a line R with deg $(R \cap C) \ge 6$. Then a general element of \mathbb{W} contains no element of \mathscr{B} .

Proof. Fix $C \in \mathcal{B}$. The existence of R implies $d \ge 9$ and that $d \ge 10$ if g > 0. By Corollary 6.7 to prove the lemma it is sufficient to avoid all $C \in \mathcal{B}$ with $h^1(\mathcal{I}_C(4)) \ge 10$. Since $d \le 11$, Lemma 6.3 and the exact sequence in the proof of Lemma 6.4 for X = C and t = 3, 4 give $h^1(\mathcal{I}_C(2)) \ge 10$. Hence $h^0(\mathcal{I}_C(2)) \ge 30 + g - 2d$, contradicting Lemma 6.4.

Lemma 6.9. Assume $0 \le g \le 3$ and $d \le 11$. Let \mathscr{B}' be the set of all non-degenerate $C \in M_{d,g}$ having a line R with $\deg(R \cap C) \ge 4$. Then a general element of \mathbb{W} contains no element of \mathscr{B}' .

Proof. By Corollary 6.7 it is sufficient to test all $C \in M_{d,g}$ with $h^1(\mathscr{I}_C(4)) \ge 4$. By Lemma 6.8 we may assume that *C* has no line *R* with deg $(R \cap C) \ge 6$. Hence Lemmas 4.10 and 6.1 give $h^1(\mathscr{I}_C(3)) \ge 5 + h^1(\mathscr{I}_C(4)) \ge 9$. By Lemma 6.3 and the exact sequence in the proof of Lemma 6.4 for t = 3 and X = C we have $h^1(\mathscr{I}_C(2)) \ge 9$ and so $h^0(\mathscr{I}_C(2)) \ge 31 + g - 2d$. Lemma 6.4 gives a contradiction.

Lemma 6.10. Assume $0 \le g \le 3$ and $d \le 11$. Let \mathscr{B}_1 be the set of all non-degenerate $C \in M_{d,g}$ having a conic D with $\deg(D \cap C) \ge 8$. Then a general element of \mathbb{W} contains no element of \mathscr{B}_1 .

Proof. Fix $C \in \mathscr{B}_1$, say associated to the conic D, and take $W \in \mathbb{W}$ containing C (if any). By Lemma 6.9 we may assume the non-existence of lines L with $\deg(L \cap C) \ge 4$. Hence D is not a reducible conic. It is not a double conic, say with $L := A_{red}$, because we would have $\deg(L \cap C) \ge \deg(A \cap C)/2 \ge 4$. Hence D is smooth. By Lemma 4.9 it is sufficient to test the curves C with $h^1(\mathscr{I}_C(4)) \ge 10$. Lemmas 4.10 and 6.1 give $h^1(\mathscr{I}_C(3)) \ge 15$. Lemma 6.3 and the cohomology exact sequence of the the exact sequence in the proof of Lemma 6.4) for X = C and t = 3 give $h^1(\mathscr{I}_C(2)) \ge 15$ and so $h^0(\mathscr{I}_C(2)) \ge 14 + g$, contradicting Lemma 6.4.

Lemma 6.11. Assume $0 \le g \le 3$ and $d \le 11$. Let \mathscr{B}_2 be the set of all non-degenerate $C \in M_{d,g}$ having a plane cubic T with $\deg(T \cap C) = 9$ and $C \cap T \in |\mathscr{O}_{C \cap T,T}(3)|$. Then a general element of \mathbb{W} contains no element of \mathscr{B}_2 .

Proof. Take *C* for which *T* exists. We have d = 11. The set of all hyperplanes of \mathbb{P}^5 containing $\langle T \rangle$ induces a g_2^2 on *C*. Hence g = 0. Fix any scheme $Z \in |\mathcal{O}_T(3)|$. Since g = 0, Lemma 6.6 implies $h^1(N_C(-Z)) = 0$ and hence the set of all $C \subset \mathbb{P}^5$ containing *Z* has dimension $6d + 1 - 4 \deg(Z) = 31$. Since \mathbb{P}^5 has ∞^9 planes, each plane has ∞^9 plane cubics and each plane cubic *T* has ∞^9 elements of $|\mathcal{O}_T(3)|$, it is sufficient to exclude all $C \in \mathscr{B}_2$ with $h^1(\mathscr{I}_C(4)) \ge 9$. By Lemmas 6.9 and 6.10 we may assume the non-existence of line $R \subset \mathbb{P}^5$ with $\deg(C \cap R) \ge 4$ and of conics $D \subset \mathbb{P}^5$ with $\deg(C \cap D) \ge 8$. As in the proof Lemma 6.10 we get $h^1(\mathscr{I}_C(2)) \ge 14$, i.e. $h^0(\mathscr{I}_C(2)) \ge 13 + g$, contradicting Lemma 6.4.

By Lemma 5.5 at this point we proved that a general $W \in \mathbb{W}$ contains only finitely many non-degenerate $C \in M_{d,g}$.

7. Degenerate curves

In this section we prove that a general $W \in \mathbb{W}$ contains only finitely many degenerate $C \in M_{d,g}(Q)$, $d \leq 11$ and $g \leq 3$. By Remarks 4.3, 4.4 and Lemma 4.6 it is sufficient to test the curves $C \in M_{d,g}(4)$. By [19, Theorem at page 492] we may assume $d \ge 7$ and $d \ge 8$ if either g > 0 or C has genus 0 and no line R with deg $(R \cap C) \ge 6$. By Remark 4.3 and Lemma 4.6 it is sufficient to test the degenerate $C \in M_{d,g}(Q)$. Fix a hyperplane $M \subset \mathbb{P}^5$ and set $Q' := Q \cap M$. Set $M'_{d,g}(Q') := \{C \in M_{d,g}(Q) : C \subset Q'\}$ and C spans M}. Either Q' is smooth or Q' has a unique singular point, o. For any $C \in M_{d,g}^{\vee}(Q')$ set x(C) = 0 if either Q' is smooth or Q' is a cone with vertex o and $o \notin C$, and set x(C) := 1 if Q' has vertex o and $o \in C$. Since $\omega_{Q'} \cong \mathcal{O}_{Q'}(-3)$, if x(C) = 0, then Hilb(Q') is smooth and of dimension 3d + 2 - 2g. Now assume that Q' is a cone with vertex o and that x(C) = 1, i.e. that $o \in C$. Let $u: \widetilde{Q'} \to Q'$ be the blowing up of o. Let $E := v^{-1}(o)$ be the exceptional divisor and let $\widetilde{C} \subset \widetilde{Q'}$ be the strict transform of C. Since C is smooth, v maps isomorphically \tilde{C} . Let Ψ be closure in Hilb(\tilde{Q}') of the strict transforms of all $A \in M_{d,g}(Q')$ with x(A) = 1. We claim that dim $\Psi \leq 3d + 1$. Fix $D \in \Psi$. Since Aut $(\widetilde{Q'})$ acts transitively of $\widetilde{Q'} \setminus E$, the first part of the proof gives $h^1(N_{D,\tilde{Q}}) = 0$. Hence it is sufficient to prove that $\deg(N_{D,\tilde{Q}}) \le 3d - 1$, i.e. $\deg(\tau_{\tilde{Q}|D}) \le 3d + 1$, i.e. $\deg(\omega_{\widetilde{Q}}|D) \ge -3d-1$. The group $\operatorname{Pic}(\widetilde{Q})$ is freely generated by E and the pull-back H of $\mathscr{O}_{Q}(1)$. We have $D \cdot H = d$ and $D \cdot E = x$. We have $\omega_{\widetilde{O}} \cong \mathscr{O}_{\widetilde{O}}(-3H - E)$ [26, Example 8.5 (2)]. Hence dim $(M'_{d,g}(Q'))$ has dimension $\leq 3d + x(C)$ at C. Since Q has ∞^4 singular hyperplane sections and ∞^5 smooth hyperplane sections, to prove that a general $W \in \mathbb{W}$ has no (resp. finitely many) curves C spanning a hyperplane, it is sufficient to exclude the ones with $h^1(\mathscr{I}_C(4)) \ge d-4-g$. For all d,g for which we only use that $h^1(\mathscr{I}_C(4)) \ge d - 5 - g$, no degenerate $C \in M_{d,g}$ is contained in a general $W \in \mathbb{W}$. Fix a hyperplane $M \subset \mathbb{P}^5$. Let $M'_{d,p}(M)$ be the set of all $C \in M_{d,p}$ contained in M and spanning M.

Lemma 7.1. A general $W \in W$ contains no $C \in M_{d,g}$ such that there is a hyperplane M with $C \in M'_{d,g}(M)$ and $h^0(M, \mathscr{I}_C(2)) \ge 4$.

Proof. Let $K \subset M$ denote the set-theoretic base locus of $|\mathscr{I}_{C,M}(2)|$ and *A* any irreducible component of *K* containing *C*. Note that $|\mathscr{I}_{C,M}(2)| = |\mathscr{I}_{A,M}(2)|$. Since *C* spans *M*, every element of $|\mathscr{I}_{C,M}(2)|$ is irreducible and *A* spans *M*. Hence dim $(K) \leq 2$. First assume dim(A) = 2. Since a complete intersection *B* of two quadrics of *M* has $h^0(M, \mathscr{I}_{B,M}(2)) = 2 < 4$ and *A* spans *M*, we get deg(A) = 3. Hence either *A* is a smooth rational normal scroll or a cone over a rational normal curve of \mathbb{P}^3 . In both cases we have $h^0(M, \mathscr{I}_{A,M}(2)) = 3$, a contradiction. Hence dim(A) = 1, i.e. A = C. Fix two general elements Q_1, Q_2 of $|\mathscr{I}_{C,M}(2)|$ and let *E* be an irreducible component of $Q_1 \cap Q_2$ containing *C*. Since A = C, there is a quadric hypersurface $Q_3 \subset M$, containing *C*, but not *E*. Since $C \subseteq E \cap Q_3$, we get $E = Q_1 \cap Q_2, d \leq 8$, and that either d = 8 and $C = Q_1 \cap Q_2 \cap Q_3$ or d = 7 and *C* is linked to a line by the complete intersection $Q_1 \cap Q_2 \cap Q_3$. In both cases *C* is arithmetically Cohen-Macaulay and in particular $h^1(\mathscr{I}_C(4)) = 0$, a contradiction.

Lemma 7.2. A general $W \in W$ contains no $C \in M_{11,g}$ such that there is a hyperplane M with $C \in M'_{11,g}(M)$ and $h^0(M, \mathscr{I}_{C,M}(2)) = 3$.

Proof. Take *K*,*A* as in the proof of Lemma 7.1. Since d > 8, we only need to modify the proof of the case dim(*A*) = 2. If dim(*A*) = 2, then deg(*A*) = 3 and *A* is either the cone of of a rational normal curves of \mathbb{P}^3 or it is a smooth rational normal curve isomorphic to the Hirzebruch surface F_1 embedded by the complete linear system |h+2f|. Write $C \in |ah+bf|$ with a > 0 and $b \ge a$. We have 11 = a + b and hence b > a. Since $\omega_{F_1} \cong \mathcal{O}_{F_1}(-2h-3f)$, the adjunction formula gives $2g-2 = (ah+bf) \cdot ((a-2)h+(b-3)f) = -a(a-2)+a(b-3)+b(a-2) = (a-2)(b-a)+a(b-3)$. If g = 0 we get that either a = 1 (and hence b = 10) or a = b = 2, contradicting the equality a + b = 10. If g > 0, then $a \ge 2$. There is no solution with a+b=11, $a \ge 2$, and $g \le 3$. In the case a = 1 and b = 10 the curve *C* has $h^0(A, \mathcal{O}_A(4-C)) = 0$. Hence if $C \subset W$, then $A \subset W$, contradicting the fact that Pic(*W*) is generated by $\mathcal{O}_W(1)$.

Now assume that *A* is a cone over a rational normal curve. Let *o* be the vertex of *A* and call $u: F_2 \to A$ the blowing up of *o*. Set $h:=u^{-1}(o)$. F_2 is isomorphic to the Hirzebruch surface with the same name, *h* is the only section of its ruling with negative self-intersection and *u* is induced by the linear system |h+2f|. We have $h^2 = -2$ and $\omega_{F_2} \cong \mathcal{O}_{F_2}(-2h-4f)$. Let $C' \subset F_2$ denote the strict transform of *C*, with $C' \in |ah+bf|$ and $b \geq 2a$. Since *C* is smooth, *u* sends isomorphically C' to *C*. Hence 11 = b and $b \in \{2a, 2a+1\}$. Since $h^0(\mathcal{O}_{F_2}(4h+8f-C)) = 0$, any *W* containing *C* contains *A*, a contradiction.

Lemma 7.3. Fix $C \in M'_{d,g}(M)$, $d \leq 13$, and let H be a general hyperplane of M. We have $h^1(H, \mathscr{I}_{H \cap C, H}(4)) = 0$ and $h^1(H, \mathscr{I}_{H \cap C, H}(3)) \leq \max\{0, d - 10\}.$

Proof. Any $S \subseteq C \cap H$ with $\#(S) \leq 10$ (resp. $\#(S) \leq 13$) is in linearly general position in M and hence $h(M, \mathscr{I}_{S,M}(3)) = 0$ (resp. $h^1(M, \mathscr{I}_{C,M}(4)) = 0$ by [22, Theorem 3.2].

Lemma 7.4. Let $N \subset M$ be a hyperplane and let $Z \subset N$ be a degree $d \leq 11$ zero-dimensional scheme spanning N. If there are neither a line $R \subset N$ with deg $(R \cap Z) \geq 6$ nor a plane conic $D \subset N$ with deg $(D \cap Z) = 10$, then $h^1(N, \mathscr{I}_{Z,N}(4)) = 0$.

Proof. Let $U \subset N$ be a plane of N with maximal $a := \deg(Z \cap N)$. Since Z spans N, we have $a \ge 3$. Assume for the moment a = 3, i.e. assume that Z is in linearly general position. Since $d \le 13$, we have $h^1(N, \mathscr{I}_{Z,MN}(4)) = 0$ [22, Theorem 3.2]. Hence we may assume $a \ge 4$.

First assume $h^1(U, \mathscr{I}_{Z \cap U, U}(4)) > 0$. Since Z spans N, we have $a \le d - 1 \le 10$. Use [24, Corollaire 2 or Remarques (i) at page 116].

Now assume $h^1(N, \mathscr{I}_{Z \cap N}(4)) = 0$. The residual exact sequence of U in N gives $h^1(N, \mathscr{I}_{\text{Res}_U(Z)}(3)) > 0$. Since deg(Res_U(Z)) = $d - a \le 7$, [23, Lemma 34] gives the existence of a line $L \subset N$ such that deg($L \cap Z$) ≥ 5 . Then we continue as in step (a) of the proof of Lemma 6.2. the residual exact sequence of M gives $h^1(M, \mathscr{I}_{\text{Res}_N(Z),M}(3)) > 0$. Since $d - a \le 7$, then there is a line $L \subset M$ such that deg(Res_N(Z)) ≥ 5 [23, Lemma 34]. By assumption we have deg($L \cap Z$) = 5. Since deg($Z \cap L$) ≥ 5 , the maximality property of a gives $a \ge 7$. Since $d - a \ge 5$, we get $d \ge 12$, a contradiction.

Lemma 7.5. A general $W \in W$ contains no $C \in M'_{d,g}(M)$ such that there a plane conic D with $\deg(D \cap C) \ge 10$ (if D is singular also assume that $\deg(L \cap C) \le 5$ for each line $L \subset D$).

Proof. The pencil of hyperplanes of *M* containing the plane *U* spanned by *D* shows that d = 11, deg $(D \cap C) = 10$, and g = 0. First assume that *D* is a double line. Fix $W \in W$ with $W \supset C$. Set $L := D_{red}$. Since deg $(L \cap C)$, we have $L \subset W$ for any $W \in W$ with $W \supset C$. Let $\text{Res}_L(C \cap D)$ be the residual scheme with respect to the divisor *L* of *U*. Since deg $(C \cap L) \ge \text{deg}(C \cap D)/2$, our assumptions give deg $(L \cap C) = 5$ and hence deg $(\text{Res}_L(C \cap D)) = 5$. Since $C \cap D \subset D$, we have $\text{Res}_L(C \cap D) \subset L$. Since $D \nsubseteq W$ (Lemma 4.9), we have $W \cap U = L \cup T$ with *T* a plane cubic not containing *L*. Hence deg $(L \cap T) = 3$. Since $\text{Res}_L(C \cap D)$ is contained both in *L* and in *T*, we get a contradiction.

Now assume $D = R \cup L$ with R, L lines and $L \neq R$. Since $\deg(L \cap C) \leq 5$ and $\deg(R \cap C) \leq 5$ by assumption, we have $\deg(R \cap C) = \deg(R \cup L) = 5$. Hence $D \subset W$, contradicting Lemma 4.9.

Now assume that *D* is smooth. Since g = 0 for each $Z \subset D$ with $\deg(D) = 10$, we have $h^1(N_{C,M}(-Z)) = 0$ and so $h^0(N_{C,M}) = 45 - 30$. Since *D* has ∞^{10} degree 10 subschemes, *M* has ∞^6 planes, each plane has ∞^5 conics and \mathbb{P}^5 has ∞^5 , hyperplanes, each irreducible component of the set of all (C, D, M) with *D* a smooth conic and $C_1M'_{11,0}(M)$ has dimension at most 41, i.e. codimension at least 17 in $M_{11,0}$. Hence to avoid these curves we may assume $h^1(\mathscr{I}_C(4)) \ge 16$. Lemma 7.3 gives $h^1(M, \mathscr{I}_C(2)) \ge 15$. Hence $h^0(M, \mathscr{I}_C(2)) \ge 7$, contradicting Lemma 7.1.

Lemma 7.6. A general $W \in W$ contains no $C \in M'_{d,g}(M)$, $d \le 11$, for some hyperplane M such that there is no line $R \subset M$ with deg $(R \cap C) \ge 6$.

Proof. By Lemma 7.5 we may assume that there is no conic D with $\deg(D \cap C) \ge 10$. Since $d \le 11$, Lemmas 4.10 and 7.4 give $h^1(M, \mathscr{I}_{C,M}(3)) \ge 4 + h^1(\mathscr{I}_{C \cap M,M}(3)) \ge d - g$. Assume for the moment that either $d \le 10$ or d = 11 and $h^1(H, \mathscr{I}_{C \cap H,H}(3)) = 0$ for a general hyperplane H of M. Lemma 7.3 gives $h^1(M, \mathscr{I}_{C,M}(2)) \ge d - g$ and so $h^0(M, \mathscr{I}_C(2)) \ge 15 + d - g - 2d - 1 + g = 14 - d$. Hence if $d \le 10$ Lemma 7.1 concludes the proof. If d = 11 and $h^1(H, \mathscr{I}_{C \cap H,H}(3)) = 1$, we get $h^0(M, \mathscr{I}_C(2)) \ge 2$. Assume $h^0(\mathscr{I}_C(2)) = 2$ and let K be the intersection of two general elements of $|\mathscr{I}_{C,M}(2)|$ and call $A \subseteq K_{\text{red}}$ any irreducible component containing C. Since $h^1(M, \mathscr{I}_{C,M}(3)) \ge 11 - g$, we have $h^0(M, \mathscr{I}_C(3)) \ge 45 - 2d > 10$. Hence the map $H^0(M, \mathscr{I}_{C,M}(2)) \otimes H^0(\mathscr{O}_M(1)) \to H^0(M, \mathscr{I}_{C,M}(3))$ is not surjective. Take $U \in |\mathscr{I}_{C,M}(3)|$ not containing K. Since $\deg(C) > 9$, we first get A = K, and then (since d = 11), that the complete intersection $K \cap U$ links C to a line. Hence C is arithmetically Cohen-Macaulay, contradicting the assumption $h^1(M, \mathscr{I}_{C,M}(4)) > 0$.

Lemma 7.7. A general $W \in W$ contains no curve C with $C \in M'_{d,g}(M)$ for some hyperplane and with a line R such that $\deg(R \cap C) \ge 6$.

Proof. Note that if W, C, R are as in the statement of the lemma with $C \subset W$, then $R \subset W$ (Bezout). Let \mathscr{G} be the set of all quadruples (W, H, L, C) with $W \in W'$, M a hyperplane, $L \subset W \cap M$ a line, $C \in M'_{d,g}(M)$ and $\deg(L \cap C) \ge 6$. Fix M, a line $L \subset M$ and $Z \subset R$ with $\deg(Z) = 6$. First assume $d \ge 2g - 1 + 6$. Lemma 6.6 gives $h^1(M, N_{C,M}(-Z)) = 0$, i.e. $h^0(N_{C,M}(-Z)) = 5d + 1 - g - 18$. Since L has ∞^6 degree 6 zero-dimensional schemes, M has ∞^6 lines and \mathbb{P}^5 has ∞^5 hyperplanes, and each $W \in W'$ contains only finitely many lines, we get that each irreducible component of \mathscr{G} has dimension at most 5d - g. Hence to prove the lemma it is sufficient to exclude the curves $C \in M'_{d,g}(M)$ with $h^1(\mathscr{I}_C(4)) \ge d - g + 2$. Lemma 7.3 gives $h^1(M, \mathscr{I}_{C,M}(3)) \ge d - g + 2$. Hence $h^1(M, \mathscr{I}_{C,M}(2)) \ge d - g + 1$ (Lemma 7.3) and so $h^0(M, \mathscr{I}_{C,M}(2)) \ge 15 - d \ge 4$, contradicting Lemma 7.1. Now assume $d \le 2g + 4$. Since $d \ge 7$ and g = 0 if d = 7, then $(d, g) \in \{(8, 2), (8, 3), (9, 3), (10, 3)\}$. Assume d = 8. The net of all hyperplanes of M containing R induces a g_2^2 on C and hence g = 0, a contradiction. Now assume $(d, g) \in \{(9, 3), (10, 3)\}$. We take $Z' \subset R$ with $\deg(Z') = 4$. Since $d \ge 2g - 1 + \deg(Z')$, as above we get that we may assume $h^1(\mathscr{I}_C(4)) \ge d - g$. Since $d \le 10$, we have $h^1(M, \mathscr{I}_{C,M}(2)) \ge h^1(M, \mathscr{I}_{C,M}(3)) \ge h^1(M, \mathscr{I}_{C,M}(4))$ (Lemma 7.3) and hence $h^0(M, \mathscr{I}_{C,M}(2)) \ge 14 - d \ge 4$, contradicting Lemma 7.1.

End of the proof of Theorem 1.1: The last lemma concludes the proof of Theorem 1.1 for all $C \in M_{d,g}(4)$. Since in section 6 we checked all $C \in M_{d,g}(5)$, in Remark 4.3 all $C \in M_{d,g}(1)$, in Remark 4.4 all $C \in M_{d,g}(2)$ and in Lemma 4.6 all $C \in M_{d,g}(3)$, we have completed the proof of Theorem 1.1.

Acknowledgements

The author is a member of the Gruppo Nazionale Strutture Algebriche e Geometriche, Istituto Nazionale di Alta Matemetica, Italy.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The author declares that he has no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

- [1] E. Cotterill, Rational curves of degree 11 on a general quintic 3-fold, Quart. J. Math., 63 (2012), 539-568.
- [2] D'Almeida, Courbes rationnelles de degré 11 sur une hypersurface quintique générale de P⁴, Bull. Sci. Math., **136** (2012), 899-903.
- T. Johnsen, S. Kleiman, Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
- [4] T. Johnsen, S. Kleiman, Toward Clemens' conjecture in degrees between 10 and 24, Serdica Math. J., 23 (1997), 131-142.
- [5] T. Johnsen, A. L. Knutsen, Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31(8) (2003), 3917-3953
- [6] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math., 60(2) (1986), 151-162.
 [7] C. Voisin, On some problems of Kobayashi and Lang, in Current developments in Mathematics, pp. 53-125, Int. Press, Somerville, MA, 2003.
- [8] K. Oguiso, Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153-161
- [9] A. L. Knutsen, On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, Trans. Amer. Math. Soc., 384(10) (2012), 243-5284
- [10] E. Cotterill, Rational curves of degree 16 on a general heptic fourfold, J. Pure Appl. Algebra, 218 (2014), 121-129.
- [11] G. Hana, T. Johnsen, Rational curves on a general heptic fourfold, Bull. Belg. Math. Soc., Simon Stevin 16 (2009), 861-885. [12] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44(1) (1996), 200-213.
- [13] N. Mohan Kumar, A. P. Rao, G. V. Ravindra, On codimension two subvarieties in hypersurfaces, Motives and algebraic cycles, 167-174, Fields Inst.
- Commun., 56, Amer. Math. Soc., Providence, RI, 2009. [14] P. Candelas, X. de la Ossa, P. Green, L. Parkes, *A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory*, Nucl. Phys. B, **359** (1991),
- [15] M. Kontsevich, Enumeration of rational curves via torus actions, in The Moduli Space of Curves, pp. 335-368, Progress in Math. 29, Birkhäuser, Basel, CH, 19958. [16] M. S. Narasimhan, S. Ramanan, *Deformations of the moduli space of vector bundles over an algebraic curve*, Ann. of Math., **101** (1975), 391-417.
- [17] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7(3) (1957), 414-452; reprinted in: Michael Atiyah Collected Works, Oxford, 1 (1988), 105-143.
- [18] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- L. Gruson, R. Lazarsfeld, Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math., 72 (1983), 491-506. [20] R. Hartshorne, A. Hirschowitz, Smoothing Algebraic Space Curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math., 1124, Springer, Berlin, 1985
- [21] M. Green, R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83(1) (1986), 73-90.
- [22] D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom., 1(1) (1992), 15-30.
- [23] A. Bernardi, A. Gimigliano, M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput., 46 (2011) 34-53.
- [24] Ph. Ellia, Ch. Peskine, Groupes de points de P²: caractère et position uniforme, in: Algebraic geometry (L'Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
- [25] D. Perrin, Courbes passant par m points généraux de P³, Bull. Soc. Math., France, Mémoire 28/29 (1987).
- [26] P. Jahnke, T. Peternell, I. Radloff, Some Recent Developments in the Classification Theory of Higher Dimensional Manifolds, Global Aspects of Complex Geometry, 311-357, Springer, Berlin, 2006.