The Finiteness of Smooth Curves of Degree ≤ 11 and Genus ≤ 3 on a General Complete Intersection of a Quadric and a Quartic in \mathbb{P}^{5}

Edoardo Ballico
Department of Mathematics, University of Trento, via Sommarive 14, 38123 Trento (TN), Italy

Article Info
Keywords: Calabi-Yau threefold, Curves, Curves in a Calabi-Yau threefold
2010 AMS: 14H50, 14J32, 14M10
Received: 8 February 2022
Accepted: 7 August 2022
Available online: $X X X X X X X X X X X$

Abstract

Let $W \subset \mathbb{P}^{5}$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. In this paper, we prove that W contains only finitely many smooth curves $C \subset \mathbb{P}^{5}$ such that $d:=\operatorname{deg}(C) \leq 11, g:=p_{a}(C) \leq 3$ and $h^{1}\left(\mathscr{O}_{C}(1)\right)=0$.

1. Introduction

The aim of this paper is to prove the following result.
Theorem 1.1. Let $W \subset \mathbb{P}^{5}$ be a general complete intersection of a quadric hypersurface and a quartic hypersurface. Then W contains only finitely many smooth curves $C \subset \mathbb{P}^{5}$ such that $d:=\operatorname{deg}(C) \leq 11, g:=p_{a}(C) \leq 3$ and $h^{1}\left(\mathscr{O}_{C}(1)\right)=0$.

We recall that W is a Calabi-Yau threefold and that there are several papers considering finiteness results for rational curves on certain Calabi-Yau threefolds (see [1]-[6] for the general quintic hypersurface of \mathbb{P}^{4}, the topic of the Clemens conjecture, which ask about the finiteness of rational curves of any fixed degree on such a general quintic). This finiteness result is not true for an arbitrary Calabi-Yau threefold [7, Remark 3.24]. For other complete intersection Calabi-Yau threefolds there are results of two types: existence results of good curves on the Calabi-Yau threefold [8, Theorem 2], [9, Theorem 1.2] and finiteness results in very restricted ranges. As in [4] our classical approach to Theorem 1.1 cannot be applied when $\binom{10}{5} \geq 4 d+1-g$. There are also papers on 3-folds of general type ([10]-[12] and see [13] and references therein for arithmetically Cohen-Macaulay codimension 2 subvarieties).
The upper bound $d \leq 11$ comes from the proof at a few critical steps, but in many lemmas $d=12$ or even $d=13$ may be handled. The approach used in this paper (as the one for quintic 3-folds introduced in [4]) requires that $126=h^{0}\left(\mathscr{O}_{\mathbb{P}}(4)\right)>4 d+1-g$ or, working with a fixed smooth quadric hypersurface $Q \subset \mathbb{P}^{5},\binom{9}{5}-\binom{7}{5}=h^{0}\left(\mathscr{O}_{Q}(4)\right)>4 d+1-g$. The upper bound $g \leq 3$ may be weakened in certain steps, but we are sure that new idea are needed to handle pairs (d, g) such that $4 d+1-g \geq 126$. Theorem 1.1 is a negative result, a non-existence result. We point out that similar statements are very important, higher genera cases of the count of rational curves of fixed degree on Calabi-Yau manifolds, which is related to Mirror Symmetry [6, 14, 15]. For the Calabi-Yau threefold $X \subset \mathbb{P}^{4}, X$ a very general quintic hypersurface, there is an explicit integer n_{d} for the number of the degree d rational curves contained in $X[14,15]$. At the moment nobody is able to prove the finiteness of such rational curves of a given degree d, except for very low d.

1.1. A roadmap of the proof

For all integers $d>0$ and $g \geq 0$ let $M_{d, g}$ denote the locally closed subscheme of the Hilbert scheme of \mathbb{P}^{5} parametrizing all smooth curves $C \subset \mathbb{P}^{5}$ such that $\operatorname{deg}(C)=d, p_{a}(C)=g$ and $h^{1}\left(\mathscr{O}_{C}(1)\right)=0$. The scheme $M_{d, g}$ is an irreducible quasi-projective variety of dimension $6 d+2-2 g$. Let \mathbb{W} be the set of all smooth threefolds $W \subset \mathbb{P}^{5}$, which are the complete intersection of a hypersurface of degree 2 and a hypersurface of degree 4 . For each $W \in \mathbb{W}$ we have $\operatorname{Pic}(W)=\mathbb{Z} \mathscr{O}_{W}(1)$, its normal bundle $N_{W, \mathbb{P} 5}$ is isomorphic to $\mathscr{O}_{W}(2) \oplus \mathscr{O}_{W}(4)$, and the quadric hypersurface, Q, containing W is unique. Standard exact sequences give $\left.h^{0}\left(\mathscr{O}_{W}(2)\right) \oplus \mathscr{O}_{W}(4)\right)=1+h^{0}\left(\mathscr{O}_{W}(4)\right)=20+h^{0}\left(\mathscr{O}_{Q}(4)\right)-h^{0}\left(\mathscr{O}_{Q}(2)\right)=\binom{9}{4}-\binom{7}{2}=124$. Since $h^{1}\left(N_{W, \mathbb{P}^{5}}\right)=0$, the set \mathbb{W} is a smooth variety of dimension 124 . The set \mathbb{W} is obviously irreducible. For a general $W \in \mathbb{W}$ the quadric associated to W is smooth. Since all smooth quadric hypersurfaces of \mathbb{P}^{5} are projectively equivalent, we may fix a smooth quadric hypersurface Q and look only at the set $M_{d, g}(Q):=\left\{C \in M_{d, g} \mid C \subset Q\right\}$. To prove Theorem 1.1 we see which elements of $M_{d, g}(Q)$ are contained in a smooth element of $\left|\mathscr{O}_{Q}(4)\right|$. Let \mathbb{W} denote the set of all smooth elements of $\left|\mathscr{O}_{Q}(4)\right|$. To prove Theorem 1.1 for the pair (d, g) it is sufficient to prove that a general element of $\left|\mathscr{O}_{Q}(4)\right|$ contains only finitely many elements of $M_{d, g}(Q)$. We need to study the schemes $M_{d, g}(Q)$ and this is done in Section 3 (see in particular Remark 3.3).
A key idea in this paper is that the smooth quadric hypersurface $Q \subset \mathbb{P}^{5}$ is isomorphic to the Grassmannian $G(2,4)$ of all 2-dimensional linear subspace of a 4-dimensional vector spaces. By the universal properties of the Grassmmannians each map $C \rightarrow Q, C \in M_{d, g}$, corresponds to a pair (E, V) with E a rank 2 spanned vector bundle on C and $V \subseteq H^{0}(E)$ a linear subspace spanning E. Section 3 shows how to use this correspondence between embeddings $C \subset Q$ and rank 2 vector bundles on C. Remark 3.3 first gives some elementary statements on rank 2 vector bundles and relate them to our main idea. Then (again in Remark 3.3) we consider separately each low genus. In part (a) we finish the known case $g=0$. Steps (b), (c) and (d) considers curves of genus 1,2 and 3 , respectively. Lemmas in later sections prove key statements for these genera, but Remark 3.3 is the key first step for them. Thus the proof is done as a case by case proof in which for any smooth curve $C \subset \mathbb{P}^{5}$ we distinguish the genus of C and the dimension (at most 5) of the linear space $\langle C\rangle$ spanned by C. If $\langle C\rangle$ is a plane we also distinguish if $\langle C\rangle$ is contained in Q or not. If (E, V) is the pair giving the embedding $C \hookrightarrow Q$ the integer $\operatorname{dim}\langle C\rangle$ is the dimension of the image of $\wedge^{2}(V)$ into $H^{0}\left(\mathscr{O}_{C}(1)\right)$.
Using this section and later lemmas we prove that all $M_{d, g}(Q)$ are irreducible of dimension $4 d+1-g$, smooth if $g \leq 2$, while we describe the singular locus of $M_{d, 3}(Q)$ (it contains only hyperelliptic curves). We stress again that to prove these results we use that Q is isomorphic to the Grassmannian $G(2,4)$ of all 2-dimensional linear subspaces of \mathbb{C}^{4}. In the case $(d, g)=(6,3)$ we see that all curves $C \subset W$ are hyperelliptic and that they have $h^{1}\left(\mathscr{I}_{C}(2)\right)=1$, although $2 d+1-g<\binom{7}{2}$ (Remark 4.5). In section 2 we study $M_{d, g}(Q), g \leq 3$, and check all cases with $d \leq 7$ (Lemmas 4.3, 4.4, 4.6,4.7) and all curves spanning a linear subspace of \mathbb{P}^{5} of dimension ≤ 3. In section 5 we prove that if $d \leq 14$ a general element of $M_{d, g}(Q)$ has $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ (Lemma 5.5). Lemma 5.3 do the same for a smooth hyperplane section of Q and its proof may be adapted to a singular hyperplane section of Q. In section 6 we handle the non-degenerate curves $C \in M_{d, g}$ with $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$. In the last section we handle the curves $C \in M_{d, g}$ with $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$ and spanning a hyperplane of \mathbb{P}^{5}.

2. Notation

For any $r \in\{1,2,3,4,5\}$ set $M_{d, g}(r):=\left\{C \in M_{d, g}: \operatorname{dim}(\langle C\rangle)=r\right\}$, where for any set $S \subset \mathbb{P}^{5},\langle S\rangle$ denote the linear span of S. Let \mathbb{W} be the set of all smooth complete intersection $W \subset \mathbb{P}^{5}$ of a quadric hypersurface and a quartic hypersurface. If we fix a smooth quadric hypersurface $Q \subset \mathbb{P}^{5}$, then we call \mathbb{W} the set of all smooth elements of $\left|\mathscr{O}_{Q}(4)\right|$.

3. Uses of vector bundles

The 4-dimensional smooth quadric hypersurface Q is isomorphic to the Grassmannian $G(2,4)$ of all 2-dimensional linear subspaces of \mathbb{C}^{4}. Hence for any projective curve X to get a morphism $\phi: X \rightarrow Q$ we need to take a rank 2 vector bundle E on X and a linear map $u: \mathbb{C}^{4} \rightarrow H^{0}(E)$ such that $u\left(\mathbb{C}^{4}\right)$ spans E. To explain the proof here we assume that u is injective and instead of (E, u) we use (E, V) with $V:=u\left(\mathbb{C}^{4}\right)$ (see Remark 3.1 for the case in which u is not injective). Assume that X is smooth. It is easy to check if ϕ is an embedding; indeed if we know that V spans E the map ϕ is an embedding if and only if $\operatorname{dim}\left(H^{0}(E(-Z)) \cap V\right) \leq 1$ for every degree 2 zero-dimensional scheme $Z \subset C$. Assume that ϕ is an embedding and call C its image. Let

$$
0 \rightarrow \mathscr{F}^{\vee} \rightarrow \mathscr{O}_{Q}^{\oplus 4} \rightarrow \mathscr{E} \rightarrow 0
$$

denote the tautological exact sequence of $Q=G(2,4)$ with $\operatorname{rank}(\mathscr{E})=\operatorname{rank}(\mathscr{F})=2$ and $\operatorname{det}(\mathscr{E}) \cong \operatorname{det}(\mathscr{F}) \cong \mathscr{O}_{Q}(1)$. Identifying X and C, i.e. seeing E as a vector bundle on C, we have $E=\mathscr{E}_{\mid C}$, while $F^{\vee}:=\mathscr{F}_{C C}^{\vee}$ is the kernel of the surjection $V \otimes \mathscr{O}_{C} \rightarrow E$. Note that \mathscr{F} and F are spanned.

Remark 3.1. Assume that $u: \mathbb{C}^{4} \rightarrow H^{0}(E)$ is not injective, but that $V:=\operatorname{Im}(u)$ spans E. Since E has rank 2 , then $2 \leq$ $\operatorname{dim}(V) \leq 3$ and $\operatorname{dim}(V)=2$ if and only if $E \cong \mathscr{O}_{X}^{\oplus 2}$ and hence the associated map $\phi: X \rightarrow Q$ is constant. If $\operatorname{dim}(V)=3$, then $\operatorname{Im}(\phi)$ is contained in a plane with $T \mathbb{P}^{2}(-1)$ as universal rank 2 quotient bundle and $\mathscr{O}_{\mathbb{P}^{2}}(-1)$ as universal rank 1 subbundle. Hence $\phi(X) \in M_{d, g}(2)$. This case is settled in Lemma 4.4.

Remark 3.2. Assume $E \cong \mathscr{O}_{C} \oplus L$ for some line bundle L. In this case $L \cong \mathscr{O}_{C}(1)$. Write $V=\mathbb{C} \oplus V_{1}$ with $\mathbb{C}=H^{0}\left(\mathscr{O}_{C}\right)$. Hence C is contained in a certain Schubert cell of Q, i.e., a 2-dimensional linear subspace contained in Q. Hence $C \in M_{d, g}(2)$. This case is solved in Lemma 4.4. If $F \cong \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$, then C is contained in the other family of planes contained in Q and so $C \in M_{d, g}(2)$.
In the next remark we point out some irreducibility and smoothness results for $M_{d, g}(Q)$.
Remark 3.3. Since $T Q \cong \mathscr{E} \otimes \mathscr{F}$, we have $T Q_{\mid C} \cong E \otimes F$. In many cases with low g we have $h^{1}(E \otimes F)=0$. In this case we have $h^{1}\left(N_{C, Q}\right)=0$ and hence the Hilbert scheme $\operatorname{Hilb}(Q)$ of Q at $[C]$ is smooth of dimension $4 d+1-g$, where $d:=\operatorname{deg}(C)$ and $g:=p_{a}(C)$.

Claim 1: If either $h^{1}(E)=0$ or $h^{1}(F)=0$, then $h^{1}(E \otimes F)=0$.
Proof of Claim 1: Assume for instance $h^{1}(E)=0$. Since F is spanned, the evaluation map $e_{F}: H^{0}(F) \otimes \mathscr{O}_{C} \rightarrow F$ is surjective. Set $K:=\operatorname{ker}\left(e_{F}\right)$. Since $\operatorname{dim} C=1, h^{2}(K \otimes E)=0$. Hence the exact sequence

$$
0 \rightarrow K \otimes E \rightarrow H^{0}(F) \otimes E \rightarrow E \otimes F \rightarrow 0
$$

proves Claim 1.

Claim 2: In any genus $g \geq 2$ the set of all $C \in M_{d, g}(Q)$ with $h^{1}(E)=0$ is an open, smooth and irreducible subset of $M_{d, g}(Q)$ with dimension $4 d+1-g$.

Proof of Claim 2: The openness part follows from the semicontinuity of cohomology. Since C is a curve and F is spanned, the vanishing of $h^{1}(E)$ implies the vanishing of $h^{1}(E \otimes F)$. Hence this part of $M_{d, g}(Q)$ is smooth and everywhere of dimension $4 d+1-g$. Since $g \geq 2$, any vector bundle on a smooth curve C is a flat limit of a family of stable bundles [16, Proposition 2.6]. If $h^{1}(E)=0$, then E is a flat limit of a family of stable bundles with vanishing cohomology. The claim follows from the irreducibility of \mathscr{M}_{g} and the irreducibility of the set of all stable vector bundles with rank two and degree d on a fixed smooth curve of genus $g \geq 2$. This set has dimension $4 g-3$.
(a) If $g=0$, then $h^{1}(E \otimes F)=0$, because $E \otimes F$ is spanned and hence a direct sum of line bundles of degree ≥ 0. The scheme $M_{d, 0}(Q)$ is irreducible, because both E and F are specializations with constant cohomology of the rigid bundle with rank 2 and degree d (the direct sum of the line bundle of degree $\lceil d / 2\rceil$ and the one of degree $\lfloor d / 2\rfloor$).
(b) Assume $g=1$.

Claim 3: We claim that $h^{1}(E \otimes F)=0$, unless $E \cong \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$ and $F \cong \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$.
Proof of Claim 3: Since $E \otimes F \cong F \otimes E$, it is sufficient to prove that $E \cong \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$. Since E is spanned, it is a direct sum of indecomposable and spanned vector bundles of degree ≥ 0 and if one of them has degree zero, it is a factor \mathscr{O}_{C} of E. By Atiyah's classifications of vector bundles on elliptic curves ([17, Part II]) every indecomposable vector bundle G with $\operatorname{deg}(G)>0$ satisfies $h^{1}(G)=0$, concluding the proof of Claim 3.
This part of $M_{d, 1}(Q)$ is irreducible for the following reasons. By Atiyah's classification of vector bundles on an elliptic curve ([17, Part II]), E is a specialization with constant cohomology of semistable bundles. Therefore to check that $M_{d, 1}(Q)$ is irreducible, it is sufficient to test the cases with E semistable. If E is semistable, then $h^{1}(E \otimes F)=0$ for any spanned bundle F by Claim 3. If d is odd, then we use that any two stable bundle with same rank and degree only differ by a twist with an element of $\operatorname{Pic}^{0}(C)$. If d is even, then either $E \cong R \oplus L$ with $R, L \in \operatorname{Pic}^{(d / 2)}(C)$ and $R \otimes L \cong \mathscr{O}_{C}(1)$ or E is a non-trivial extension of R by itself and $R^{\otimes 2} \cong \mathscr{O}_{C}(1)$. The latter case is a specialization of the former one (at least varying C), because $M_{d, 1}(Q)$ is smooth and equidimensional and the indecomposable bundles have a smaller dimension.
(c) Assume $g=2$. By Remark 3.2 and Lemma 4.4 we may assume $E \neq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$ and $F \neq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$.

Now assume $g=2$ and $h^{1}(E)>0$. By duality we get a non-zero map $v: E \rightarrow \omega_{C}$. Since E is spanned, $\operatorname{Im}(v)$ is spanned. Hence either v is surjective or $\operatorname{Im}(v) \cong \mathscr{O}_{C}$. The latter case is not possible, because (since E is spanned), it would give that E has \mathscr{O}_{C} as a factor. Thus v is surjective. Set $A:=\operatorname{ker}(v)$. We have $A \cong \mathscr{O}_{C}(1) \otimes \omega_{C}^{\vee}$. Since $\mathscr{O}_{C}(1)$ is very ample, we have $d>4$. Hence $h^{1}(A)=0$. If $d \geq 6, A$ is spanned. If $d \geq 7$, then $h^{1}\left(A \otimes \omega_{C}^{\vee}\right)=0$ and hence $E \cong A \oplus \omega_{C}$. Assume also $h^{1}(F)>0$. We get that F is an extension of ω_{C} by $\mathscr{O}_{C}(1) \otimes \omega_{C}$. Since $h^{1}\left(\omega_{C}^{\otimes 2}\right)=0$, we get $h^{1}(E \otimes F)=0$ and so $h^{1}\left(N_{C, Q}\right)=0$. Hence $M_{d, 2}(Q)$ is smooth and of pure dimension $4 d+1-g$. To check the irreducibility of $M_{d, 2}$, it is sufficient to prove that the bundles with $h^{1}(E)>0$ do not fill a connected component of $M_{d, 2}$. If $d \leq 6$, see Lemma 4.6 and Lemma 4.8. If $d \geq 7$, then $E \cong A \oplus \omega_{C}$ and so on a fixed curve C this set is isomorphic to $\operatorname{Pic}^{d-2}(C)$; we write g for the genus, because the same argument is needed when $g=3$. Fix $C \in \mathscr{M}_{g}$ and take $E \cong A \oplus \omega_{C}$ with $A \in \operatorname{Pic}^{2}(C)$. This family of bundles is irreducible and (since $M_{d, g}(Q)$ is smooth along all these bundles) we only need to exclude that $M_{d, g}(Q)$ has two connected components, one formed by bundles E_{1} with $h^{1}\left(E_{1}\right)=0$ and the other ones with bundles with $h^{1}(E)=1$. We have $h^{1}(E)=1$ and so $h^{0}(E)=d+3-2 g$. If $h^{1}\left(E_{1}\right)=0$, then $h^{0}\left(E_{1}\right)=d+2-2 g$. We have $\operatorname{dim}(G(4, d+1+2(1-g)))=\operatorname{dim}\left(G(4, d+2(1-g))+4\right.$. Thus each bundle E with $h^{1}(E)>0$ has the property that $H^{0}(E)$ has a family of 4-dimensional linear subspaces with higher dimension. For $g \geq 3$ it is sufficient to note that for a fixed C the possible E depends on $A \in \operatorname{Pic}^{d-g}(C)$, the set of all rank 2 stable bundles on C with degree d have dimension $4 g-3$ and $g+4<4 g-3$. When $g=2$ we also need to factorize the huge automorphism group of $A \oplus \omega_{C}$ (we have $\left.h^{0}\left(A \otimes \omega_{C}^{\vee}\right)=d-5\right)$.
(d) Assume $g=3$. By Remark 3.2 and Lemma 4.4 we may assume $E \neq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$ and $F \neq \mathscr{O}_{C} \oplus \mathscr{O}_{C}(1)$. We also assume $d \geq 8$, leaving the cases $d \leq 7$ to Remark 4.7. All cases with $h^{1}(E)=0$ are done as in Claim 2. Assume $h^{1}(E)>0$ and $h^{1}(F)>0$. As in step (b) we get non-zero maps $v_{1}: E \rightarrow \omega_{C}$ and $v_{2}: F \rightarrow \omega_{C}$ with $\operatorname{Im}\left(v_{i}\right)$ a non-trivial and spanned line bundle. Hence either v_{i} is surjective or C is not hyperelliptic and $\operatorname{Im}\left(v_{i}\right)=\omega_{C}(-p)$ for some $p \in C$ or C is hyperelliptic
and $\operatorname{Im}\left(v_{i}\right)$ is the g_{2}^{1} of C. In all cases $\operatorname{ker}\left(v_{i}\right)$ is spanned and non-special, because we assumed $d \geq 9$. The case in which $E \cong A \oplus \omega_{C}$ is handled as in step (c). If either C is not hyperelliptic or at least one among $\operatorname{Im}\left(v_{1}\right)$ and $\operatorname{Im}\left(v_{2}\right)$ is not the g_{2}^{1} on C, we have $h^{1}(E \otimes F)=0$ and so $h^{1}\left(N_{C, Q}\right)=0$. So $M_{d, 3}(Q)$ is smooth and of dimension $4 d+1-g=4 d-2$ at $[C]$. Hence $h^{1}(E \otimes F)>0$ if and only if C is hyperelliptic and $\operatorname{Im}\left(v_{1}\right)$ and $\operatorname{Im}\left(v_{2}\right)$ are the g_{2}^{1}, R, on C. In this case we have $E \cong A \oplus R$ and $F \cong B \oplus R$ with $\operatorname{deg}(A)=\operatorname{deg}(B)=d-2$ and so $h^{1}(E \times F)=1$. Therefore every irreducible component of $M_{d, 3}(Q)$ containing $[C]$ has dimension at least $4 d+1-g$ and at most $4 d+2-g$. To check that these points are singular points of $M_{d, 3}(Q)$ and hence that $M_{d, 3}(Q)$ has pure dimension $4 d-2$, it is sufficient to prove that these bundles do not fill a subset of $M_{d, 3}(Q)$ of dimension $\geq 4 d-2$; we will prove that these bundles fill in a family of dimension $\leq 4 d-3$, because this is needed to prove the irreducibility of $M_{d, 3}(Q)$. The set of these bundles only depends on the choice of a hyperelliptic curve C, the choice of $A \in \operatorname{Pic}^{d-2}(C)$ and the choice of a 4-dimensional linear subspace of $H^{0}(A \oplus R)$. We have $h^{1}(A \oplus R)=h^{1}(R)=1$ and so $h^{0}(A \oplus R)=d+2-2 g$. Since there ∞^{5} hyperelliptic curves and $\operatorname{Pic}^{d-2}(C)$ has dimension 3 , it is sufficient to use that $5+4+3<6+4 g-3$. Then the proof in step (c) handles all bundles of the form $A \oplus \omega_{C}$. It remains to handle the bundles E with C not hyperelliptic and $\operatorname{Im}\left(v_{1}\right) \cong \omega_{C}(-p)$ for some $p \in C$. Set $A:=\operatorname{ker}\left(v_{1}\right) \in \operatorname{Pic}^{d-3}(C)$. Note that $h^{1}(E)=1$ and $h^{1}(F)=0$. Hence these bundles are in the smooth part of $M_{d, 3}(Q)$. We have $h^{0}(E)=h^{0}\left(E_{1}\right)+1$ when $h^{1}\left(E_{1}\right)$ and so the Grassamannian of all 4 -dimensional linear subspaces has dimension $4+z$, where z is the dimension of all 4 -dimensional linear subspaces of $H^{0}\left(E_{1}\right)$. The bundles E_{1} depends on $4 g-3=9$ parameters. The bundles E depends on $A(g=3)$ parameters, on $p \in C$ (one parameter) and an extension classes of $\omega_{C}(-p)$ by A. For the trivial extensions we use that $4+g+1<4 g-3$. Two non-trivial, but proportional extensions, give the same bundle, up to isomorphisms. Hence the bundles E with $h^{1}\left(A \otimes \omega_{C}^{\vee}(p)\right) \leq 1$, do not fill a connected component of $M_{d, 3}(Q)$. We have $\operatorname{deg}\left(A \otimes \omega_{C}^{\vee}\right)=d-6$. Since C is not hyperelliptic, we have $h^{1}\left(A \otimes \omega_{C}^{\vee}(p)\right) \leq 1$ for all $d \geq 8$. See Remark 4.7 for the case $d \leq 7$.

4. Preliminary lemmas

The following lemma is proved as in [6, page 153].
Lemma 4.1. Fix (d, g) such that $2 d \leq 19+g$ and $h^{1}\left(\mathscr{I}_{C}(2)\right)=0$ for all $C \in M_{d, g}$. Then a general $W \in \mathbb{W}$ contains finitely many elements of $M_{d, g}$ and the incidence variety $I_{d, g} \subset M_{d, g} \times \mathbb{W}$ is irreducible.
Remark 4.2. Unfortunately in several interesting cases many curves satisfies $h^{1}\left(\mathscr{I}_{C}(2)\right)>0$ (e.g. if $2 d+1-g>15$ this is the case for all curves spanning a hyperplane of $\left.\mathbb{P}^{5}\right)$. Working with $M_{d, g}(Q)$ we only need to check if $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$. This is true for all $C \in M_{d, g}(Q)$ for some more pairs (d, g). We divide $M_{d, g}(Q)$ in the one with $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ and in the ones with $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$. We need to prove that for C in a non-empty open subset of $M_{d, g}(Q)$ we have $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ (Lemma 5.5). The last two sections of this paper tackle the case $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$.

Remark 4.3. $M_{d, g}(1) \neq \emptyset$ if and only if $d=1$ and $g=0$. By Lemma 4.1 a general W has only finitely many lines.
Lemma 4.4. $M_{d, g}(2) \neq \emptyset$ if and only if either $d=2$ and $g=0$ or $d=3$ and $g=1$. In the cases $(d, g) \in\{(2,0),(3,1)\}$ a general W contains finitely many elements of $M_{d, g}(2)$.

Proof. Since the curves in $M_{d, g}$ are non-special, $M_{d, g}(2) \neq \emptyset$ if and only if either $d=2$ and $g=0$ or $d=3$ and $g=1$. The second assertion follows from Lemma 4.1.

Remark 4.5. Set $\Gamma:=\left\{C \in M_{6,3}: C\right.$ is hyperelliptic $\}$. Γ is an irreducible divisor of the 32-dimensional variety $M_{6,3}$. Fix a smooth quadric hypersurface $Q \subset \mathbb{P}^{5}$ and set $\Gamma^{\prime}:=\Gamma \cap M_{6,3}(Q)$. Fix $C \in M_{6,3}(Q)$. We have $\operatorname{dim}(\langle C\rangle)=3$. Since Q is smooth, $\langle C\rangle \nsubseteq Q$ and so $Q^{\prime}:=\langle C\rangle$ is an irreducible quadric surface containing C. Since all even degree smooth curves of a quadric cone of \mathbb{P}^{3} are complete intersection [18, V Ex. 2.9], Q^{\prime} is a smooth quadric. Since $(d, g)=(6,3)$, then $C \in\left|\mathscr{O}_{Q^{\prime}}(2,4)\right| \cup\left|\mathscr{O}_{Q^{\prime}}(4,2)\right|$ and so C is hyperelliptic. Hence no $C \in M_{6,3}(Q) \backslash \Gamma^{\prime}$ is contained in some $W \in \mathbb{W}$. Conversely, any hyperelliptic curve X may be embedded in $Q^{\prime}=\mathbb{P}^{1} \times \mathbb{P}^{1}$ as an element of $\left|\mathscr{O}_{Q^{\prime}}(2,4)\right|$ using the g_{2}^{1}, R, of X to get one morphism $X \rightarrow \mathbb{P}^{1}$ and a general $A \in \operatorname{Pic}^{4}(X)$ for the other map $X \rightarrow \mathbb{P}^{1}$ so that $A \otimes R$ is very ample). Hence for a fixed X the set of all such embeddings is parametrized by an irreducible variety of dimension 3. Fix $C \in \Gamma^{\prime}$, say with $C \in\left|\mathscr{O}_{Q^{\prime}}(2,4)\right|$. We have $N_{C, Q} \cong \mathscr{O}_{C}(1)^{\oplus 2} \oplus \mathscr{O}_{C}(2,4)$ and hence $h^{1}\left(N_{C, Q}\right)=0$. So $M_{6,3}(Q)$ is smooth at $[C]$ and of dimension $4 d+1-g=22$. Since $\left|\mathscr{O}_{Q^{\prime}}(2,4)\right|$ is irreducible and as $\langle C\rangle$ we may take any $\mathbb{P}^{3} \subset \mathbb{P}^{5}$ transversal to $Q, M_{6,3}(Q)$ is irreducible. Call $\mathscr{I} \subset \Gamma^{\prime} \times \mathbb{W}$ the incidence correspondence and let $\pi_{1}: \mathscr{I} \rightarrow \Gamma^{\prime}$ and $\pi_{2}: \mathscr{I} \rightarrow \mathbb{W}$ denote the projections. We have $h^{1}\left(Q, \mathscr{I}_{C, Q}(4)\right)=0$, because $h^{1}\left(Q^{\prime}, \mathscr{I}_{C, Q^{\prime}}(4)\right)=h^{1}\left(Q^{\prime}, \mathscr{O}_{Q^{\prime}}(2,0)\right)=0$. Lemma 4.1 concludes the proof of the theorem for $(d, g)=(6,3)$. In this case the incidence correspondence is irreducible, because the set of all hyperelliptic curves is irreducible and all these curves C have the same $h^{0}\left(\mathscr{I}_{C}(2)\right)$ and $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ (and so the incidence correspondence for $M_{6,3}(Q)$ is irreducible).
Lemma 4.6. We have $M_{d, g}(3) \neq \emptyset$ if and only if $d \geq g+3$. If $g \leq 3$, then a general $W \in \mathbb{W}$ contains some $C \in M_{d, g}(3)$ only if $(d, g) \in\{(3,0),(4,1),(5,2),(6,3)\}$ and in each of these cases W contains only finitely many curves C.

Proof. Fix a smooth hyperquadric $Q, C \in M_{d, g}(3)$ and $W \in \mathbb{W}$ containing C. Set $U:=\langle C\rangle$. Since Q is smooth, $U \nsubseteq Q$ and hence $Q^{\prime}:=Q \cap U$ is a quadric surface containing C. Since the irreducible curve C spans U and $C \subset Q^{\prime}, Q^{\prime}$ is irreducible. If Q^{\prime} is a quadric cone, then C is arithmetically normal [18, V Ex. 2.9] and hence $h^{1}\left(\mathscr{I}_{C}(t)\right)=0$ for $t=2,4$, so that we may apply Lemma 4.1 to these curves) and we find pairs $(d, g) \in\{(3,0),(4,1),(5,2)\}$. If Q^{\prime}, up to a change of the ruling of Q^{\prime} we get all $C \in\left|\mathscr{O}_{Q^{\prime}}(2, g+1)\right|$ and so $d=g+3$. If $g \leq 4$ we have $h^{1}\left(\mathscr{I}_{C}(4)\right)=h^{1}\left(Q^{\prime}, \mathscr{I}_{C, Q^{\prime}}(4)\right)=h^{1}\left(Q^{\prime}, \mathscr{O}_{Q^{\prime}}(2,4-g-1)\right)=0$.

Lemma 4.7. Theorem 1.1 is true for $g=3$ and $d \leq 7$.
Proof. Take $g=3$ and $d \leq 7$. Since $h^{1}\left(\mathscr{O}_{C}(1)\right)=0$, we have $6 \leq d \leq 7$. Remark 4.5 and Lemma 4.6 solve the case $d=6$ and the case $d=7$ in which $C \in M_{7,3}(3)$. Hence we may assume $d=7$ and $\operatorname{dim}(\langle C\rangle)=4$. In this case C is linearly normal in its linear span and so $h^{1}\left(\mathscr{I}_{C}(t)\right)=0$ for all $t \in \mathbb{N}$. Apply Lemma 4.1.

Lemma 4.8. Fix $C \in M_{d, g}(Q)(r)$ with $d \leq 7, g \leq 2$ and $r=4,5$. Then $h^{1}\left(N_{C, Q}\right)=h^{1}\left(\mathscr{I}_{C}(4)\right)=0$. Moreover, these cases only contribute finitely many smooth curves to a general $W \in \mathbb{W}$.

Proof. Since $g \leq 2$, we have $h^{1}\left(N_{C, Q}\right)=0$. Since $d<4+r$, we have $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ [19, Theorem at page 492] and hence these cases contributes only finitely smooth curves to a general $W \in \mathbb{W}$.

Lemma 4.9. A general $W \in \mathbb{W}$ contains no singular conic (reducible or a double line).
Proof. Take any conic $D \subset W$. Since $h^{1}\left(\mathscr{I}_{D, \mathbb{P}^{5}}(4)\right)=0$, we have $h^{1}\left(Q, \mathscr{I}_{D, Q}(4)\right)=0$ and hence $h^{0}\left(Q, \mathscr{I}_{D, Q}(4)\right)=h^{0}\left(D, \mathscr{I}_{D, Q}(4)\right)$. Either D is contained in a plane contained in Q or it is the complete intersection of Q and a plane. In both cases we have $h^{1}\left(N_{D, Q}\right)=0$. Thus a dimensional count gives that a general $W \in \mathbb{W}$ contains only finitely many conics and that all these conics are smooth.

We recall the following well-known consequence of the bilinear lemma (it is a key tool in [2]).
Lemma 4.10. Fix integers $t \geq 2, r \geq 3$ and an integral and non-degenerate curve $T \subset \mathbb{P}^{r}$ such that $h^{1}\left(\mathscr{I}_{T}(t)\right)>0$. Fix a linear subspace $V \subseteq H^{0}\left(\mathscr{O}_{\mathbb{P}^{r}}(1)\right)$. Assume that $h^{1}\left(M, \mathscr{I}_{M \cap T, M}(t)\right)=0$ for every hyperplane $M \in|V|$. Then $h^{1}\left(\mathscr{I}_{T}(t-1)\right) \geq$ $h^{1}\left(\mathscr{I}_{T}(t)\right)+\operatorname{dim}(V)-1$.

Proof. For any hyperplane $M \subset \mathbb{P}^{r}$ we have an exact sequence

$$
0 \rightarrow \mathscr{I}_{T}(t-1) \rightarrow \mathscr{I}_{T}(t) \rightarrow \mathscr{I}_{T \cap M, M}(t) \rightarrow 0
$$

Now assume that V contains an equation of M. Since $h^{1}\left(M, \mathscr{I}_{T, M}(t)\right)=0$, the map $H^{1}\left(\mathscr{I}_{T}(t-1)\right) \rightarrow H^{1}\left(\mathscr{I}_{T}(t)\right)$ is surjective and hence its dual $e_{M}: H^{1}\left(\mathscr{I}_{T}(t)\right)^{\vee} \rightarrow H^{1}\left(\mathscr{I}_{T}(t-1)\right)^{\vee}$ is injective. Taking the equations of all hyperplanes we get a bilinear map map $u: H^{1}\left(\mathscr{I}_{T}(t)\right)^{\vee} \times V \rightarrow H^{1}\left(\mathscr{I}_{T}(t-1)\right)^{\vee}$, which is injective with respect to the second variables, i.e. for every non-zero linear form ℓ the map $u_{\mid H^{1}\left(\mathscr{I}_{T}(t)\right)^{\vee} \times\{\ell\}}$ is injective (it is e_{M} with $M:=\{\ell=0\}$). Hence if $(a, \ell) \in H^{1}\left(\mathscr{I}_{T}(t)\right)^{\vee} \times V$ with $a \neq 0$ and $\ell \neq 0$, then $u(a, \ell)=e_{M}(a) \neq 0$. Therefore the bilinear map u is non-degenerate in each variable. Hence $h^{1}\left(\mathscr{I}_{T}(t-1)\right) \geq h^{1}\left(\mathscr{I}_{T}(t)\right)+\operatorname{dim}(V)-1$ by the bilinear lemma.

5. Good postulation in degree 4

In this section we prove for certain d, g the existence of a non-degenerate $C \in M_{d, g}(Q)$ with $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$.
Lemma 5.1. Fix $C \in M_{d, g}(Q)$ such that $h^{1}\left(N_{C, Q}\right)=0$. Take an integer $t>0$ and a smooth rational curve $T \subset Q$ such that $\operatorname{deg}(C \cap T)=1$ and $\operatorname{deg}(T)=t$. Then $h^{1}\left(N_{C \cup T, Q}\right)=0$ and $C \cup T$ is a flat limit of elements of $M_{d+t, g}(Q)$.

Proof. Set $\{p\}:=C \cap T$. By assumption $h^{1}\left(\mathscr{O}_{C}(1)\right)=0$. Since Q is homogeneous, its tangent bundle is spanned. Hence $N_{T, Q}$ is a direct sum of line bundles of degree ≥ 0. Therefore $h^{1}\left(N_{T, Q}(-p)\right)=0$. A Mayer-Vietoris exact sequence gives $h^{1}\left(\mathscr{O}_{C \cup T}(1)\right)=0$. Hence if $C \cup T$ is smoothable inside Q, then it is a flat limit of a family of elements of $M_{d+t, g}(Q)$. Since $h^{1}\left(N_{T, Q}(-p)\right)=0$, as in [20, Theorem 4.1] we get that $C \cup T$ is smoothable inside Q and $h^{1}\left(N_{C \cup T, Q}\right)=0$.

Lemma 5.2. For all $g \in\{0,1,2,3\}$ there is a non-degenerate $C \in M_{g+5, g}(Q)$ and any such C is projectively normal.
Proof. Let $X \subset \mathbb{P}^{5}$ be a linearly normal smooth curve of genus $g \leq 3$ and degree $g+5$. Since $g+5 \geq 2 g+1, X$ is projectively normal [21]. It is sufficient to prove that some X is contained in a smooth quadric hypersurface. Since $g \leq 3$, we start with a smooth quadric surface $Q_{1} \subset Q$, a smooth curve $A \in\left|\mathscr{I}_{Q_{1}}(2, g+1)\right|$ and then we apply the case $t=2$ of Lemma 5.1.

Lemma 5.3. Let $Q^{\prime} \subset \mathbb{P}^{4}$ be a smooth quadric hypersurface. Fix integers d, g such that $0 \leq g \leq 3$ and $d \geq g+4$. Let $M_{d, g}\left(Q^{\prime}\right)$ be the set of all non-special smooth curves $C \subset Q^{\prime}$ of genus g and degree d.
(a) There is $C \in M_{g+4, g}\left(Q^{\prime}\right)$ which is projectively normal.
(b) If either $g+4 \leq d \leq g+6$ or $g \leq 2$ and $d=g+7$ or $g=0$ and $d=8$, then there is $C \in M_{d, g}\left(Q^{\prime}\right)$ such that $h^{1}\left(Q^{\prime}, \mathscr{I}_{C, Q^{\prime}}(3)\right)=0$.
(c) If either $g+4 \leq d \leq g+9$, or $g \leq 2$ and $d=g+10$ or $g=0$ and $d=11,12$, then there is $C \in M_{d, g}\left(Q^{\prime}\right)$ such that $h^{1}\left(Q^{\prime}, \mathscr{I}_{C, Q^{\prime}}(4)\right)=0$.

Proof. The proof of part (a) is similar to the one Lemma 5.2. The same proof also gives the case $d=g+4$ of part (b).
(i) Let $A \subset Q^{\prime}$ be a smooth projectively normal curve of genus g and degree $g+4$. Let $Q_{1} \subset Q^{\prime}$ be a general hyperplane section. Q_{1} is a smooth quadric surface and $S:=A \cap Q_{1}$ is a subset of Q_{1} with degree $g+4$, in uniform position and spanning the 3-dimensional linear space spanned by Q_{1}. Fix $p \in S$ and set $S^{\prime}:=S \backslash\{p\}$. Let B be a general element of $\left|\mathscr{I}_{p, Q_{1}}(1,2)\right|$. Lemma 5.1 shows that $A \cup B$ is smoothable inside Q^{\prime}. Hence to prove the case $d=g+7, g \leq 2$, of part (b) it is sufficient to prove that $h^{1}\left(Q^{\prime}, \mathscr{I}_{A \cup B, Q^{\prime}}(3)\right)=0$. We have $\operatorname{Res}_{Q_{1}}(A \cup B)=A$. Since $h^{1}\left(Q^{\prime}, \mathscr{I}_{A, Q^{\prime}}(2)\right)=0$, the case $t=3$ of the residual sequence

$$
0 \rightarrow \mathscr{I}_{A, Q^{\prime}}(t-1) \rightarrow \mathscr{I}_{A \cup B, Q^{\prime}}(t) \rightarrow \mathscr{I}_{(A \cup B) \cap Q_{1}, Q_{1}}(t) \rightarrow 0
$$

shows that it is sufficient to prove that $h^{1}\left(Q_{1}, \mathscr{J}_{(A \cup B) \cap Q_{1}, Q_{1}}(3)\right)=0$. We have $Q_{1} \cap(A \cup B)=S^{\prime} \cup B$ and hence it is sufficient to prove that $h^{1}\left(Q_{1}, \mathscr{I}_{S^{\prime}, Q^{\prime}}(2,1)\right)=0 . S^{\prime}$ is a set of $g+3 \leq 6$ points of Q_{1}. Assume $e:=h^{1}\left(Q_{1}, \mathscr{I}_{S^{\prime}, Q_{1}}(2,1)\right)>0$. Hence $h^{0}\left(Q, \mathscr{I}_{S^{\prime}, Q_{1}}(2,1)\right)=e+3-g$. Since S is in uniform position, we get $h^{0}\left(Q_{1}, \mathscr{I}_{S, Q_{1}}(2,1)\right)=e+g-3$. Fix a general $D \in\left|\mathscr{I}_{S, Q_{1}}(2,1)\right|$. First assume that D is irreducible. For any set $E \subset D$ with $\#(E)=5$, we have $h^{0}\left(Q_{1}, \mathscr{I}_{D, Q_{1}}(2,1)\right)=$ $h^{0}\left(Q_{1}, \mathscr{I}_{E, Q_{1}}(2,1)\right)$ and hence $h^{1}\left(Q_{1}, \mathscr{I}_{E, Q_{1}}(2,1)\right)=0$. If $g \leq 2$ we may take $S^{\prime} \subseteq E$. Now assume that D is reducible. Since S is in uniform position, we may assume that no 2 of the points of S are contained in a line of Q_{1}. Hence we get the existence of a smooth conic $D_{1} \subset Q_{1}$ containing at least $g+4$ points of S^{\prime}. Since S is in uniform position, we get $S \subset D_{1}$. If $g=3$ we use instead of B a curve $B^{\prime} \in\left|\mathscr{I}_{p, Q_{1}}(1,1)\right|$ (in this case the equality $h^{1}\left(Q_{1}, \mathscr{I}_{S^{\prime}, Q_{1}}(2,2)\right)=0$ may be proved using an elliptic curve $D^{\prime} \in\left|\mathscr{O}_{Q_{1}}(2,2)\right|$, because $h^{1}\left(D, \mathscr{I}_{S^{\prime}, D_{1}}(2,2)\right)=0$ for any set $E \subset D$ with $\#(E) \leq 7$. Now assume $g=0$ and $d=8$. Instead of B we take a general $B_{1} \in\left|\mathscr{I}_{p, Q_{1}}(1,3)\right|$. It is sufficient to prove that $h^{1}\left(Q, \mathscr{I}_{S^{\prime}, Q_{1}}(2,0)\right)=0$. We have $\#\left(S^{\prime}\right)=3=h^{0}\left(Q_{1}, \mathscr{O}_{Q_{1}}(0,2)\right)$, and it is sufficient to use again by the uniform position that no two points of S are on a line of Q_{1}.
(ii) Now we prove part (c). Since in part (b) we get non-special curves, the same curves C have $h^{1}\left(Q^{\prime}, \mathscr{I}_{C, Q^{\prime}}(4)\right)=0$ by the Castelnuovo-Mumford's lemma. Hence we may assume that either $d \geq g+8$ and $g \leq 2$, or $d \geq g+7$ and $g=3$ or $g=0$ and $d \geq 9$. Set $t:=8$ if $g=0, t:=g+7$ if $g=1,2$ and $t:=9$ if $g=3$. By part (b) there is $A \subset M_{t, g}\left(Q^{\prime}\right)$ such that $h^{1}\left(Q^{\prime}, \mathscr{I}_{A, Q^{\prime}}(3)\right)=0$. Take a general hyperplane section Q_{1} of Q^{\prime} and set $S:=Q_{1} \cap S$. S^{\prime} is a subset of Q_{1} with cardinality t, spanning a \mathbb{P}^{3} and in uniform position. Fix $p \in S$ and set $S^{\prime}:=S \backslash\{p\}$. Fix a general $B \in\left|\mathscr{I}_{p, Q_{1}}(1,2)\right|$. As in step (i) it is sufficient to prove that $h^{1}\left(Q_{1}, \mathscr{J}_{S^{\prime}, Q}(3,2)\right)=0$. In all cases we have $t-1 \leq 8$. The uniform position and the non-degeneracy of S^{\prime} imply that no line of Q_{1} contains at least 2 points of S^{\prime} and no conic of Q_{1} contains at least 4 points of S^{\prime}.
Now take $g=0$. In this case A may be dismantled into a union of lines. Fix a general line $L \subset Q^{\prime}$. For each $q \in L$. The union of all lines of Q^{\prime} trough q is the 2-dimensional quadric cone $T_{q}\left(Q^{\prime}\right) \cap Q^{\prime}$. For a general $q \in L$ the curve $T_{q}\left(Q^{\prime}\right) \cap Q_{1}$ is a smooth element D_{q} of $\left|\mathscr{O}_{Q_{1}}(1,1)\right|$ and a general line in Q^{\prime} passing through q meets Q_{1} at a general point of Q_{1}. Hence we get $h^{0}\left(Q_{1}, \mathscr{I}_{S^{\prime}}(3,1)\right)=0$ if $\# S^{\prime} \leq 8$, i.e. if we start with a general $A \in_{d, 0}\left(Q^{\prime}\right)$ with $d \leq 9$. Thus we get the case $g=0$ of part (c).

Lemma 5.4. Let $Q^{\prime} \subset \mathbb{P}^{4}$ be a smooth quadric hypersurface. Fix a set $S \subset Q^{\prime}$ with $\# S \leq 10$ and S is in linearly general position. Take $p \in S$ and set $S^{\prime}:=S \backslash\{p\}$.
(a) If $1 \leq d \leq 4$, then there is $C \in M_{d, 0}\left(Q^{\prime}\right)$ such that $C \cap S=\{p\}$ and $h^{1}\left(Q^{\prime}, \mathscr{I}_{S^{\prime} \cup C, Q^{\prime}}(3)\right)=0$.
(b) If $1 \leq d \leq 9$, then there is $C \in M_{d, 0}\left(Q^{\prime}\right)$ such that $C \cap S=\{p\}$ and $h^{1}\left(Q^{\prime}, \mathscr{I}_{S^{\prime} \cup C, Q^{\prime}}(4)\right)=0$.

Proof. Let Q_{1} be a general hyperplane section of Q^{\prime} containing $p . Q_{1}$ is smooth and $Q_{1} \cap S=\{p\}$. We have $h^{1}\left(Q^{\prime}, \mathscr{I}_{S^{\prime}, Q^{\prime}}(2)\right)=$ 0 , because $\# S^{\prime} \leq 9$ [22, Theorem 3.2]. To prove part (a) it is sufficient to take any smooth $C \in\left|\mathscr{I}_{p, Q_{1}}(1,3)\right|$. By CastelnuovoMumford's lemma to prove part (b) we may assume $d>4$. Fix a general $A \in M_{4,0}\left(Q^{\prime}\right)$ containing p. Part (a) gives $h^{1}\left(Q^{\prime}, \mathscr{I}_{A \cup S^{\prime}, Q^{\prime}}(3)\right)=0$. Fix a general hyperplane section $Q_{2} \subset Q^{\prime}$. We have $Q_{2} \cap S=\emptyset$ and the set $E:=Q_{2} \cap A$ is in linearly general position in the \mathbb{P}^{3} spanned by Q_{2}. Fix $q \in E$ and set $E^{\prime}:=E \backslash\{q\}$. Fix a general $B \in\left|\mathscr{I}_{q, Q_{2}}(1,4)\right|$. By Lemma 5.1 it is sufficient to prove that $h^{1}\left(\mathscr{I}_{S^{\prime} \cup A \cup B, Q^{\prime}}(4)\right)=0$. Since $\operatorname{Res}_{Q_{1}}\left(S^{\prime} \cup A \cup B\right)=S^{\prime} \cup A$ and $h^{1}\left(\mathscr{I}_{A \cup S^{\prime}, Q^{\prime}}(3)\right)=0$, it is sufficient to prove that $h^{1}\left(Q_{1}, \mathscr{I}_{E^{\prime} \cup B, Q_{1}}(4)\right)=0$, i.e. $h^{1}\left(Q^{\prime}, \mathscr{I}_{E^{\prime}}(3,0)\right)=0$. This is true, because E^{\prime} is formed by 3 points in uniform position.

Lemma 5.5. (a) For all integers d, g such that $0 \leq g \leq 3$ and $g+5 \leq d \leq g+9$ there is a non-degenerate $C \in M_{d, g}(Q)$ such that $h^{1}\left(\mathscr{I}_{C}(3)\right)=0$.
(b) For all integers d, g such that either $0 \leq g \leq 3$ and $g+5 \leq d \leq 14$ there is a non-degenerate $C \in M_{d, g}(Q)$ such that $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$.
Proof. Fix a projectively normal $A \in M_{g+5,5}(Q)$. Fix a general hyperplane section $Q^{\prime} \subset Q$. Since $h^{1}\left(Q, \mathscr{I}_{A, Q}(4)\right)=0$, we may assume $d>g+5$. The set $S:=A \cap Q_{1}$ is in linearly general position. Fix $p \in S$ and set $S^{\prime}:=S \backslash\{p\}$. Apply part (b) of Lemma 5.4 to get $T \in M_{d-g-5,0}\left(Q^{\prime}\right)$ such that $h^{1}\left(Q^{\prime}, \mathscr{I}_{S^{\prime} \cup T}(4)\right)=0$. Since $h^{1}\left(Q, \mathscr{I}_{A \cup T}(3)\right)=0$ and $(A \cup T) \cap Q^{\prime}=S^{\prime} \cup T$, the residual sequence of Q^{\prime} in Q gives $h^{1}\left(Q, \mathscr{I}_{A \cup B}(4)\right)=0$. Use Lemma 5.1 and the semicontinuity theorem for cohomology to prove part (b). For part (a) we take T of degree ≤ 4 and use that $h^{1}\left(Q, \mathscr{I}_{A, Q}(2)\right)=0$.

Remark 5.6. A general element of $M_{d, 0}\left(Q^{\prime}\right)\left(\right.$ resp. $\left.M_{d, 0}(Q)\right)$ is a deformation of a tree contained in Q^{\prime} (resp. Q). Using this observation we may improve parts (a) and (b) of Lemma 5.5, but for a range of integers d out of reach with our tools for the Clemen's conjecture.

6. Non-degenerate curves

In this section we consider non-degenerate curves C of $M_{d, g}$ or of $M_{d, g}(Q)$. By [19, Theorem at page 492] we have $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$ if either $d \leq 8$ or $d=9$ and $g>0$ or $d=9, g=0$ and there is no line $R \subset \mathbb{P}^{5}$ with $\operatorname{deg}(R \cap C) \geq 6$. By Lemma 5.5, the irreducibility of $M_{d, g}(Q)$ and the equality $\operatorname{dim}\left(M_{d, g}(Q)\right)=4 d+1-g$ we may assume $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$.

Lemma 6.1. Assume $d \leq 11$ and fix a non-degenerate $C \in M_{d, g}$ such that there is no line $R \subset \mathbb{P}^{5}$ with $\operatorname{deg}(R \cap C) \geq 6$. Then $h^{1}\left(M, \mathscr{I}_{C \cap M, M}(4)\right)=0$ for every hyperplane $M \subset \mathbb{P}^{5}$.

Proof. Fix a hyperplane $M \subset \mathbb{P}^{5}$. Since C spans $\mathbb{P}^{5}, Z:=C \cap M$ is a curvilinear scheme spanning M. Assume $h^{1}\left(M, \mathscr{I}_{Z, M}(4)\right)>$ 0 . Let N be a hyperplane of N with maximal $a:=\operatorname{deg}(Z \cap N)$. Since Z spans M, we have $a \geq 4$. Assume for the moment $a=4$, i.e. assume that Z is in linearly general position. Since $d \leq 17$, we have $h^{1}\left(M, \mathscr{I}_{Z, M}(4)\right)=0$ [22, Theorem 3.2]. Hence we may assume $a \geq 5$.
(a) First assume $h^{1}\left(N, \mathscr{I}_{\text {Z } \cap, N}(4)\right)>0$. Since Z spans M, we have $a \leq d-1 \leq 10$. The maximality property of N implies that $Z \cap N$ spans N. Hence $\operatorname{deg}(Z \cap U) \leq 9$ for every plane $U \subset N$. Fix a plane $U \subset N$ with $b:=\operatorname{deg}(Z \cap U)$ is maximal. If $h^{1}\left(U, \mathscr{I}_{Z \cap U, U}(4)\right)>0$, then there is a line $R \subset U$ with $\operatorname{deg}(R \cap Z) \geq 6$. Hence we may assume $h^{1}\left(U, \mathscr{I}_{Z \cap U, U}(4)\right)=0$. The residual sequence of U in N gives $h^{1}\left(N, \mathscr{I}_{\operatorname{Res}(Z \cap N), N}(3)\right)>0$. We have $\operatorname{deg}\left(\operatorname{Res}_{U}(Z \cap N)\right) \leq 10-b \leq 7$. By [23, Lemma 34] there is a line $L \subset N$ such that $\operatorname{deg}\left(L \cap \operatorname{Res}_{U}(Z)\right) \geq 5$. Hence $b \geq 6$. Hence $10-b>\operatorname{deg}\left(L \cap \operatorname{Res}_{U}(Z)\right)$, a contradiction.
(b) Now assume $h^{1}\left(N, \mathscr{I}_{\text {Z } \cap N}(4)\right)=0$. The residual exact sequence

$$
0 \rightarrow \mathscr{I}_{\operatorname{Res}_{N}(Z), M}(3) \rightarrow \mathscr{I}_{Z, M}(4) \rightarrow \mathscr{I}_{Z \cap N, N}(4) \rightarrow 0
$$

gives $h^{1}\left(M, \mathscr{I}_{\operatorname{Res}_{S}(Z), M}(3)\right)>0$. Since $d-a \leq 7$, then there is a line $L \subset M$ such that $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right) \geq 5$ [23, Lemma 34]. By assumption we have $\operatorname{deg}(L \cap Z)=5$. Since $\operatorname{deg}(Z \cap L) \geq 5$, the maximality property of a gives $a \geq 7$. Since $d-a \geq 5$, we get $d \geq 12$, a contradiction.

Lemm 6.2. Assume $d \leq 11$ and fix a non-degenerate $C \in M_{d, g}$ such that there is no line $R \subset \mathbb{P}^{5}$ with $\operatorname{deg}(R \cap C) \geq 5$, no conic $D \subset \mathbb{P}^{5}$ with $\operatorname{deg}(D \cap C) \geq 8$, no plane cubic T with $\operatorname{deg}(T \cap C)=9$ and $C \cap T \in\left|\mathscr{O}_{T}(3)\right|$. Then $h^{1}\left(M, \mathscr{\mathscr { I }}_{C \cap M, M}(3)\right)=0$ for every hyperplane $M \subset \mathbb{P}^{5}$.

Proof. Fix a hyperplane $M \subset \mathbb{P}^{5}$. Since C spans $\mathbb{P}^{5}, Z:=C \cap M$ is a curvilinear scheme spanning M. Assume $h^{1}\left(M, \mathscr{I}_{Z, M}(3)\right)>$ 0 . Let N be a hyperplane of N with maximal $a:=\operatorname{deg}(Z \cap N)$. Since Z spans M, we have $a \geq 4$. Assume for the moment $a=4$, i.e. assume that Z is in linearly general position. Since $d \leq 13$, we have $h^{1}\left(M, \mathscr{I}_{Z, M}(3)\right)=0$ [22, Theorem 3.2]. Hence we may assume $a \geq 5$.
(a) First assume $h^{1}\left(N, \mathscr{I}_{Z \cap N, N}(3)\right)>0$. Since Z spans M, we have $a \leq d-1 \leq 10$. The maximality property of N implies that $Z \cap N$ spans N. Hence $\operatorname{deg}(Z \cap U) \leq 9$ for every plane $U \subset N$. Let $U \subset N$ be a plane such that $b:=\operatorname{deg}(U \cap Z)$ is maximal. If $h^{1}\left(U, \mathscr{I}_{Z \cap U, U}(3)\right)>0$, then $\left[24\right.$, Corollaire 2] shows the existence of either R or D or T. Now assume $h^{1}\left(U, \mathscr{J}_{U \cap Z, U}(3)\right)=0$. The residual sequence of U gives $h^{1}\left(N, \mathscr{\mathcal { I }}_{\operatorname{Res} U(N \cap Z), N}(2)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{U}(N \cap Z)\right) \leq 10-b \leq 7$, either there is a line $L \subset N$ with $\operatorname{deg}\left(L \cap \operatorname{Res}_{U}(Z)\right) \geq 4$ or there is a conic $D \subset N$ with $\operatorname{deg}(D \cap Z) \geq 6$. The latter case is impossible, because it implies $a-b \geq 6$ and $b \geq 6$, a contradiction. Hence there is a line L with $\operatorname{deg}\left(L \cap \operatorname{Res}_{U}(Z)\right) \geq 4$. To prove the lemma we may assume $\operatorname{deg}(Z \cap L)=4$. Let $E \subset N$ be a plane containing L and with maximal $c:=\operatorname{deg}(E \cap Z)$ among the planes containing L. If $h^{1}\left(E, \mathscr{I}_{E \cap z, E}(3)\right)>0$, then [24, Corollaire 2] shows the existence of either R or D or T. Now assume $h^{1}\left(E, \mathscr{I}_{E \cap Z, E}(3)\right)=0$. The residual sequence of E gives $h^{1}\left(N, \mathscr{I}_{\operatorname{Res}_{E}(Z \cap N), N}(2)\right)>0$. Since $c \geq 5$, there is a line $R \subset N$ such that $\operatorname{deg}\left(R \cap \operatorname{Res}_{U}(Z \cap N) \geq 4\right.$. To prove the lemma we may assume that $\operatorname{deg}(R \cap Z)=4$. First assume $R \cap L=\emptyset$. Let $Q^{\prime} \subset N$ be a general quadric containing $L \cup R$. Note that Q^{\prime} is a smooth quadric. Since Z is curvilinear and $\mathscr{I}_{L \cup R, N}(2)$ is spanned, we have $Z \cap Q^{\prime}=Z \cap(R \cup L)$. Since $h^{1}\left(Q^{\prime}, \mathscr{I}_{Z \cap\left(L \cup R, Q^{\prime}\right.}(3)\right)=0$, we get $h^{1}\left(N, \mathscr{I}_{\operatorname{Res}_{Q^{\prime}}(Z \cap N), N}(1)\right)>0$, contradicting the inequality $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}(Z \cap N)\right) \leq 2$.
Now assume $R \cap L \neq \emptyset$ and $R \neq L$. Since $\operatorname{deg}\left(R \cap \operatorname{Res}_{E}(Z \cap N)\right) \geq 4$ and $E \supset L$, we have $\operatorname{deg}(Z \cap(R \cup L)) \geq 8$ and so we may take $D:=R \cup L$.
Now assume $R=L$. We may take $Z^{\prime} \subseteq Z \cap N$ minimal among the subschemes such that $h^{1}\left(N, \mathscr{I}_{Z^{\prime}, M}(3)\right)>0$. Let Q^{\prime} be a quadric surface containing L in its singular locus. Since $\operatorname{deg}\left(\operatorname{Res}_{Q^{\prime}}\left(Z^{\prime}\right)\right) \leq 10-4-4=2$, we have $h^{1}\left(M, \mathscr{I}_{\operatorname{Res}_{Q}\left(Z^{\prime}\right)}(1)\right)=0$. Therefore the residual exact sequence of Q^{\prime} gives $h^{1}\left(Q^{\prime}, \mathscr{I}_{Z^{\prime} \cap Q^{\prime}, Q^{\prime}}(t)\right)>0$. The minimality of Z^{\prime} gives $Z^{\prime} \subset Q$. Since Z^{\prime} is curvilinear we get $\operatorname{deg}\left(Z^{\prime}\right)=8$ and that each connected component γ of Z^{\prime} has even degree with $\operatorname{deg}(\gamma \cap L)=\operatorname{deg}(\gamma) / 2$. Hence there is a plane $N^{\prime} \supset L$ with $\operatorname{deg}\left(N \cap Z^{\prime}\right)>\operatorname{deg}\left(Z^{\prime} \cap L\right)=4$. We get $\operatorname{deg}\left(\operatorname{Res}_{N^{\prime}}\left(Z^{\prime}\right)\right) \leq 3$ and hence by a residual exact sequence of N^{\prime} gives $h^{1}\left(N, \mathscr{I}_{Z^{\prime}, M}(3)\right)=0$, a contradiction.
(b) Now assume $h^{\mathrm{i}}\left(N, \mathscr{I}_{\text {ZกN }}(3)\right)=0$. A twist of the residual exact sequence in step (b) of the proof of Lemma 6.1 gives $h^{1}\left(M, \mathscr{I}_{\operatorname{Res}_{N}(Z), M}(2)\right)>0$. If $d-a \leq 5$, then there is a line $L \subset M$ such that $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right) \geq 4$ [23, Lemma 34]. By assumption we have $\operatorname{deg}(L \cap Z)=4$. Since $\operatorname{deg}(Z \cap L) \geq 4$, the maximality property of a gives $a \geq 6$. Since $d-a \geq 5$, we also get $d=11$. Let $U \subset M$ be a hyperplane such that $U \supset L$ and $\operatorname{deg}(U \cap Z)$ is maximal. If $h^{1}\left(U, \mathscr{I}_{U \cap Z, U}(3)\right)>0$, then we may repeat part (a). Now assume $h^{1}\left(U, \mathscr{I}_{U \cap Z, U}(3)\right)=0$. The residual sequence of U gives $h^{1}\left(N, \mathscr{I}_{\operatorname{Res} S_{U}(Z), N}(2)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{E}(Z)\right) \leq 4$, there is a line $R \subset N$ with $R \supset \operatorname{Res}_{E}(Z)$ and $\operatorname{deg}\left(\operatorname{Res}_{E}(Z)\right)=4$. We conclude as in step (a).

Lemma 6.3. Let $X \subset \mathbb{P}^{5}$ be an integral and non-degenerate curve of degree $d \leq 13$. Then $h^{1}\left(H, \mathscr{I}_{C \cap H, H}(t)\right)=0, t=3,4$, for a general hyperplane $H \subset \mathbb{P}^{5}$.

Proof. The scheme $C \cap H$ spans H and it is in uniform position and in particular it is in linearly general position. Apply [22, Theorem 3.2].

Lemma 6.4. Let $X \subset \mathbb{P}^{5}$ be an integral and non-degenerate curve of degree $d \geq 9$ (resp. $5 \leq d \leq 8$). Then $h^{0}\left(\mathscr{I}_{X}(2)\right) \leq 6$ (resp. $\left.h^{0}\left(\mathscr{I}_{X}(2)\right) \leq 15-d\right)$.

Proof. Fix a general hyperplane $H \subset \mathbb{P}^{5}$. The scheme $S:=X \cap H$ spans H and it is formed by d points in linearly general position in H. Hence $h^{0}\left(H, \mathscr{I}_{S, H}(2)\right) \leq 6$ if $d \geq 9$ and $h^{0}\left(H, \mathscr{I}_{S, H}(2)\right)=15-d$ if $d \leq 8$. Use the exact sequence

$$
0 \rightarrow \mathscr{I}_{X}(1) \rightarrow \mathscr{I}_{X}(2) \rightarrow \mathscr{I}_{X \cap H, H}(2) \rightarrow 0
$$

and that X is non-degenerate, i.e., $h^{0}\left(\mathscr{I}_{X}(1)\right)=0$.
Lemma 6.5. Assume $g \leq 3$ and $d \leq 11$. There is no non-degenerate $C \in M_{d, g}$ such that $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$ and there is no line $L \subset \mathbb{P}^{5}$ with $\operatorname{deg}(L \cap C) \geq 5$,no conic D with $\operatorname{deg}(C \cap D) \geq 8$ and no plane cubic T with $\operatorname{deg}(T \cap C)=9$ and $C \cap T \in\left|\mathscr{O}_{T}(3)\right|$.

Proof. Since $h^{1}\left(\mathscr{I}_{C}(4)\right)>0$ and $\operatorname{deg}(R \cap C) \leq 5$ for all lines R, we have $d \geq 9$ [19, Theorem at page 492]. By Lemmas 4.10, 6.1 and 6.2 we have $h^{1}\left(\mathscr{I}_{C}(3)\right) \geq 5+h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 10+h^{1}\left(\mathscr{I}_{C}(5)\right) \geq 11$. By Lemma 6.3 we have $h^{1}\left(\mathscr{I}_{C}(2)\right) \geq h^{1}\left(\mathscr{I}_{C}(3)\right)$. Hence $h^{0}\left(\mathscr{I}_{C}(2)\right) \geq 31+g-2 d$. Use Lemma 6.4.

Lemma 6.6. Fix an integer $a>0$ and assume $d \geq 2 g-1+a$. Fix a zero-dimensional curvilinear scheme $Z \subset \mathbb{P}^{5}$ such that $\operatorname{deg}(Z)=a$. Set $E_{Z}:=\left\{C \in M_{d, g}: Z \subset C\right\}$. Then every irreducible component of E_{Z} has dimension $\leq 6 d+2-2 g-4 a$.

Proof. If $E_{Z}=\emptyset$, then the lemma is true. Hence we may assume $E_{Z} \neq \emptyset$. Fix $C \in E_{Z}$. By [25, Theoreme 1.5$]$ it is sufficient to prove that $h^{1}\left(N_{C}(-Z)\right)=0$. Since C is smooth, N_{C} is a quotient of $T \mathbb{P}_{\mid C}^{5}$ and hence by the Euler's sequence of $T \mathbb{P}^{5}$ the bundle N_{C} is a quotient of $\mathscr{O}_{C}(1)^{\oplus 6}$. Since $d \geq 2 g-1+a$, we have $h^{1}\left(\mathscr{O}_{C}(1)(-Z)\right)=0$. Use that $h^{2}(\mathscr{G})=0$ for every coherent sheaf \mathscr{G} on C.

Corollary 6.7. Assume $d \geq 9$. Fix $a \in\{4,5,6\}$. Let \mathscr{A}_{a} be the set of all non-degenerate $C \in M_{d, g}$ such that there is a line $R \subset \mathbb{P}^{5}$ such that $\operatorname{deg}(C \cap R) \geq a$. Then every irreducible component of \mathscr{A}_{a} has dimension $\leq 6 d+2-2 g+8-3 a$

Proof. Fix a line $R \subset \mathbb{P}^{5}$ and a zero-dimensional scheme $Z \subset R$ with $\operatorname{deg}(Z)=a$. First apply Lemma 6.6, then use that R has ∞^{a} zero-dimensional schemes of degree a and then use that \mathbb{P}^{5} contains ∞^{8} lines.

Lemma 6.8. Assume $0 \leq g \leq 3$ and $d \leq 11$. Let \mathscr{B} be the set of all non-degenerate $C \in M_{d, g}$ having a line R with $\operatorname{deg}(R \cap C) \geq 6$. Then a general element of \mathbb{W} contains no element of \mathscr{B}.

Proof. Fix $C \in \mathscr{B}$. The existence of R implies $d \geq 9$ and that $d \geq 10$ if $g>0$. By Corollary 6.7 to prove the lemma it is sufficient to avoid all $C \in \mathscr{B}$ with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 10$. Since $d \leq 11$, Lemma 6.3 and the exact sequence in the proof of Lemma 6.4 for $X=C$ and $t=3,4$ give $h^{1}\left(\mathscr{I}_{C}(2)\right) \geq 10$. Hence $h^{0}\left(\mathscr{I}_{C}(2)\right) \geq 30+g-2 d$, contradicting Lemma 6.4.

Lemma 6.9. Assume $0 \leq g \leq 3$ and $d \leq 11$. Let \mathscr{B}^{\prime} be the set of all non-degenerate $C \in M_{d, g}$ having a line R with $\operatorname{deg}(R \cap C) \geq 4$. Then a general element of \mathbb{W} contains no element of \mathscr{B}^{\prime}.

Proof. By Corollary 6.7 it is sufficient to test all $C \in M_{d, g}$ with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 4$. By Lemma 6.8 we may assume that C has no line R with $\operatorname{deg}(R \cap C) \geq 6$. Hence Lemmas 4.10 and 6.1 give $h^{1}\left(\mathscr{I}_{C}(3)\right) \geq 5+h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 9$. By Lemma 6.3 and the exact sequence in the proof of Lemma 6.4 for $t=3$ and $X=C$ we have $h^{1}\left(\mathscr{I}_{C}(2)\right) \geq 9$ and so $h^{0}\left(\mathscr{I}_{C}(2)\right) \geq 31+g-2 d$. Lemma 6.4 gives a contradiction.

Lemma 6.10. Assume $0 \leq g \leq 3$ and $d \leq 11$. Let \mathscr{B}_{1} be the set of all non-degenerate $C \in M_{d, g}$ having a conic D with $\operatorname{deg}(D \cap C) \geq 8$. Then a general element of \mathbb{W} contains no element of \mathscr{B}_{1}.

Proof. Fix $C \in \mathscr{B}_{1}$, say associated to the conic D, and take $W \in \mathbb{W}$ containing C (if any). By Lemma 6.9 we may assume the non-existence of lines L with $\operatorname{deg}(L \cap C) \geq 4$. Hence D is not a reducible conic. It is not a double conic, say with $L:=A_{\text {red }}$, because we would have $\operatorname{deg}(L \cap C) \geq \operatorname{deg}(A \cap C) / 2 \geq 4$. Hence D is smooth. By Lemma 4.9 it is sufficient to test the curves C with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 10$. Lemmas 4.10 and 6.1 give $h^{1}\left(\mathscr{I}_{C}(3)\right) \geq 15$. Lemma 6.3 and the cohomology exact sequence of the the exact sequence in the proof of Lemma 6.4) for $X=C$ and $t=3$ give $h^{1}\left(\mathscr{I}_{C}(2)\right) \geq 15$ and so $h^{0}\left(\mathscr{I}_{C}(2)\right) \geq 14+g$, contradicting Lemma 6.4.

Lemma 6.11. Assume $0 \leq g \leq 3$ and $d \leq 11$. Let \mathscr{B}_{2} be the set of all non-degenerate $C \in M_{d, g}$ having a plane cubic T with $\operatorname{deg}(T \cap C)=9$ and $C \cap T \in\left|\mathscr{O}_{C \cap T, T}(3)\right|$. Then a general element of \mathbb{W} contains no element of \mathscr{B}_{2}.

Proof. Take C for which T exists. We have $d=11$. The set of all hyperplanes of \mathbb{P}^{5} containing $\langle T\rangle$ induces a g_{2}^{2} on C. Hence $g=0$. Fix any scheme $Z \in\left|\mathscr{O}_{T}(3)\right|$. Since $g=0$, Lemma 6.6 implies $h^{1}\left(N_{C}(-Z)\right)=0$ and hence the set of all $C \subset \mathbb{P}^{5}$ containing Z has dimension $6 d+1-4 \operatorname{deg}(Z)=31$. Since \mathbb{P}^{5} has ∞^{9} planes, each plane has ∞^{9} plane cubics and each plane cubic T has ∞^{9} elements of $\left|\mathscr{O}_{T}(3)\right|$, it is sufficient to exclude all $C \in \mathscr{B}_{2}$ with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 9$. By Lemmas 6.9 and 6.10 we may assume the non-existence of line $R \subset \mathbb{P}^{5}$ with $\operatorname{deg}(C \cap R) \geq 4$ and of conics $D \subset \mathbb{P}^{5}$ with $\operatorname{deg}(C \cap D) \geq 8$. As in the proof Lemma 6.10 we get $h^{1}\left(\mathscr{I}_{C}(2)\right) \geq 14$, i.e . $h^{0}\left(\mathscr{I}_{C}(2)\right) \geq 13+g$, contradicting Lemma 6.4.

By Lemma 5.5 at this point we proved that a general $W \in \mathbb{W}$ contains only finitely many non-degenerate $C \in M_{d, g}$.

7. Degenerate curves

In this section we prove that a general $W \in \mathbb{W}$ contains only finitely many degenerate $C \in M_{d, g}(Q), d \leq 11$ and $g \leq 3$. By Remarks 4.3, 4.4 and Lemma 4.6 it is sufficient to test the curves $C \in M_{d, g}(4)$. By [19, Theorem at page 492] we may assume $d \geq 7$ and $d \geq 8$ if either $g>0$ or C has genus 0 and no line R with $\operatorname{deg}(R \cap C) \geq 6$. By Remark 4.3 and Lemma 4.6 it is sufficient to test the degenerate $C \in M_{d, g}(Q)$. Fix a hyperplane $M \subset \mathbb{P}^{5}$ and set $Q^{\prime}:=Q \cap M$. Set $M_{d, g}^{\prime}\left(Q^{\prime}\right):=\left\{C \in M_{d, g}(Q): C \subset Q^{\prime}\right.$ and C spans $M\}$. Either Q^{\prime} is smooth or Q^{\prime} has a unique singular point, o. For any $C \in M_{d, g}^{\prime}\left(Q^{\prime}\right)$ set $x(C)=0$ if either Q^{\prime} is smooth or Q^{\prime} is a cone with vertex o and $o \notin C$, and set $x(C):=1$ if Q^{\prime} has vertex o and $o \in C$. Since $\omega_{Q^{\prime}} \cong \mathscr{O}_{Q^{\prime}}(-3)$, if $x(C)=0$, then $\operatorname{Hilb}\left(Q^{\prime}\right)$ is smooth and of dimension $3 d+2-2 g$. Now assume that Q^{\prime} is a cone with vertex o and that $x(C)=1$, i.e. that $o \in C$. Let $u: \widetilde{Q}^{\prime} \rightarrow Q^{\prime}$ be the blowing up of o. Let $E:=v^{-1}(o)$ be the exceptional divisor and let $\widetilde{C} \subset \widetilde{Q}^{\prime}$ be the strict transform of C. Since C is smooth, v maps isomorphically \widetilde{C}. Let Ψ be closure in $\operatorname{Hilb}\left(\widetilde{Q^{\prime}}\right)$ of the strict transforms of all $A \in M_{d, g}\left(Q^{\prime}\right)$ with $x(A)=1$. We claim that $\operatorname{dim} \Psi \leq 3 d+1$. Fix $D \in \Psi$. Since $\operatorname{Aut}\left(\widetilde{Q^{\prime}}\right)$ acts transitively of $\widetilde{Q^{\prime}} \backslash E$, the first part of the proof gives $h^{1}\left(N_{D, \tilde{Q}}\right)=0$. Hence it is sufficient to prove that $\operatorname{deg}\left(N_{D, \tilde{Q}}\right) \leq 3 d-1$, i.e. $\operatorname{deg}\left(\tau_{\tilde{Q}}^{\mid D} \mid ~ \leq 3 d+1\right.$, i.e. $\operatorname{deg}\left(\omega_{\widetilde{Q}} \mid D\right) \geq-3 d-1$. The group $\operatorname{Pic}(\widetilde{Q})$ is freely generated by E and the pull-back H of $\mathscr{O}_{Q}(1)$. We have $D \cdot H=d$ and $D \cdot E=x$. We have $\omega_{\widetilde{Q}} \cong \mathscr{O}_{\widetilde{Q}}(-3 H-E)$ [26, Example $\left.8.5(2)\right]$. Hence $\operatorname{dim}\left(M_{d, g}^{\prime}\left(Q^{\prime}\right)\right)$ has dimension $\leq 3 d+x(C)$ at C. Since Q has ∞^{4} singular hyperplane sections and ∞^{5} smooth hyperplane sections, to prove that a general $W \in \mathbb{W}$ has no (resp. finitely many) curves C spanning a hyperplane, it is sufficient to exclude the ones with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq d-4-g$. For all d, g for which we only use that $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq d-5-g$, no degenerate $C \in M_{d, g}$ is contained in a general $W \in \mathbb{W}$. Fix a hyperplane $M \subset \mathbb{P}^{5}$. Let $M_{d, g}^{\prime}(M)$ be the set of all $C \in M_{d, g}$ contained in M and spanning M.

Lemma 7.1. A general $W \in \mathbb{W}$ contains no $C \in M_{d, g}$ such that there is a hyperplane M with $C \in M_{d, g}^{\prime}(M)$ and $h^{0}\left(M, \mathscr{I}_{C}(2)\right) \geq$ 4.

Proof. Let $K \subset M$ denote the set-theoretic base locus of $\left|\mathscr{I}_{C, M}(2)\right|$ and A any irreducible component of K containing C. Note that $\left|\mathscr{I}_{C, M}(2)\right|=\left|\mathscr{I}_{A, M}(2)\right|$. Since C spans M, every element of $\left|\mathscr{I}_{C, M}(2)\right|$ is irreducible and A spans M. Hence $\operatorname{dim}(K) \leq 2$. First assume $\operatorname{dim}(A)=2$. Since a complete intersection B of two quadrics of M has $h^{0}\left(M, \mathscr{J}_{B, M}(2)\right)=2<4$ and A spans M, we get $\operatorname{deg}(A)=3$. Hence either A is a smooth rational normal scroll or a cone over a rational normal curve of \mathbb{P}^{3}. In both cases we have $h^{0}\left(M, \mathscr{I}_{A, M}(2)\right)=3$, a contradiction. Hence $\operatorname{dim}(A)=1$, i.e. $A=C$. Fix two general elements Q_{1}, Q_{2} of $\left|\mathscr{I}_{C, M}(2)\right|$ and let E be an irreducible component of $Q_{1} \cap Q_{2}$ containing C. Since $A=C$, there is a quadric hypersurface $Q_{3} \subset M$, containing C, but not E. Since $C \subseteq E \cap Q_{3}$, we get $E=Q_{1} \cap Q_{2}, d \leq 8$, and that either $d=8$ and $C=Q_{1} \cap Q_{2} \cap Q_{3}$ or $d=7$ and C is linked to a line by the complete intersection $Q_{1} \cap Q_{2} \cap Q_{3}$. In both cases C is arithmetically Cohen-Macaulay and in particular $h^{1}\left(\mathscr{I}_{C}(4)\right)=0$, a contradiction.

Lemma 7.2. A general $W \in \mathbb{W}$ contains no $C \in M_{11, g}$ such that there is a hyperplane M with $C \in M_{11, g}^{\prime}(M)$ and $h^{0}\left(M, \mathscr{I}_{C, M}(2)\right)=$ 3.

Proof. Take K, A as in the proof of Lemma 7.1. Since $d>8$, we only need to modify the proof of the case $\operatorname{dim}(A)=2$. If $\operatorname{dim}(A)=2$, then $\operatorname{deg}(A)=3$ and A is either the cone of of a rational normal curves of \mathbb{P}^{3} or it is a smooth rational normal curve isomorphic to the Hirzebruch surface F_{1} embedded by the complete linear system $|h+2 f|$. Write $C \in|a h+b f|$ with $a>0$ and $b \geq a$. We have $11=a+b$ and hence $b>a$. Since $\omega_{F_{1}} \cong \mathscr{O}_{F_{1}}(-2 h-3 f)$, the adjunction formula gives $2 g-2=(a h+b f) \cdot((a-2) h+(b-3) f)=-a(a-2)+a(b-3)+b(a-2)=(a-2)(b-a)+a(b-3)$. If $g=0$ we get that either $a=1$ (and hence $b=10$) or $a=b=2$, contradicting the equality $a+b=10$. If $g>0$, then $a \geq 2$. There is no solution with $a+b=11, a \geq 2$, and $g \leq 3$. In the case $a=1$ and $b=10$ the curve C has $h^{0}\left(A, \mathscr{O}_{A}(4-C)\right)=0$. Hence if $C \subset W$, then $A \subset W$, contradicting the fact that $\operatorname{Pic}(W)$ is generated by $\mathscr{O}_{W}(1)$.
Now assume that A is a cone over a rational normal curve. Let o be the vertex of A and call $u: F_{2} \rightarrow A$ the blowing up of o. Set $h:=u^{-1}(o) . F_{2}$ is isomorphic to the Hirzebruch surface with the same name, h is the only section of its ruling with negative self-intersection and u is induced by the linear system $|h+2 f|$. We have $h^{2}=-2$ and $\omega_{F_{2}} \cong \mathscr{O}_{F_{2}}(-2 h-4 f)$. Let $C^{\prime} \subset F_{2}$ denote the strict transform of C, with $C^{\prime} \in \mid a h+b f$ and $b \geq 2 a$. Since C is smooth, u sends isomorphically C^{\prime} to C. Hence $11=b$ and $b \in\{2 a, 2 a+1\}$. Since $h^{0}\left(\mathscr{O}_{F_{2}}(4 h+8 f-C)\right)=0$, any W containing C contains A, a contradiction.

Lemma 7.3. Fix $C \in M_{d, g}^{\prime}(M), d \leq 13$, and let H be a general hyperplane of M. We have $h^{1}\left(H, \mathscr{I}_{H \cap C, H}(4)\right)=0$ and $h^{1}\left(H, \mathscr{I}_{H \cap C, H}(3)\right) \leq \max \{0, d-10\}$.

Proof. Any $S \subseteq C \cap H$ with $\#(S) \leq 10($ resp. $\#(S) \leq 13)$ is in linearly general position in M and hence $h\left(M, \mathscr{I}_{S, M}(3)\right)=0$ (resp. $h^{1}\left(M, \mathscr{I}_{C, M}(4)\right)=0$ by [22, Theorem 3.2].

Lemma 7.4. Let $N \subset M$ be a hyperplane and let $Z \subset N$ be a degree $d \leq 11$ zero-dimensional scheme spanning N. If there are neither a line $R \subset N$ with $\operatorname{deg}(R \cap Z) \geq 6$ nor a plane conic $D \subset N$ with $\operatorname{deg}(D \cap Z)=10$, then $h^{1}\left(N, \mathscr{I}_{Z, N}(4)\right)=0$.

Proof. Let $U \subset N$ be a plane of N with maximal $a:=\operatorname{deg}(Z \cap N)$. Since Z spans N, we have $a \geq 3$. Assume for the moment $a=3$, i.e. assume that Z is in linearly general position. Since $d \leq 13$, we have $h^{1}\left(N, \mathscr{I}_{Z, M N}(4)\right)=0$ [22, Theorem 3.2]. Hence we may assume $a \geq 4$.
First assume $h^{1}\left(U, \mathscr{I}_{Z \cap U, U}(4)\right)>0$. Since Z spans N, we have $a \leq d-1 \leq 10$. Use [24, Corollaire 2 or Remarques (i) at page 116].
Now assume $h^{1}\left(N, \mathscr{I}_{Z \cap N}(4)\right)=0$. The residual exact sequence of U in N gives $h^{1}\left(N, \mathscr{I}_{\operatorname{Res}_{U}(Z)}(3)\right)>0$. Since $\operatorname{deg}\left(\operatorname{Res}_{U}(Z)\right)=$ $d-a \leq 7$, [23, Lemma 34] gives the existence of a line $L \subset N$ such that $\operatorname{deg}(L \cap Z) \geq 5$. Then we continue as in step (a) of the proof of Lemma 6.2. the residual exact sequence of M gives $h^{1}\left(M, \mathscr{I}_{\operatorname{Res}_{N}(Z), M}(3)\right)>0$. Since $d-a \leq 7$, then there is a line $L \subset M$ such that $\operatorname{deg}\left(\operatorname{Res}_{N}(Z)\right) \geq 5$ [23, Lemma 34]. By assumption we have $\operatorname{deg}(L \cap Z)=5$. Since $\operatorname{deg}(Z \cap L) \geq 5$, the maximality property of a gives $a \geq 7$. Since $d-a \geq 5$, we get $d \geq 12$, a contradiction.

Lemma 7.5. A general $W \in \mathbb{W}$ contains no $C \in M_{d, g}^{\prime}(M)$ such that there a plane conic D with $\operatorname{deg}(D \cap C) \geq 10$ (if D is singular also assume that $\operatorname{deg}(L \cap C) \leq 5$ for each line $L \subset D$).

Proof. The pencil of hyperplanes of M containing the plane U spanned by D shows that $d=11, \operatorname{deg}(D \cap C)=10$, and $g=0$. First assume that D is a double line. Fix $W \in \mathbb{W}$ with $W \supset C$. Set $L:=D_{\text {red }}$. Since $\operatorname{deg}(L \cap C)$, we have $L \subset W$ for any $W \in \mathbb{W}$ with $W \supset C$. Let $\operatorname{Res}_{L}(C \cap D)$ be the residual scheme with respect to the divisor L of U. Since $\operatorname{deg}(C \cap L) \geq \operatorname{deg}(C \cap D) / 2$, our assumptions give $\operatorname{deg}(L \cap C)=5$ and hence $\operatorname{deg}\left(\operatorname{Res}_{L}(C \cap D)\right)=5$. Since $C \cap D \subset D$, we have $\operatorname{Res}_{L}(C \cap D) \subset L$. Since $D \nsubseteq W$ (Lemma 4.9), we have $W \cap U=L \cup T$ with T a plane cubic not containing L. Hence $\operatorname{deg}(L \cap T)=3$. Since $\operatorname{Res}_{L}(C \cap D)$ is contained both in L and in T, we get a contradiction.
Now assume $D=R \cup L$ with R, L lines and $L \neq R$. Since $\operatorname{deg}(L \cap C) \leq 5$ and $\operatorname{deg}(R \cap C) \leq 5$ by assumption, we have $\operatorname{deg}(R \cap C)=\operatorname{deg}(R \cup L)=5$. Hence $D \subset W$, contradicting Lemma 4.9.
Now assume that D is smooth. Since $g=0$ for each $Z \subset D$ with $\operatorname{deg}(D)=10$, we have $h^{1}\left(N_{C, M}(-Z)\right)=0$ and so $h^{0}\left(N_{C, M}\right)=$ $45-30$. Since D has ∞^{10} degree 10 subschemes, M has ∞^{6} planes, each plane has ∞^{5} conics and \mathbb{P}^{5} has ∞^{5}, hyperplanes, each irreducible component of the set of all (C, D, M) with D a smooth conic and $C_{1} M_{11,0}^{\prime}(M)$ has dimension at most 41, i.e. codimension at least 17 in $M_{11,0}$. Hence to avoid these curves we may assume $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq 16$. Lemma 7.3 gives $h^{1}\left(M, \mathscr{I}_{C}(2)\right) \geq 15$. Hence $h^{0}\left(M, \mathscr{I}_{C}(2)\right) \geq 7$, contradicting Lemma 7.1.

Lemma 7.6. A general $W \in \mathbb{W}$ contains no $C \in M_{d, g}^{\prime}(M), d \leq 11$, for some hyperplane M such that there is no line $R \subset M$ with $\operatorname{deg}(R \cap C) \geq 6$.

Proof. By Lemma 7.5 we may assume that there is no conic D with $\operatorname{deg}(D \cap C) \geq 10$. Since $d \leq 11$, Lemmas 4.10 and 7.4 give $h^{1}\left(M, \mathscr{I}_{C, M}(3)\right) \geq 4+h^{1}\left(\mathscr{I}_{C \cap M, M}(3)\right) \geq d-g$. Assume for the moment that either $d \leq 10$ or $d=11$ and $h^{1}\left(H, \mathscr{I}_{C \cap H, H}(3)\right)=0$ for a general hyperplane H of M. Lemma 7.3 gives $h^{1}\left(M, \mathscr{I}_{C, M}(2)\right) \geq d-g$ and $\operatorname{so} h^{0}\left(M, \mathscr{I}_{C}(2)\right) \geq 15+d-g-2 d-1+g=$ $14-d$. Hence if $d \leq 10$ Lemma 7.1 concludes the proof. If $d=11$ and $h^{1}\left(H, \mathscr{I}_{C \cap H, H}(3)\right)=1$, we get $h^{0}\left(M, \mathscr{I}_{C}(2)\right) \geq$ 2. Assume $h^{0}\left(\mathscr{I}_{C}(2)\right)=2$ and let K be the intersection of two general elements of $\left|\mathscr{I}_{C, M}(2)\right|$ and call $A \subseteq K_{\text {red }}$ any irreducible component containing C. Since $h^{1}\left(M, \mathscr{I}_{C, M}(3)\right) \geq 11-g$, we have $h^{0}\left(M, \mathscr{I}_{C}(3)\right) \geq 45-2 d>10$. Hence the map $H^{0}\left(M, \mathscr{I}_{C, M}(2)\right) \otimes H^{0}\left(\mathscr{O}_{M}(1)\right) \rightarrow H^{0}\left(M, \mathscr{I}_{C, M}(3)\right)$ is not surjective. Take $U \in\left|\mathscr{I}_{C, M}(3)\right|$ not containing K. Since deg $(C)>9$, we first get $A=K$, and then (since $d=11$), that the complete intersection $K \cap U$ links C to a line. Hence C is arithmetically Cohen-Macaulay, contradicting the assumption $h^{1}\left(M, \mathscr{I}_{C, M}(4)\right)>0$.

Lemma 7.7. A general $W \in \mathbb{W}$ contains no curve C with $C \in M_{d, g}^{\prime}(M)$ for some hyperplane and with a line R such that $\operatorname{deg}(R \cap C) \geq 6$.

Proof. Note that if W, C, R are as in the statement of the lemma with $C \subset W$, then $R \subset W$ (Bezout). Let \mathscr{G} be the set of all quadruples (W, H, L, C) with $W \in \mathbb{W}^{\prime}, M$ a hyperplane, $L \subset W \cap M$ a line, $C \in M_{d, g}^{\prime}(M)$ and $\operatorname{deg}(L \cap C) \geq 6$. Fix M, a line $L \subset M$ and $Z \subset R$ with $\operatorname{deg}(Z)=6$. First assume $d \geq 2 g-1+6$. Lemma 6.6 gives $h^{1}\left(M, N_{C, M}(-Z)\right)=0$, i.e. $h^{0}\left(N_{C, M}(-Z)\right)=5 d+1-g-18$. Since L has ∞^{6} degree 6 zero-dimensional schemes, M has ∞^{6} lines and \mathbb{P}^{5} has ∞^{5} hyperplanes, and each $W \in \mathbb{W}^{\prime}$ contains only finitely many lines, we get that each irreducible component of \mathscr{G} has dimension at most $5 d-g$. Hence to prove the lemma it is sufficient to exclude the curves $C \in M_{d, g}^{\prime}(M)$ with $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq d-g+2$. Lemma 7.3 gives $h^{1}\left(M, \mathscr{I}_{C, M}(3)\right) \geq d-g+2$. Hence $h^{1}\left(M, \mathscr{I}_{C, M}(2)\right) \geq d-g+1\left(\right.$ Lemma 7.3) and so $h^{0}\left(M, \mathscr{I}_{C, M}(2)\right) \geq 15-d \geq 4$, contradicting Lemma 7.1. Now assume $d \leq 2 g+4$. Since $d \geq 7$ and $g=0$ if $d=7$, then $(d, g) \in\{(8,2),(8,3),(9,3),(10,3)\}$. Assume $d=8$. The net of all hyperplanes of M containing R induces a g_{2}^{2} on C and hence $g=0$, a contradiction. Now assume $(d, g) \in\{(9,3),(10,3)\}$. We take $Z^{\prime} \subset R$ with $\operatorname{deg}\left(Z^{\prime}\right)=4$. Since $d \geq 2 g-1+\operatorname{deg}\left(Z^{\prime}\right)$, as above we get that we may assume $h^{1}\left(\mathscr{I}_{C}(4)\right) \geq d-g$. Since $d \leq 10$, we have $h^{1}\left(M, \mathscr{I}_{C, M}(2)\right) \geq h^{1}\left(M, \mathscr{I}_{C, M}(3)\right) \geq h^{1}\left(M, \mathscr{I}_{C, M}(4)\right)$ (Lemma 7.3) and hence $h^{0}\left(M, \mathscr{I}_{C, M}(2)\right) \geq 14-d \geq 4$, contradicting Lemma 7.1.

End of the proof of Theorem 1.1: The last lemma concludes the proof of Theorem 1.1 for all $C \in M_{d, g}(4)$. Since in section 6 we checked all $C \in M_{d, g}(5)$, in Remark 4.3 all $C \in M_{d, g}(1)$, in Remark 4.4 all $C \in M_{d, g}(2)$ and in Lemma 4.6 all $C \in M_{d, g}(3)$, we have completed the proof of Theorem 1.1.

Acknowledgements

The author is a member of the Gruppo Nazionale Strutture Algebriche e Geometriche, Istituto Nazionale di Alta Matemetica, Italy.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The author declares that he has no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] E. Cotterill, Rational curves of degree 11 on a general quintic 3-fold, Quart. J. Math., 63 (2012), 539-568.
[2] D'Almeida, Courbes rationnelles de degré 11 sur une hypersurface quintique générale de \mathbb{P}^{4}, Bull. Sci. Math., 136 (2012), $899-903$.
[3] T. Johnsen, S. Kleiman, Rational curves of degree at most 9 on a general quintic threefold, Comm. Algebra, 24 (1996), 2721-2753.
[4] T. Johnsen, S. Kleiman, Toward Clemens' conjecture in degrees between 10 and 24, Serdica Math. J., 23 (1997), 131-142.
[5] T. Johnsen, A. L. Knutsen, Rational curves in Calabi-Yau threefolds, Special issue in honor of Steven L. Kleiman. Comm. Algebra, 31(8) (2003), 3917-3953.
[6] S. Katz, On the finiteness of rational curves on quintic threefolds, Compositio Math., 60(2) (1986), 151-162.
[7] C. Voisin, On some problems of Kobayashi and Lang, in Current developments in Mathematics, pp. 53-125, Int. Press, Somerville, MA, 2003.
[8] K. Oguiso, Two remarks on Calabi-Yau threefolds, J. Reine Angew. Math., 452 (1994), 153-161.
[9] A. L. Knutsen, On isolated smooth curves of low genera in Calabi-Yau complete intersection threefolds, Trans. Amer. Math. Soc., 384(10) (2012), 5243-5284.
[10] E. Cotterill, Rational curves of degree 16 on a general heptic fourfold, J. Pure Appl. Algebra, 218 (2014), 121-129.
[11] G. Hana, T. Johnsen, Rational curves on a general heptic fourfold, Bull. Belg. Math. Soc., Simon Stevin 16 (2009), 861-885.
[12] C. Voisin, On a conjecture of Clemens on rational curves on hypersurfaces, J. Diff. Geometry, 44(1) (1996), 200-213.
[13] N. Mohan Kumar, A. P. Rao, G. V. Ravindra, On codimension two subvarieties in hypersurfaces, Motives and algebraic cycles, 167-174, Fields Inst. Commun., 56, Amer. Math. Soc., Providence, RI, 2009.
[14] P. Candelas, X. de la Ossa, P. Green, L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359 (1991), 21-74.
[15] M. Kontsevich, Enumeration of rational curves via torus actions, in The Moduli Space of Curves, pp. 335-368, Progress in Math. 29, Birkhäuser, Basel, CH, 19958.
[16] M. S. Narasimhan, S. Ramanan, Deformations of the moduli space of vector bundles over an algebraic curve, Ann. of Math., 101 (1975), 391-417.
[17] M. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., 7(3) (1957), 414-452; reprinted in: Michael Atiyah Collected Works, Oxford, 1 (1988), 105-143.
[18] R. Hartshorne, Algebraic Geometry, Springer-Verlag, Berlin-Heidelberg-New York, 1977.
[19] L. Gruson, R. Lazarsfeld, Ch. Peskine,On a theorem of Castelnuovo and the equations defining space curves, Invent. Math., 72 (1983), 491-506.
[20] R. Hartshorne, A. Hirschowitz, Smoothing Algebraic Space Curves, Algebraic Geometry, Sitges 1983, 98-131, Lecture Notes in Math., 1124, Springer, Berlin, 1985.
[21] M. Green, R. Lazarsfeld, On the projective normality of complete linear series on an algebraic curve, Invent. Math., 83(1) (1986), 73-90.
[22] D. Eisenbud, J. Harris, Finite projective schemes in linearly general position, J. Algebraic Geom., 1(1) (1992), 15-30.
[23] A. Bernardi, A. Gimigliano, M. Idà, Computing symmetric rank for symmetric tensors, J. Symbolic Comput., 46 (2011) 34-53.
[24] Ph. Ellia, Ch. Peskine, Groupes de points de \mathbf{P}^{2} : caractère et position uniforme, in: Algebraic geometry (L'Aquila, 1988), 111-116, Lecture Notes in Math., 1417, Springer, Berlin, 1990.
[25] D. Perrin, Courbes passant par m points généraux de \mathbb{P}^{3}, Bull. Soc. Math., France, Mémoire 28/29 (1987).
[26] P. Jahnke, T. Peternell, I. Radloff, Some Recent Developments in the Classification Theory of Higher Dimensional Manifolds, Global Aspects of Complex Geometry, 311-357, Springer, Berlin, 2006.

