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Abstract

Let W ⊂ P5 be a general complete intersection of a quadric hypersurface and a quartic
hypersurface. In this paper, we prove that W contains only finitely many smooth curves
C ⊂ P5 such that d := deg(C)≤ 11, g := pa(C)≤ 3 and h1(OC(1)) = 0.

1. Introduction

The aim of this paper is to prove the following result.

Theorem 1.1. Let W ⊂ P5 be a general complete intersection of a quadric hypersurface and a quartic hypersurface. Then W
contains only finitely many smooth curves C ⊂ P5 such that d := deg(C)≤ 11, g := pa(C)≤ 3 and h1(OC(1)) = 0.

We recall that W is a Calabi-Yau threefold and that there are several papers considering finiteness results for rational curves on
certain Calabi-Yau threefolds (see [1]-[6] for the general quintic hypersurface of P4, the topic of the Clemens conjecture, which
ask about the finiteness of rational curves of any fixed degree on such a general quintic). This finiteness result is not true for an
arbitrary Calabi-Yau threefold [7, Remark 3.24]. For other complete intersection Calabi-Yau threefolds there are results of two
types: existence results of good curves on the Calabi-Yau threefold [8, Theorem 2], [9, Theorem 1.2] and finiteness results
in very restricted ranges. As in [4] our classical approach to Theorem 1.1 cannot be applied when
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)
≥ 4d +1−g. There

are also papers on 3-folds of general type ([10]-[12] and see [13] and references therein for arithmetically Cohen-Macaulay
codimension 2 subvarieties).
The upper bound d≤ 11 comes from the proof at a few critical steps, but in many lemmas d = 12 or even d = 13 may be handled.
The approach used in this paper (as the one for quintic 3-folds introduced in [4]) requires that 126 = h0(OP5(4))> 4d +1−g
or, working with a fixed smooth quadric hypersurface Q⊂ P5,
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)
−
(7

5

)
= h0(OQ(4))> 4d +1−g. The upper bound g≤ 3

may be weakened in certain steps, but we are sure that new idea are needed to handle pairs (d,g) such that 4d +1−g≥ 126.
Theorem 1.1 is a negative result, a non-existence result. We point out that similar statements are very important, higher genera
cases of the count of rational curves of fixed degree on Calabi-Yau manifolds, which is related to Mirror Symmetry [6, 14, 15].
For the Calabi-Yau threefold X ⊂ P4, X a very general quintic hypersurface, there is an explicit integer nd for the number of
the degree d rational curves contained in X [14, 15]. At the moment nobody is able to prove the finiteness of such rational
curves of a given degree d, except for very low d.
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1.1. A roadmap of the proof

For all integers d > 0 and g≥ 0 let Md,g denote the locally closed subscheme of the Hilbert scheme of P5 parametrizing all
smooth curves C⊂ P5 such that deg(C) = d, pa(C) = g and h1(OC(1)) = 0. The scheme Md,g is an irreducible quasi-projective
variety of dimension 6d +2−2g. Let W be the set of all smooth threefolds W ⊂ P5, which are the complete intersection of
a hypersurface of degree 2 and a hypersurface of degree 4. For each W ∈W we have Pic(W ) = ZOW (1), its normal bundle
NW,P5 is isomorphic to OW (2)⊕OW (4), and the quadric hypersurface, Q, containing W is unique. Standard exact sequences
give h0(OW (2))⊕OW (4)) = 1+h0(OW (4)) = 20+h0(OQ(4))−h0(OQ(2)) =

(9
4

)
−
(7

2

)
= 124. Since h1(NW,P5) = 0, the set

W is a smooth variety of dimension 124. The set W is obviously irreducible. For a general W ∈W the quadric associated to W
is smooth. Since all smooth quadric hypersurfaces of P5 are projectively equivalent, we may fix a smooth quadric hypersurface
Q and look only at the set Md,g(Q) := {C ∈Md,g |C ⊂ Q}. To prove Theorem 1.1 we see which elements of Md,g(Q) are
contained in a smooth element of |OQ(4)|. Let W denote the set of all smooth elements of |OQ(4)|. To prove Theorem 1.1 for
the pair (d,g) it is sufficient to prove that a general element of |OQ(4)| contains only finitely many elements of Md,g(Q). We
need to study the schemes Md,g(Q) and this is done in Section 3 (see in particular Remark 3.3).
A key idea in this paper is that the smooth quadric hypersurface Q ⊂ P5 is isomorphic to the Grassmannian G(2,4) of all
2-dimensional linear subspace of a 4-dimensional vector spaces. By the universal properties of the Grassmmannians each map
C→ Q, C ∈Md,g, corresponds to a pair (E,V ) with E a rank 2 spanned vector bundle on C and V ⊆ H0(E) a linear subspace
spanning E. Section 3 shows how to use this correspondence between embeddings C ⊂ Q and rank 2 vector bundles on C.
Remark 3.3 first gives some elementary statements on rank 2 vector bundles and relate them to our main idea. Then (again in
Remark 3.3) we consider separately each low genus. In part (a) we finish the known case g = 0. Steps (b), (c) and (d) considers
curves of genus 1, 2 and 3, respectively. Lemmas in later sections prove key statements for these genera, but Remark 3.3 is the
key first step for them. Thus the proof is done as a case by case proof in which for any smooth curve C ⊂ P5 we distinguish the
genus of C and the dimension (at most 5) of the linear space 〈C〉 spanned by C. If 〈C〉 is a plane we also distinguish if 〈C〉 is
contained in Q or not. If (E,V ) is the pair giving the embedding C ↪→ Q the integer dim〈C〉 is the dimension of the image of
∧2(V ) into H0(OC(1)).
Using this section and later lemmas we prove that all Md,g(Q) are irreducible of dimension 4d +1−g, smooth if g≤ 2, while
we describe the singular locus of Md,3(Q) (it contains only hyperelliptic curves). We stress again that to prove these results we
use that Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear subspaces of C4. In the case (d,g) = (6,3)
we see that all curves C ⊂W are hyperelliptic and that they have h1(IC(2)) = 1, although 2d +1−g <
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)
(Remark 4.5).

In section 2 we study Md,g(Q), g≤ 3, and check all cases with d ≤ 7 (Lemmas 4.3, 4.4, 4.6, 4.7) and all curves spanning a
linear subspace of P5 of dimension ≤ 3. In section 5 we prove that if d ≤ 14 a general element of Md,g(Q) has h1(IC(4)) = 0
(Lemma 5.5). Lemma 5.3 do the same for a smooth hyperplane section of Q and its proof may be adapted to a singular
hyperplane section of Q. In section 6 we handle the non-degenerate curves C ∈Md,g with h1(IC(4))> 0. In the last section
we handle the curves C ∈Md,g with h1(IC(4))> 0 and spanning a hyperplane of P5.

2. Notation

For any r ∈ {1,2,3,4,5} set Md,g(r) := {C ∈Md,g : dim(〈C〉) = r}, where for any set S⊂ P5, 〈S〉 denote the linear span of S.
Let W be the set of all smooth complete intersection W ⊂ P5 of a quadric hypersurface and a quartic hypersurface. If we fix a
smooth quadric hypersurface Q⊂ P5, then we call W the set of all smooth elements of |OQ(4)|.

3. Uses of vector bundles

The 4-dimensional smooth quadric hypersurface Q is isomorphic to the Grassmannian G(2,4) of all 2-dimensional linear
subspaces of C4. Hence for any projective curve X to get a morphism φ : X → Q we need to take a rank 2 vector bundle E
on X and a linear map u : C4→ H0(E) such that u(C4) spans E. To explain the proof here we assume that u is injective and
instead of (E,u) we use (E,V ) with V := u(C4) (see Remark 3.1 for the case in which u is not injective). Assume that X is
smooth. It is easy to check if φ is an embedding; indeed if we know that V spans E the map φ is an embedding if and only if
dim(H0(E(−Z))∩V )≤ 1 for every degree 2 zero-dimensional scheme Z ⊂C. Assume that φ is an embedding and call C its
image. Let

0→F∨→ O⊕4
Q → E → 0

denote the tautological exact sequence of Q=G(2,4) with rank(E )= rank(F )= 2 and det(E )∼= det(F )∼=OQ(1). Identifying
X and C, i.e. seeing E as a vector bundle on C, we have E = E|C, while F∨ := F∨

|C is the kernel of the surjection V ⊗OC→ E.
Note that F and F are spanned.

Remark 3.1. Assume that u : C4 → H0(E) is not injective, but that V := Im(u) spans E. Since E has rank 2, then 2 ≤
dim(V )≤ 3 and dim(V ) = 2 if and only if E ∼= O⊕2

X and hence the associated map φ : X →Q is constant. If dim(V ) = 3, then
Im(φ) is contained in a plane with TP2(−1) as universal rank 2 quotient bundle and OP2(−1) as universal rank 1 subbundle.
Hence φ(X) ∈Md,g(2). This case is settled in Lemma 4.4.
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Remark 3.2. Assume E ∼= OC⊕L for some line bundle L. In this case L ∼= OC(1). Write V = C⊕V1 with C = H0(OC).
Hence C is contained in a certain Schubert cell of Q, i.e., a 2-dimensional linear subspace contained in Q. Hence C ∈Md,g(2).
This case is solved in Lemma 4.4. If F ∼= OC⊕OC(1), then C is contained in the other family of planes contained in Q and so
C ∈Md,g(2).

In the next remark we point out some irreducibility and smoothness results for Md,g(Q).

Remark 3.3. Since T Q∼= E ⊗F , we have T Q|C ∼= E⊗F. In many cases with low g we have h1(E⊗F) = 0. In this case we
have h1(NC,Q) = 0 and hence the Hilbert scheme Hilb(Q) of Q at [C] is smooth of dimension 4d +1−g, where d := deg(C)
and g := pa(C).

Claim 1: If either h1(E) = 0 or h1(F) = 0, then h1(E⊗F) = 0 .
Proof of Claim 1: Assume for instance h1(E) = 0. Since F is spanned, the evaluation map eF : H0(F)⊗OC → F is

surjective. Set K := ker(eF). Since dimC = 1, h2(K⊗E) = 0. Hence the exact sequence

0→ K⊗E→ H0(F)⊗E→ E⊗F → 0

proves Claim 1.
Claim 2: In any genus g≥ 2 the set of all C ∈Md,g(Q) with h1(E) = 0 is an open, smooth and irreducible subset of Md,g(Q)

with dimension 4d +1−g.
Proof of Claim 2: The openness part follows from the semicontinuity of cohomology. Since C is a curve and F is spanned,

the vanishing of h1(E) implies the vanishing of h1(E⊗F). Hence this part of Md,g(Q) is smooth and everywhere of dimension
4d +1−g. Since g≥ 2, any vector bundle on a smooth curve C is a flat limit of a family of stable bundles [16, Proposition
2.6]. If h1(E) = 0, then E is a flat limit of a family of stable bundles with vanishing cohomology. The claim follows from the
irreducibility of Mg and the irreducibility of the set of all stable vector bundles with rank two and degree d on a fixed smooth
curve of genus g≥ 2. This set has dimension 4g−3.

(a) If g = 0, then h1(E⊗F) = 0, because E⊗F is spanned and hence a direct sum of line bundles of degree ≥ 0. The
scheme Md,0(Q) is irreducible, because both E and F are specializations with constant cohomology of the rigid bundle with
rank 2 and degree d (the direct sum of the line bundle of degree dd/2e and the one of degree bd/2c).

(b) Assume g = 1.
Claim 3: We claim that h1(E⊗F) = 0, unless E ∼= OC⊕OC(1) and F ∼= OC⊕OC(1).
Proof of Claim 3: Since E⊗F ∼= F⊗E, it is sufficient to prove that E ∼= OC⊕OC(1) . Since E is spanned, it is a direct

sum of indecomposable and spanned vector bundles of degree ≥ 0 and if one of them has degree zero, it is a factor OC of E.
By Atiyah’s classifications of vector bundles on elliptic curves ([17, Part II]) every indecomposable vector bundle G with
deg(G)> 0 satisfies h1(G) = 0, concluding the proof of Claim 3.
This part of Md,1(Q) is irreducible for the following reasons. By Atiyah’s classification of vector bundles on an elliptic curve
([17, Part II]), E is a specialization with constant cohomology of semistable bundles. Therefore to check that Md,1(Q) is
irreducible, it is sufficient to test the cases with E semistable. If E is semistable, then h1(E⊗F) = 0 for any spanned bundle F
by Claim 3. If d is odd, then we use that any two stable bundle with same rank and degree only differ by a twist with an element
of Pic0(C). If d is even, then either E ∼= R⊕L with R,L ∈ Pic(d/2)(C) and R⊗L ∼= OC(1) or E is a non-trivial extension of
R by itself and R⊗2 ∼= OC(1). The latter case is a specialization of the former one (at least varying C), because Md,1(Q) is
smooth and equidimensional and the indecomposable bundles have a smaller dimension.

(c) Assume g = 2. By Remark 3.2 and Lemma 4.4 we may assume E 6= OC⊕OC(1) and F 6= OC⊕OC(1).
Now assume g = 2 and h1(E)> 0. By duality we get a non-zero map v : E→ ωC. Since E is spanned, Im(v) is spanned. Hence
either v is surjective or Im(v)∼= OC. The latter case is not possible, because (since E is spanned), it would give that E has OC
as a factor. Thus v is surjective. Set A := ker(v). We have A∼= OC(1)⊗ω∨C . Since OC(1) is very ample, we have d > 4. Hence
h1(A) = 0. If d ≥ 6, A is spanned. If d ≥ 7, then h1(A⊗ω∨C ) = 0 and hence E ∼= A⊕ωC. Assume also h1(F)> 0. We get that
F is an extension of ωC by OC(1)⊗ωC. Since h1(ω⊗2

C ) = 0, we get h1(E⊗F) = 0 and so h1(NC,Q) = 0. Hence Md,2(Q) is
smooth and of pure dimension 4d +1−g. To check the irreducibility of Md,2, it is sufficient to prove that the bundles with
h1(E)> 0 do not fill a connected component of Md,2. If d ≤ 6, see Lemma 4.6 and Lemma 4.8. If d ≥ 7, then E ∼= A⊕ωC and
so on a fixed curve C this set is isomorphic to Picd−2(C); we write g for the genus, because the same argument is needed when
g = 3. Fix C ∈Mg and take E ∼= A⊕ωC with A ∈ Pic2(C). This family of bundles is irreducible and (since Md,g(Q) is smooth
along all these bundles) we only need to exclude that Md,g(Q) has two connected components, one formed by bundles E1 with
h1(E1) = 0 and the other ones with bundles with h1(E) = 1. We have h1(E) = 1 and so h0(E) = d+3−2g. If h1(E1) = 0, then
h0(E1) = d+2−2g. We have dim(G(4,d+1+2(1−g))) = dim(G(4,d+2(1−g))+4. Thus each bundle E with h1(E)> 0
has the property that H0(E) has a family of 4-dimensional linear subspaces with higher dimension. For g≥ 3 it is sufficient to
note that for a fixed C the possible E depends on A ∈ Picd−g(C), the set of all rank 2 stable bundles on C with degree d have
dimension 4g−3 and g+4 < 4g−3. When g = 2 we also need to factorize the huge automorphism group of A⊕ωC (we have
h0(A⊗ω∨C ) = d−5).

(d) Assume g = 3. By Remark 3.2 and Lemma 4.4 we may assume E 6= OC⊕OC(1) and F 6= OC⊕OC(1). We also assume
d ≥ 8, leaving the cases d ≤ 7 to Remark 4.7. All cases with h1(E) = 0 are done as in Claim 2. Assume h1(E) > 0 and
h1(F) > 0. As in step (b) we get non-zero maps v1 : E → ωC and v2 : F → ωC with Im(vi) a non-trivial and spanned line
bundle. Hence either vi is surjective or C is not hyperelliptic and Im(vi) = ωC(−p) for some p ∈ C or C is hyperelliptic
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and Im(vi) is the g1
2 of C. In all cases ker(vi) is spanned and non-special, because we assumed d ≥ 9. The case in which

E ∼= A⊕ωC is handled as in step (c). If either C is not hyperelliptic or at least one among Im(v1) and Im(v2) is not the g1
2 on

C, we have h1(E⊗F) = 0 and so h1(NC,Q) = 0. So Md,3(Q) is smooth and of dimension 4d +1−g = 4d−2 at [C]. Hence
h1(E⊗F) > 0 if and only if C is hyperelliptic and Im(v1) and Im(v2) are the g1

2, R, on C. In this case we have E ∼= A⊕R
and F ∼= B⊕R with deg(A) = deg(B) = d− 2 and so h1(E ×F) = 1. Therefore every irreducible component of Md,3(Q)
containing [C] has dimension at least 4d + 1− g and at most 4d + 2− g. To check that these points are singular points of
Md,3(Q) and hence that Md,3(Q) has pure dimension 4d− 2, it is sufficient to prove that these bundles do not fill a subset
of Md,3(Q) of dimension ≥ 4d−2; we will prove that these bundles fill in a family of dimension ≤ 4d−3, because this is
needed to prove the irreducibility of Md,3(Q). The set of these bundles only depends on the choice of a hyperelliptic curve C,
the choice of A ∈ Picd−2(C) and the choice of a 4-dimensional linear subspace of H0(A⊕R). We have h1(A⊕R) = h1(R) = 1
and so h0(A⊕R) = d +2−2g. Since there ∞5 hyperelliptic curves and Picd−2(C) has dimension 3, it is sufficient to use that
5+4+3< 6+4g−3. Then the proof in step (c) handles all bundles of the form A⊕ωC. It remains to handle the bundles E with
C not hyperelliptic and Im(v1)∼= ωC(−p) for some p ∈C. Set A := ker(v1) ∈ Picd−3(C). Note that h1(E) = 1 and h1(F) = 0.
Hence these bundles are in the smooth part of Md,3(Q). We have h0(E) = h0(E1)+1 when h1(E1) and so the Grassamannian
of all 4-dimensional linear subspaces has dimension 4+ z, where z is the dimension of all 4-dimensional linear subspaces of
H0(E1). The bundles E1 depends on 4g−3 = 9 parameters. The bundles E depends on A (g = 3) parameters, on p ∈C (one
parameter) and an extension classes of ωC(−p) by A. For the trivial extensions we use that 4+g+1 < 4g−3. Two non-trivial,
but proportional extensions, give the same bundle, up to isomorphisms. Hence the bundles E with h1(A⊗ω∨C (p))≤ 1, do not
fill a connected component of Md,3(Q). We have deg(A⊗ω∨C ) = d−6. Since C is not hyperelliptic, we have h1(A⊗ω∨C (p))≤ 1
for all d ≥ 8. See Remark 4.7 for the case d ≤ 7.

4. Preliminary lemmas

The following lemma is proved as in [6, page 153].

Lemma 4.1. Fix (d,g) such that 2d ≤ 19+g and h1(IC(2)) = 0 for all C ∈Md,g. Then a general W ∈W contains finitely
many elements of Md,g and the incidence variety Id,g ⊂Md,g×W is irreducible.

Remark 4.2. Unfortunately in several interesting cases many curves satisfies h1(IC(2))> 0 (e.g. if 2d +1−g > 15 this is
the case for all curves spanning a hyperplane of P5). Working with Md,g(Q) we only need to check if h1(IC(4)) = 0. This is
true for all C ∈Md,g(Q) for some more pairs (d,g). We divide Md,g(Q) in the one with h1(IC(4)) = 0 and in the ones with
h1(IC(4))> 0. We need to prove that for C in a non-empty open subset of Md,g(Q) we have h1(IC(4)) = 0 (Lemma 5.5). The
last two sections of this paper tackle the case h1(IC(4))> 0.

Remark 4.3. Md,g(1) 6= /0 if and only if d = 1 and g = 0. By Lemma 4.1 a general W has only finitely many lines.

Lemma 4.4. Md,g(2) 6= /0 if and only if either d = 2 and g = 0 or d = 3 and g = 1. In the cases (d,g) ∈ {(2,0),(3,1)} a
general W contains finitely many elements of Md,g(2).

Proof. Since the curves in Md,g are non-special, Md,g(2) 6= /0 if and only if either d = 2 and g = 0 or d = 3 and g = 1.
The second assertion follows from Lemma 4.1.

Remark 4.5. Set Γ := {C ∈M6,3 : C is hyperelliptic}. Γ is an irreducible divisor of the 32-dimensional variety M6,3. Fix
a smooth quadric hypersurface Q ⊂ P5 and set Γ′ := Γ∩M6,3(Q). Fix C ∈ M6,3(Q). We have dim(〈C〉) = 3. Since Q is
smooth, 〈C〉 * Q and so Q′ := 〈C〉 is an irreducible quadric surface containing C. Since all even degree smooth curves
of a quadric cone of P3 are complete intersection [18, V Ex. 2.9], Q′ is a smooth quadric. Since (d,g) = (6,3), then
C ∈ |OQ′(2,4)|∪ |OQ′(4,2)| and so C is hyperelliptic. Hence no C ∈M6,3(Q)\Γ′ is contained in some W ∈W. Conversely,
any hyperelliptic curve X may be embedded in Q′ = P1×P1 as an element of |OQ′(2,4)| using the g1

2, R, of X to get one
morphism X → P1 and a general A ∈ Pic4(X) for the other map X → P1 so that A⊗R is very ample). Hence for a fixed X
the set of all such embeddings is parametrized by an irreducible variety of dimension 3. Fix C ∈ Γ′, say with C ∈ |OQ′(2,4)|.
We have NC,Q ∼= OC(1)⊕2⊕OC(2,4) and hence h1(NC,Q) = 0. So M6,3(Q) is smooth at [C] and of dimension 4d +1−g = 22.
Since |OQ′(2,4)| is irreducible and as 〈C〉 we may take any P3 ⊂ P5 transversal to Q, M6,3(Q) is irreducible. Call I ⊂ Γ′×W
the incidence correspondence and let π1 : I → Γ′ and π2 : I →W denote the projections. We have h1(Q,IC,Q(4)) = 0,
because h1(Q′,IC,Q′(4)) = h1(Q′,OQ′(2,0)) = 0. Lemma 4.1 concludes the proof of the theorem for (d,g) = (6,3). In this
case the incidence correspondence is irreducible, because the set of all hyperelliptic curves is irreducible and all these curves
C have the same h0(IC(2)) and h1(IC(4)) = 0 (and so the incidence correspondence for M6,3(Q) is irreducible).

Lemma 4.6. We have Md,g(3) 6= /0 if and only if d ≥ g+3. If g≤ 3, then a general W ∈W contains some C ∈Md,g(3) only if
(d,g) ∈ {(3,0),(4,1),(5,2),(6,3)} and in each of these cases W contains only finitely many curves C.

Proof. Fix a smooth hyperquadric Q, C ∈Md,g(3) and W ∈W containing C. Set U := 〈C〉. Since Q is smooth, U * Q and
hence Q′ := Q∩U is a quadric surface containing C. Since the irreducible curve C spans U and C ⊂Q′, Q′ is irreducible. If Q′

is a quadric cone, then C is arithmetically normal [18, V Ex. 2.9] and hence h1(IC(t)) = 0 for t = 2,4, so that we may apply
Lemma 4.1 to these curves) and we find pairs (d,g) ∈ {(3,0),(4,1),(5,2)}. If Q′, up to a change of the ruling of Q′ we get all
C ∈ |OQ′(2,g+1)| and so d = g+3. If g≤ 4 we have h1(IC(4)) = h1(Q′,IC,Q′(4)) = h1(Q′,OQ′(2,4−g−1)) = 0.



Fundamental Journal of Mathematics and Applications 185

Lemma 4.7. Theorem 1.1 is true for g = 3 and d ≤ 7.

Proof. Take g = 3 and d ≤ 7. Since h1(OC(1)) = 0, we have 6≤ d ≤ 7. Remark 4.5 and Lemma 4.6 solve the case d = 6 and
the case d = 7 in which C ∈M7,3(3). Hence we may assume d = 7 and dim(〈C〉) = 4. In this case C is linearly normal in its
linear span and so h1(IC(t)) = 0 for all t ∈ N. Apply Lemma 4.1.

Lemma 4.8. Fix C ∈Md,g(Q)(r) with d ≤ 7, g≤ 2 and r = 4,5. Then h1(NC,Q) = h1(IC(4)) = 0. Moreover, these cases only
contribute finitely many smooth curves to a general W ∈W.

Proof. Since g≤ 2, we have h1(NC,Q) = 0. Since d < 4+ r, we have h1(IC(4)) = 0 [19, Theorem at page 492] and hence
these cases contributes only finitely smooth curves to a general W ∈W.

Lemma 4.9. A general W ∈W contains no singular conic (reducible or a double line).

Proof. Take any conic D⊂W . Since h1(ID,P5(4))= 0, we have h1(Q,ID,Q(4))= 0 and hence h0(Q,ID,Q(4))= h0(D,ID,Q(4)).
Either D is contained in a plane contained in Q or it is the complete intersection of Q and a plane. In both cases we have
h1(ND,Q) = 0. Thus a dimensional count gives that a general W ∈W contains only finitely many conics and that all these
conics are smooth.

We recall the following well-known consequence of the bilinear lemma (it is a key tool in [2]).

Lemma 4.10. Fix integers t ≥ 2, r ≥ 3 and an integral and non-degenerate curve T ⊂ Pr such that h1(IT (t)) > 0. Fix a
linear subspace V ⊆ H0(OPr(1)). Assume that h1(M,IM∩T,M(t)) = 0 for every hyperplane M ∈ |V |. Then h1(IT (t−1))≥
h1(IT (t))+dim(V )−1.

Proof. For any hyperplane M ⊂ Pr we have an exact sequence

0→IT (t−1)→IT (t)→IT∩M,M(t)→ 0

Now assume that V contains an equation of M. Since h1(M,IT,M(t)) = 0, the map H1(IT (t−1))→ H1(IT (t)) is surjective
and hence its dual eM : H1(IT (t))∨→ H1(IT (t−1))∨ is injective. Taking the equations of all hyperplanes we get a bilinear
map map u : H1(IT (t))∨×V → H1(IT (t − 1))∨, which is injective with respect to the second variables, i.e. for every
non-zero linear form ` the map u|H1(IT (t))∨×{`} is injective (it is eM with M := {`= 0}). Hence if (a, `) ∈ H1(IT (t))∨×V
with a 6= 0 and ` 6= 0, then u(a, `) = eM(a) 6= 0. Therefore the bilinear map u is non-degenerate in each variable. Hence
h1(IT (t−1))≥ h1(IT (t))+dim(V )−1 by the bilinear lemma.

5. Good postulation in degree 4

In this section we prove for certain d,g the existence of a non-degenerate C ∈Md,g(Q) with h1(IC(4)) = 0.

Lemma 5.1. Fix C ∈Md,g(Q) such that h1(NC,Q) = 0. Take an integer t > 0 and a smooth rational curve T ⊂ Q such that
deg(C∩T ) = 1 and deg(T ) = t. Then h1(NC∪T,Q) = 0 and C∪T is a flat limit of elements of Md+t,g(Q).

Proof. Set {p} := C∩T . By assumption h1(OC(1)) = 0. Since Q is homogeneous, its tangent bundle is spanned. Hence
NT,Q is a direct sum of line bundles of degree ≥ 0. Therefore h1(NT,Q(−p)) = 0. A Mayer-Vietoris exact sequence gives
h1(OC∪T (1)) = 0. Hence if C∪T is smoothable inside Q, then it is a flat limit of a family of elements of Md+t,g(Q). Since
h1(NT,Q(−p)) = 0, as in [20, Theorem 4.1] we get that C∪T is smoothable inside Q and h1(NC∪T,Q) = 0.

Lemma 5.2. For all g ∈ {0,1,2,3} there is a non-degenerate C ∈Mg+5,g(Q) and any such C is projectively normal.

Proof. Let X ⊂ P5 be a linearly normal smooth curve of genus g≤ 3 and degree g+5. Since g+5≥ 2g+1, X is projectively
normal [21]. It is sufficient to prove that some X is contained in a smooth quadric hypersurface. Since g≤ 3, we start with a
smooth quadric surface Q1 ⊂ Q, a smooth curve A ∈ |IQ1(2,g+1)| and then we apply the case t = 2 of Lemma 5.1.

Lemma 5.3. Let Q′ ⊂ P4 be a smooth quadric hypersurface. Fix integers d,g such that 0≤ g≤ 3 and d ≥ g+4. Let Md,g(Q′)
be the set of all non-special smooth curves C ⊂ Q′ of genus g and degree d.

(a) There is C ∈Mg+4,g(Q′) which is projectively normal.
(b) If either g + 4 ≤ d ≤ g + 6 or g ≤ 2 and d = g + 7 or g = 0 and d = 8, then there is C ∈ Md,g(Q′) such that

h1(Q′,IC,Q′(3)) = 0.
(c) If either g+ 4 ≤ d ≤ g+ 9, or g ≤ 2 and d = g+ 10 or g = 0 and d = 11,12, then there is C ∈ Md,g(Q′) such that

h1(Q′,IC,Q′(4)) = 0.
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Proof. The proof of part (a) is similar to the one Lemma 5.2. The same proof also gives the case d = g+4 of part (b).
(i) Let A⊂ Q′ be a smooth projectively normal curve of genus g and degree g+4. Let Q1 ⊂ Q′ be a general hyperplane

section. Q1 is a smooth quadric surface and S := A∩Q1 is a subset of Q1 with degree g+4, in uniform position and spanning
the 3-dimensional linear space spanned by Q1. Fix p ∈ S and set S′ := S \{p}. Let B be a general element of |Ip,Q1(1,2)|.
Lemma 5.1 shows that A∪B is smoothable inside Q′. Hence to prove the case d = g+ 7, g ≤ 2, of part (b) it is sufficient
to prove that h1(Q′,IA∪B,Q′(3)) = 0. We have ResQ1(A∪B) = A. Since h1(Q′,IA,Q′(2)) = 0, the case t = 3 of the residual
sequence

0→IA,Q′(t−1)→IA∪B,Q′(t)→I(A∪B)∩Q1,Q1(t)→ 0

shows that it is sufficient to prove that h1(Q1,I(A∪B)∩Q1,Q1(3)) = 0. We have Q1∩ (A∪B) = S′∪B and hence it is sufficient
to prove that h1(Q1,IS′,Q′(2,1)) = 0. S′ is a set of g+ 3 ≤ 6 points of Q1. Assume e := h1(Q1,IS′,Q1(2,1)) > 0. Hence
h0(Q,IS′,Q1(2,1)) = e + 3− g. Since S is in uniform position, we get h0(Q1,IS,Q1(2,1)) = e + g− 3. Fix a general
D ∈ |IS,Q1(2,1)|. First assume that D is irreducible. For any set E ⊂ D with #(E) = 5, we have h0(Q1,ID,Q1(2,1)) =
h0(Q1,IE,Q1(2,1)) and hence h1(Q1,IE,Q1(2,1)) = 0. If g≤ 2 we may take S′ ⊆ E. Now assume that D is reducible. Since
S is in uniform position, we may assume that no 2 of the points of S are contained in a line of Q1. Hence we get the existence
of a smooth conic D1 ⊂ Q1 containing at least g+ 4 points of S′. Since S is in uniform position, we get S ⊂ D1. If g = 3
we use instead of B a curve B′ ∈ |Ip,Q1(1,1)| (in this case the equality h1(Q1,IS′,Q1(2,2)) = 0 may be proved using an
elliptic curve D′ ∈ |OQ1(2,2)|, because h1(D,IS′,D1(2,2)) = 0 for any set E ⊂ D with #(E) ≤ 7. Now assume g = 0 and
d = 8. Instead of B we take a general B1 ∈ |Ip,Q1(1,3)|. It is sufficient to prove that h1(Q,IS′,Q1(2,0)) = 0. We have
#(S′) = 3 = h0(Q1,OQ1(0,2)), and it is sufficient to use again by the uniform position that no two points of S are on a line of
Q1.

(ii) Now we prove part (c). Since in part (b) we get non-special curves, the same curves C have h1(Q′,IC,Q′(4)) = 0
by the Castelnuovo-Mumford’s lemma. Hence we may assume that either d ≥ g+8 and g ≤ 2, or d ≥ g+7 and g = 3 or
g = 0 and d ≥ 9. Set t := 8 if g = 0, t := g+ 7 if g = 1,2 and t := 9 if g = 3. By part (b) there is A ⊂Mt,g(Q′) such that
h1(Q′,IA,Q′(3)) = 0. Take a general hyperplane section Q1 of Q′ and set S := Q1∩S. S′ is a subset of Q1 with cardinality
t, spanning a P3 and in uniform position. Fix p ∈ S and set S′ := S\{p}. Fix a general B ∈ |Ip,Q1(1,2)|. As in step (i) it is
sufficient to prove that h1(Q1,IS′,Q(3,2)) = 0. In all cases we have t−1≤ 8. The uniform position and the non-degeneracy
of S′ imply that no line of Q1 contains at least 2 points of S′ and no conic of Q1 contains at least 4 points of S′.
Now take g = 0. In this case A may be dismantled into a union of lines. Fix a general line L ⊂ Q′. For each q ∈ L. The
union of all lines of Q′ trough q is the 2-dimensional quadric cone Tq(Q′)∩Q′. For a general q ∈ L the curve Tq(Q′)∩Q1 is a
smooth element Dq of |OQ1(1,1)| and a general line in Q′ passing through q meets Q1 at a general point of Q1. Hence we
get h0(Q1,IS′(3,1)) = 0 if #S′ ≤ 8, i.e. if we start with a general A ∈d,0 (Q′) with d ≤ 9. Thus we get the case g = 0 of part
(c).

Lemma 5.4. Let Q′ ⊂ P4 be a smooth quadric hypersurface. Fix a set S ⊂ Q′ with #S ≤ 10 and S is in linearly general
position. Take p ∈ S and set S′ := S\{p}.

(a) If 1≤ d ≤ 4, then there is C ∈Md,0(Q′) such that C∩S = {p} and h1(Q′,IS′∪C,Q′(3)) = 0.
(b) If 1≤ d ≤ 9, then there is C ∈Md,0(Q′) such that C∩S = {p} and h1(Q′,IS′∪C,Q′(4)) = 0.

Proof. Let Q1 be a general hyperplane section of Q′ containing p. Q1 is smooth and Q1∩S = {p}. We have h1(Q′,IS′,Q′(2)) =
0, because #S′ ≤ 9 [22, Theorem 3.2]. To prove part (a) it is sufficient to take any smooth C ∈ |Ip,Q1(1,3)|. By Castelnuovo-
Mumford’s lemma to prove part (b) we may assume d > 4. Fix a general A ∈ M4,0(Q′) containing p. Part (a) gives
h1(Q′,IA∪S′,Q′(3)) = 0. Fix a general hyperplane section Q2 ⊂ Q′. We have Q2∩S = /0 and the set E := Q2∩A is in linearly
general position in the P3 spanned by Q2. Fix q ∈ E and set E ′ := E \{q}. Fix a general B ∈ |Iq,Q2(1,4)|. By Lemma 5.1
it is sufficient to prove that h1(IS′∪A∪B,Q′(4)) = 0. Since ResQ1(S

′∪A∪B) = S′∪A and h1(IA∪S′,Q′(3)) = 0, it is sufficient
to prove that h1(Q1,IE ′∪B,Q1(4)) = 0, i.e. h1(Q′,IE ′(3,0)) = 0. This is true, because E ′ is formed by 3 points in uniform
position.

Lemma 5.5. (a) For all integers d,g such that 0 ≤ g ≤ 3 and g+ 5 ≤ d ≤ g+ 9 there is a non-degenerate C ∈Md,g(Q)
such that h1(IC(3)) = 0.

(b) For all integers d,g such that either 0 ≤ g ≤ 3 and g+5 ≤ d ≤ 14 there is a non-degenerate C ∈Md,g(Q) such that
h1(IC(4)) = 0.

Proof. Fix a projectively normal A ∈Mg+5,5(Q). Fix a general hyperplane section Q′ ⊂ Q. Since h1(Q,IA,Q(4)) = 0, we
may assume d > g+5. The set S := A∩Q1 is in linearly general position. Fix p ∈ S and set S′ := S\{p}. Apply part (b) of
Lemma 5.4 to get T ∈Md−g−5,0(Q′) such that h1(Q′,IS′∪T (4)) = 0. Since h1(Q,IA∪T (3)) = 0 and (A∪T )∩Q′ = S′∪T ,
the residual sequence of Q′ in Q gives h1(Q,IA∪B(4)) = 0. Use Lemma 5.1 and the semicontinuity theorem for cohomology
to prove part (b). For part (a) we take T of degree ≤ 4 and use that h1(Q,IA,Q(2)) = 0.

Remark 5.6. A general element of Md,0(Q′) (resp. Md,0(Q)) is a deformation of a tree contained in Q′ (resp. Q). Using this
observation we may improve parts (a) and (b) of Lemma 5.5, but for a range of integers d out of reach with our tools for the
Clemen’s conjecture.
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6. Non-degenerate curves

In this section we consider non-degenerate curves C of Md,g or of Md,g(Q). By [19, Theorem at page 492] we have
h1(IC(4)) = 0 if either d ≤ 8 or d = 9 and g > 0 or d = 9, g = 0 and there is no line R⊂ P5 with deg(R∩C)≥ 6. By Lemma
5.5, the irreducibility of Md,g(Q) and the equality dim(Md,g(Q)) = 4d +1−g we may assume h1(IC(4))> 0.

Lemma 6.1. Assume d ≤ 11 and fix a non-degenerate C ∈Md,g such that there is no line R⊂ P5 with deg(R∩C)≥ 6. Then
h1(M,IC∩M,M(4)) = 0 for every hyperplane M ⊂ P5.

Proof. Fix a hyperplane M⊂P5. Since C spans P5, Z :=C∩M is a curvilinear scheme spanning M. Assume h1(M,IZ,M(4))>
0. Let N be a hyperplane of N with maximal a := deg(Z∩N). Since Z spans M, we have a≥ 4. Assume for the moment a = 4,
i.e. assume that Z is in linearly general position. Since d ≤ 17, we have h1(M,IZ,M(4)) = 0 [22, Theorem 3.2]. Hence we
may assume a≥ 5.

(a) First assume h1(N,IZ∩N,N(4))> 0. Since Z spans M, we have a≤ d−1≤ 10. The maximality property of N implies
that Z∩N spans N. Hence deg(Z∩U)≤ 9 for every plane U ⊂ N. Fix a plane U ⊂ N with b := deg(Z∩U) is maximal. If
h1(U,IZ∩U,U (4))> 0, then there is a line R⊂U with deg(R∩Z)≥ 6. Hence we may assume h1(U,IZ∩U,U (4)) = 0. The
residual sequence of U in N gives h1(N,IResU (Z∩N),N(3))> 0. We have deg(ResU (Z∩N))≤ 10−b≤ 7. By [23, Lemma 34]
there is a line L⊂ N such that deg(L∩ResU (Z))≥ 5. Hence b≥ 6. Hence 10−b > deg(L∩ResU (Z)), a contradiction.

(b) Now assume h1(N,IZ∩N(4)) = 0. The residual exact sequence

0→IResN(Z),M(3)→IZ,M(4)→IZ∩N,N(4)→ 0

gives h1(M,IResN(Z),M(3))> 0. Since d−a≤ 7, then there is a line L⊂M such that deg(ResN(Z))≥ 5 [23, Lemma 34]. By
assumption we have deg(L∩Z) = 5. Since deg(Z∩L)≥ 5, the maximality property of a gives a≥ 7. Since d−a≥ 5, we get
d ≥ 12, a contradiction.

Lemma 6.2. Assume d ≤ 11 and fix a non-degenerate C ∈Md,g such that there is no line R ⊂ P5 with deg(R∩C) ≥ 5, no
conic D⊂ P5 with deg(D∩C)≥ 8, no plane cubic T with deg(T ∩C) = 9 and C∩T ∈ |OT (3)|. Then h1(M,IC∩M,M(3)) = 0
for every hyperplane M ⊂ P5.

Proof. Fix a hyperplane M⊂P5. Since C spans P5, Z :=C∩M is a curvilinear scheme spanning M. Assume h1(M,IZ,M(3))>
0. Let N be a hyperplane of N with maximal a := deg(Z∩N). Since Z spans M, we have a≥ 4. Assume for the moment a = 4,
i.e. assume that Z is in linearly general position. Since d ≤ 13, we have h1(M,IZ,M(3)) = 0 [22, Theorem 3.2]. Hence we
may assume a≥ 5.

(a) First assume h1(N,IZ∩N,N(3))> 0. Since Z spans M, we have a≤ d−1≤ 10. The maximality property of N implies
that Z∩N spans N. Hence deg(Z∩U)≤ 9 for every plane U ⊂ N. Let U ⊂ N be a plane such that b := deg(U ∩Z) is maximal.
If h1(U,IZ∩U,U (3))> 0, then [24, Corollaire 2] shows the existence of either R or D or T . Now assume h1(U,IU∩Z,U (3)) = 0.
The residual sequence of U gives h1(N,IResU (N∩Z),N(2)) > 0. Since deg(ResU (N ∩Z)) ≤ 10−b ≤ 7, either there is a line
L ⊂ N with deg(L∩ResU (Z)) ≥ 4 or there is a conic D ⊂ N with deg(D∩Z) ≥ 6. The latter case is impossible, because
it implies a− b ≥ 6 and b ≥ 6, a contradiction. Hence there is a line L with deg(L∩ResU (Z)) ≥ 4. To prove the lemma
we may assume deg(Z ∩L) = 4. Let E ⊂ N be a plane containing L and with maximal c := deg(E ∩Z) among the planes
containing L. If h1(E,IE∩Z,E(3)) > 0, then [24, Corollaire 2] shows the existence of either R or D or T . Now assume
h1(E,IE∩Z,E(3)) = 0. The residual sequence of E gives h1(N,IResE (Z∩N),N(2))> 0. Since c≥ 5, there is a line R⊂ N such
that deg(R∩ResU (Z∩N)≥ 4. To prove the lemma we may assume that deg(R∩Z) = 4. First assume R∩L = /0. Let Q′ ⊂ N
be a general quadric containing L∪R. Note that Q′ is a smooth quadric. Since Z is curvilinear and IL∪R,N(2) is spanned, we
have Z∩Q′ = Z∩ (R∪L). Since h1(Q′,IZ∩(L∪R,Q′(3)) = 0, we get h1(N,IResQ′ (Z∩N),N(1))> 0, contradicting the inequality
deg(ResQ′(Z∩N))≤ 2.
Now assume R∩L 6= /0 and R 6= L. Since deg(R∩ResE(Z∩N))≥ 4 and E ⊃ L, we have deg(Z∩ (R∪L))≥ 8 and so we may
take D := R∪L.
Now assume R = L. We may take Z′ ⊆ Z ∩N minimal among the subschemes such that h1(N,IZ′,M(3)) > 0. Let Q′ be a
quadric surface containing L in its singular locus. Since deg(ResQ′(Z′))≤ 10−4−4 = 2, we have h1(M,IResQ(Z′)(1)) = 0.
Therefore the residual exact sequence of Q′ gives h1(Q′,IZ′∩Q′,Q′(t)) > 0. The minimality of Z′ gives Z′ ⊂ Q. Since Z′ is
curvilinear we get deg(Z′) = 8 and that each connected component γ of Z′ has even degree with deg(γ ∩L) = deg(γ)/2. Hence
there is a plane N′ ⊃ L with deg(N∩Z′)> deg(Z′∩L) = 4. We get deg(ResN′(Z′))≤ 3 and hence by a residual exact sequence
of N′ gives h1(N,IZ′,M(3)) = 0, a contradiction.

(b) Now assume h1(N,IZ∩N(3)) = 0. A twist of the residual exact sequence in step (b) of the proof of Lemma 6.1 gives
h1(M,IResN(Z),M(2))> 0. If d−a≤ 5, then there is a line L⊂M such that deg(ResN(Z))≥ 4 [23, Lemma 34]. By assumption
we have deg(L∩Z) = 4. Since deg(Z∩L)≥ 4, the maximality property of a gives a≥ 6. Since d−a≥ 5, we also get d = 11.
Let U ⊂M be a hyperplane such that U ⊃ L and deg(U ∩Z) is maximal. If h1(U,IU∩Z,U (3))> 0, then we may repeat part (a).
Now assume h1(U,IU∩Z,U (3)) = 0. The residual sequence of U gives h1(N,IResU (Z),N(2)) > 0. Since deg(ResE(Z)) ≤ 4,
there is a line R⊂ N with R⊃ ResE(Z) and deg(ResE(Z)) = 4. We conclude as in step (a).
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Lemma 6.3. Let X ⊂ P5 be an integral and non-degenerate curve of degree d ≤ 13. Then h1(H,IC∩H,H(t)) = 0 , t = 3,4, for
a general hyperplane H ⊂ P5.

Proof. The scheme C∩H spans H and it is in uniform position and in particular it is in linearly general position. Apply [22,
Theorem 3.2].

Lemma 6.4. Let X ⊂ P5 be an integral and non-degenerate curve of degree d ≥ 9 (resp. 5≤ d ≤ 8). Then h0(IX (2))≤ 6
(resp. h0(IX (2))≤ 15−d).

Proof. Fix a general hyperplane H ⊂ P5. The scheme S := X ∩H spans H and it is formed by d points in linearly general
position in H. Hence h0(H,IS,H(2))≤ 6 if d ≥ 9 and h0(H,IS,H(2)) = 15−d if d ≤ 8. Use the exact sequence

0→IX (1)→IX (2)→IX∩H,H(2)→ 0

and that X is non-degenerate, i.e., h0(IX (1)) = 0.

Lemma 6.5. Assume g≤ 3 and d ≤ 11. There is no non-degenerate C ∈Md,g such that h1(IC(4))> 0 and there is no line
L⊂ P5 with deg(L∩C)≥ 5,no conic D with deg(C∩D)≥ 8 and no plane cubic T with deg(T ∩C) = 9 and C∩T ∈ |OT (3)|.

Proof. Since h1(IC(4))> 0 and deg(R∩C)≤ 5 for all lines R, we have d ≥ 9 [19, Theorem at page 492]. By Lemmas 4.10,
6.1 and 6.2 we have h1(IC(3))≥ 5+h1(IC(4))≥ 10+h1(IC(5))≥ 11. By Lemma 6.3 we have h1(IC(2))≥ h1(IC(3)).
Hence h0(IC(2))≥ 31+g−2d. Use Lemma 6.4.

Lemma 6.6. Fix an integer a > 0 and assume d ≥ 2g−1+a. Fix a zero-dimensional curvilinear scheme Z ⊂ P5 such that
deg(Z) = a. Set EZ := {C ∈Md,g : Z ⊂C}. Then every irreducible component of EZ has dimension ≤ 6d +2−2g−4a.

Proof. If EZ = /0, then the lemma is true. Hence we may assume EZ 6= /0. Fix C ∈ EZ . By [25, Theoreme 1.5] it is sufficient to
prove that h1(NC(−Z)) = 0. Since C is smooth, NC is a quotient of TP5

|C and hence by the Euler’s sequence of TP5 the bundle

NC is a quotient of OC(1)⊕6. Since d ≥ 2g−1+a, we have h1(OC(1)(−Z)) = 0. Use that h2(G ) = 0 for every coherent sheaf
G on C.

Corollary 6.7. Assume d ≥ 9. Fix a ∈ {4,5,6}. Let Aa be the set of all non-degenerate C ∈Md,g such that there is a line
R⊂ P5 such that deg(C∩R)≥ a. Then every irreducible component of Aa has dimension ≤ 6d +2−2g+8−3a

Proof. Fix a line R⊂ P5 and a zero-dimensional scheme Z ⊂ R with deg(Z) = a. First apply Lemma 6.6, then use that R has
∞a zero-dimensional schemes of degree a and then use that P5 contains ∞8 lines.

Lemma 6.8. Assume 0≤ g≤ 3 and d≤ 11. Let B be the set of all non-degenerate C∈Md,g having a line R with deg(R∩C)≥ 6.
Then a general element of W contains no element of B.

Proof. Fix C ∈B. The existence of R implies d ≥ 9 and that d ≥ 10 if g > 0. By Corollary 6.7 to prove the lemma it is
sufficient to avoid all C ∈B with h1(IC(4))≥ 10. Since d ≤ 11, Lemma 6.3 and the exact sequence in the proof of Lemma
6.4 for X =C and t = 3,4 give h1(IC(2))≥ 10. Hence h0(IC(2))≥ 30+g−2d, contradicting Lemma 6.4.

Lemma 6.9. Assume 0 ≤ g ≤ 3 and d ≤ 11. Let B′ be the set of all non-degenerate C ∈ Md,g having a line R with
deg(R∩C)≥ 4. Then a general element of W contains no element of B′.

Proof. By Corollary 6.7 it is sufficient to test all C ∈Md,g with h1(IC(4))≥ 4. By Lemma 6.8 we may assume that C has no
line R with deg(R∩C)≥ 6. Hence Lemmas 4.10 and 6.1 give h1(IC(3))≥ 5+h1(IC(4))≥ 9. By Lemma 6.3 and the exact
sequence in the proof of Lemma 6.4 for t = 3 and X =C we have h1(IC(2))≥ 9 and so h0(IC(2))≥ 31+g−2d. Lemma
6.4 gives a contradiction.

Lemma 6.10. Assume 0 ≤ g ≤ 3 and d ≤ 11. Let B1 be the set of all non-degenerate C ∈ Md,g having a conic D with
deg(D∩C)≥ 8. Then a general element of W contains no element of B1.

Proof. Fix C ∈B1, say associated to the conic D, and take W ∈W containing C (if any). By Lemma 6.9 we may assume the
non-existence of lines L with deg(L∩C)≥ 4. Hence D is not a reducible conic. It is not a double conic, say with L := Ared,
because we would have deg(L∩C)≥ deg(A∩C)/2≥ 4. Hence D is smooth. By Lemma 4.9 it is sufficient to test the curves
C with h1(IC(4)) ≥ 10. Lemmas 4.10 and 6.1 give h1(IC(3)) ≥ 15. Lemma 6.3 and the cohomology exact sequence of
the the exact sequence in the proof of Lemma 6.4) for X = C and t = 3 give h1(IC(2)) ≥ 15 and so h0(IC(2)) ≥ 14+ g,
contradicting Lemma 6.4.

Lemma 6.11. Assume 0≤ g≤ 3 and d ≤ 11. Let B2 be the set of all non-degenerate C ∈Md,g having a plane cubic T with
deg(T ∩C) = 9 and C∩T ∈ |OC∩T,T (3)|. Then a general element of W contains no element of B2.
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Proof. Take C for which T exists. We have d = 11. The set of all hyperplanes of P5 containing 〈T 〉 induces a g2
2 on C.

Hence g = 0. Fix any scheme Z ∈ |OT (3)|. Since g = 0, Lemma 6.6 implies h1(NC(−Z)) = 0 and hence the set of all C ⊂ P5

containing Z has dimension 6d +1−4deg(Z) = 31. Since P5 has ∞9 planes, each plane has ∞9 plane cubics and each plane
cubic T has ∞9 elements of |OT (3)|, it is sufficient to exclude all C ∈B2 with h1(IC(4))≥ 9. By Lemmas 6.9 and 6.10 we
may assume the non-existence of line R⊂ P5 with deg(C∩R)≥ 4 and of conics D⊂ P5 with deg(C∩D)≥ 8. As in the proof
Lemma 6.10 we get h1(IC(2))≥ 14, i.e .h0(IC(2))≥ 13+g, contradicting Lemma 6.4.

By Lemma 5.5 at this point we proved that a general W ∈W contains only finitely many non-degenerate C ∈Md,g.

7. Degenerate curves

In this section we prove that a general W ∈W contains only finitely many degenerate C ∈Md,g(Q), d ≤ 11 and g ≤ 3. By
Remarks 4.3, 4.4 and Lemma 4.6 it is sufficient to test the curves C ∈Md,g(4). By [19, Theorem at page 492] we may assume
d≥ 7 and d≥ 8 if either g> 0 or C has genus 0 and no line R with deg(R∩C)≥ 6. By Remark 4.3 and Lemma 4.6 it is sufficient
to test the degenerate C ∈Md,g(Q). Fix a hyperplane M ⊂ P5 and set Q′ := Q∩M. Set M′d,g(Q

′) := {C ∈Md,g(Q) : C ⊂ Q′

and C spans M}. Either Q′ is smooth or Q′ has a unique singular point, o. For any C ∈M′d,g(Q
′) set x(C) = 0 if either Q′

is smooth or Q′ is a cone with vertex o and o /∈C, and set x(C) := 1 if Q′ has vertex o and o ∈C. Since ωQ′
∼= OQ′(−3),

if x(C) = 0, then Hilb(Q′) is smooth and of dimension 3d + 2− 2g. Now assume that Q′ is a cone with vertex o and that
x(C) = 1, i.e. that o ∈C. Let u : Q̃′→ Q′ be the blowing up of o. Let E := v−1(o) be the exceptional divisor and let C̃ ⊂ Q̃′ be
the strict transform of C. Since C is smooth, v maps isomorphically C̃. Let Ψ be closure in Hilb(Q̃′) of the strict transforms
of all A ∈Md,g(Q′) with x(A) = 1. We claim that dimΨ≤ 3d +1. Fix D ∈Ψ. Since Aut(Q̃′) acts transitively of Q̃′ \E, the
first part of the proof gives h1(ND,Q̃) = 0. Hence it is sufficient to prove that deg(ND,Q̃)≤ 3d−1, i.e. deg(τQ̃|D

)≤ 3d +1, i.e.

deg(ωQ̃|D) ≥ −3d−1. The group Pic(Q̃) is freely generated by E and the pull-back H of OQ(1). We have D ·H = d and
D ·E = x. We have ωQ̃

∼= OQ̃(−3H−E) [26, Example 8.5 (2)]. Hence dim(M′d,g(Q
′)) has dimension ≤ 3d + x(C) at C. Since

Q has ∞4 singular hyperplane sections and ∞5 smooth hyperplane sections, to prove that a general W ∈W has no (resp. finitely
many) curves C spanning a hyperplane, it is sufficient to exclude the ones with h1(IC(4))≥ d−4−g. For all d,g for which
we only use that h1(IC(4))≥ d−5−g, no degenerate C ∈Md,g is contained in a general W ∈W. Fix a hyperplane M ⊂ P5.
Let M′d,g(M) be the set of all C ∈Md,g contained in M and spanning M.

Lemma 7.1. A general W ∈W contains no C ∈Md,g such that there is a hyperplane M with C ∈M′d,g(M) and h0(M,IC(2))≥
4.

Proof. Let K ⊂M denote the set-theoretic base locus of |IC,M(2)| and A any irreducible component of K containing C. Note
that |IC,M(2)|= |IA,M(2)|. Since C spans M, every element of |IC,M(2)| is irreducible and A spans M. Hence dim(K)≤ 2.
First assume dim(A) = 2. Since a complete intersection B of two quadrics of M has h0(M,IB,M(2)) = 2 < 4 and A spans
M, we get deg(A) = 3. Hence either A is a smooth rational normal scroll or a cone over a rational normal curve of P3. In
both cases we have h0(M,IA,M(2)) = 3, a contradiction. Hence dim(A) = 1, i.e. A =C. Fix two general elements Q1,Q2
of |IC,M(2)| and let E be an irreducible component of Q1∩Q2 containing C. Since A =C, there is a quadric hypersurface
Q3 ⊂M, containing C, but not E. Since C ⊆ E ∩Q3, we get E = Q1∩Q2, d ≤ 8, and that either d = 8 and C = Q1∩Q2∩Q3
or d = 7 and C is linked to a line by the complete intersection Q1∩Q2∩Q3. In both cases C is arithmetically Cohen-Macaulay
and in particular h1(IC(4)) = 0, a contradiction.

Lemma 7.2. A general W ∈W contains no C∈M11,g such that there is a hyperplane M with C∈M′11,g(M) and h0(M,IC,M(2))=
3.

Proof. Take K,A as in the proof of Lemma 7.1. Since d > 8, we only need to modify the proof of the case dim(A) = 2.
If dim(A) = 2, then deg(A) = 3 and A is either the cone of of a rational normal curves of P3 or it is a smooth rational
normal curve isomorphic to the Hirzebruch surface F1 embedded by the complete linear system |h+2 f |. Write C ∈ |ah+b f |
with a > 0 and b ≥ a. We have 11 = a+ b and hence b > a. Since ωF1

∼= OF1(−2h− 3 f ), the adjunction formula gives
2g−2 = (ah+b f ) · ((a−2)h+(b−3) f ) =−a(a−2)+a(b−3)+b(a−2) = (a−2)(b−a)+a(b−3). If g = 0 we get that
either a = 1 (and hence b = 10) or a = b = 2, contradicting the equality a+b = 10. If g > 0, then a≥ 2. There is no solution
with a+b = 11, a≥ 2, and g≤ 3. In the case a = 1 and b = 10 the curve C has h0(A,OA(4−C)) = 0. Hence if C ⊂W , then
A⊂W , contradicting the fact that Pic(W ) is generated by OW (1).
Now assume that A is a cone over a rational normal curve. Let o be the vertex of A and call u : F2→ A the blowing up of o. Set
h := u−1(o). F2 is isomorphic to the Hirzebruch surface with the same name, h is the only section of its ruling with negative
self-intersection and u is induced by the linear system |h+2 f |. We have h2 = −2 and ωF2

∼= OF2(−2h−4 f ). Let C′ ⊂ F2
denote the strict transform of C, with C′ ∈ |ah+b f and b≥ 2a. Since C is smooth, u sends isomorphically C′ to C. Hence
11 = b and b ∈ {2a,2a+1}. Since h0(OF2(4h+8 f −C)) = 0, any W containing C contains A, a contradiction.

Lemma 7.3. Fix C ∈ M′d,g(M), d ≤ 13, and let H be a general hyperplane of M. We have h1(H,IH∩C,H(4)) = 0 and
h1(H,IH∩C,H(3))≤max{0,d−10}.
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Proof. Any S ⊆C∩H with #(S) ≤ 10 (resp. #(S) ≤ 13) is in linearly general position in M and hence h(M,IS,M(3)) = 0
(resp. h1(M,IC,M(4)) = 0 by [22, Theorem 3.2].

Lemma 7.4. Let N ⊂M be a hyperplane and let Z ⊂ N be a degree d ≤ 11 zero-dimensional scheme spanning N. If there are
neither a line R⊂ N with deg(R∩Z)≥ 6 nor a plane conic D⊂ N with deg(D∩Z) = 10, then h1(N,IZ,N(4)) = 0.

Proof. Let U ⊂ N be a plane of N with maximal a := deg(Z∩N). Since Z spans N, we have a≥ 3. Assume for the moment
a = 3, i.e. assume that Z is in linearly general position. Since d ≤ 13, we have h1(N,IZ,MN(4)) = 0 [22, Theorem 3.2]. Hence
we may assume a≥ 4.
First assume h1(U,IZ∩U,U (4))> 0. Since Z spans N, we have a≤ d−1≤ 10. Use [24, Corollaire 2 or Remarques (i) at page
116].
Now assume h1(N,IZ∩N(4)) = 0. The residual exact sequence of U in N gives h1(N,IResU (Z)(3))> 0. Since deg(ResU (Z)) =
d−a≤ 7, [23, Lemma 34] gives the existence of a line L⊂ N such that deg(L∩Z)≥ 5. Then we continue as in step (a) of
the proof of Lemma 6.2. the residual exact sequence of M gives h1(M,IResN(Z),M(3))> 0. Since d−a≤ 7, then there is a
line L⊂M such that deg(ResN(Z))≥ 5 [23, Lemma 34]. By assumption we have deg(L∩Z) = 5. Since deg(Z∩L)≥ 5, the
maximality property of a gives a≥ 7. Since d−a≥ 5, we get d ≥ 12, a contradiction.

Lemma 7.5. A general W ∈W contains no C ∈ M′d,g(M) such that there a plane conic D with deg(D∩C) ≥ 10 (if D is
singular also assume that deg(L∩C)≤ 5 for each line L⊂ D).

Proof. The pencil of hyperplanes of M containing the plane U spanned by D shows that d = 11, deg(D∩C) = 10, and g = 0.
First assume that D is a double line. Fix W ∈W with W ⊃C. Set L := Dred. Since deg(L∩C), we have L⊂W for any W ∈W
with W ⊃C. Let ResL(C∩D) be the residual scheme with respect to the divisor L of U . Since deg(C∩L)≥ deg(C∩D)/2,
our assumptions give deg(L∩C) = 5 and hence deg(ResL(C∩D)) = 5. Since C∩D⊂ D, we have ResL(C∩D)⊂ L. Since
D *W (Lemma 4.9), we have W ∩U = L∪T with T a plane cubic not containing L. Hence deg(L∩T ) =3. Since ResL(C∩D)
is contained both in L and in T , we get a contradiction.
Now assume D = R∪ L with R,L lines and L 6= R. Since deg(L∩C) ≤ 5 and deg(R∩C) ≤ 5 by assumption, we have
deg(R∩C) = deg(R∪L) = 5. Hence D⊂W , contradicting Lemma 4.9.
Now assume that D is smooth. Since g = 0 for each Z ⊂ D with deg(D) = 10, we have h1(NC,M(−Z)) = 0 and so h0(NC,M) =
45− 30. Since D has ∞10 degree 10 subschemes, M has ∞6 planes, each plane has ∞5 conics and P5 has ∞5, hyperplanes,
each irreducible component of the set of all (C,D,M) with D a smooth conic and CıM′11,0(M) has dimension at most 41,
i.e. codimension at least 17 in M11,0. Hence to avoid these curves we may assume h1(IC(4)) ≥ 16. Lemma 7.3 gives
h1(M,IC(2))≥ 15. Hence h0(M,IC(2))≥ 7, contradicting Lemma 7.1.

Lemma 7.6. A general W ∈W contains no C ∈M′d,g(M), d ≤ 11, for some hyperplane M such that there is no line R⊂M
with deg(R∩C)≥ 6.

Proof. By Lemma 7.5 we may assume that there is no conic D with deg(D∩C)≥ 10. Since d ≤ 11, Lemmas 4.10 and 7.4 give
h1(M,IC,M(3))≥ 4+h1(IC∩M,M(3))≥ d−g. Assume for the moment that either d≤ 10 or d = 11 and h1(H,IC∩H,H(3))= 0
for a general hyperplane H of M. Lemma 7.3 gives h1(M,IC,M(2))≥ d−g and so h0(M,IC(2))≥ 15+d−g−2d−1+g =
14− d. Hence if d ≤ 10 Lemma 7.1 concludes the proof. If d = 11 and h1(H,IC∩H,H(3)) = 1, we get h0(M,IC(2)) ≥
2. Assume h0(IC(2)) = 2 and let K be the intersection of two general elements of |IC,M(2)| and call A ⊆ Kred any
irreducible component containing C. Since h1(M,IC,M(3))≥ 11−g, we have h0(M,IC(3))≥ 45−2d > 10. Hence the map
H0(M,IC,M(2))⊗H0(OM(1))→H0(M,IC,M(3)) is not surjective. Take U ∈ |IC,M(3)| not containing K. Since deg(C)> 9,
we first get A = K, and then (since d = 11), that the complete intersection K∩U links C to a line. Hence C is arithmetically
Cohen-Macaulay, contradicting the assumption h1(M,IC,M(4))> 0.

Lemma 7.7. A general W ∈W contains no curve C with C ∈ M′d,g(M) for some hyperplane and with a line R such that
deg(R∩C)≥ 6.

Proof. Note that if W,C,R are as in the statement of the lemma with C ⊂W , then R ⊂W (Bezout). Let G be the set
of all quadruples (W,H,L,C) with W ∈W′, M a hyperplane, L ⊂W ∩M a line, C ∈ M′d,g(M) and deg(L∩C) ≥ 6. Fix
M, a line L ⊂ M and Z ⊂ R with deg(Z) = 6. First assume d ≥ 2g− 1+ 6. Lemma 6.6 gives h1(M,NC,M(−Z)) = 0, i.e.
h0(NC,M(−Z)) = 5d + 1− g− 18. Since L has ∞6 degree 6 zero-dimensional schemes, M has ∞6 lines and P5 has ∞5

hyperplanes, and each W ∈W′ contains only finitely many lines, we get that each irreducible component of G has dimension at
most 5d−g. Hence to prove the lemma it is sufficient to exclude the curves C ∈M′d,g(M) with h1(IC(4))≥ d−g+2. Lemma
7.3 gives h1(M,IC,M(3))≥ d−g+2. Hence h1(M,IC,M(2))≥ d−g+1 (Lemma 7.3) and so h0(M,IC,M(2))≥ 15−d ≥ 4,
contradicting Lemma 7.1. Now assume d ≤ 2g+4. Since d ≥ 7 and g = 0 if d = 7, then (d,g) ∈ {(8,2),(8,3),(9,3),(10,3)}.
Assume d = 8. The net of all hyperplanes of M containing R induces a g2

2 on C and hence g = 0, a contradiction. Now assume
(d,g) ∈ {(9,3),(10,3)}. We take Z′ ⊂ R with deg(Z′) = 4. Since d ≥ 2g−1+deg(Z′), as above we get that we may assume
h1(IC(4)) ≥ d− g. Since d ≤ 10, we have h1(M,IC,M(2)) ≥ h1(M,IC,M(3)) ≥ h1(M,IC,M(4)) (Lemma 7.3) and hence
h0(M,IC,M(2))≥ 14−d ≥ 4, contradicting Lemma 7.1.
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End of the proof of Theorem 1.1: The last lemma concludes the proof of Theorem 1.1 for all C ∈Md,g(4). Since in section 6
we checked all C ∈Md,g(5), in Remark 4.3 all C ∈Md,g(1), in Remark 4.4 all C ∈Md,g(2) and in Lemma 4.6 all C ∈Md,g(3),
we have completed the proof of Theorem 1.1.
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