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Abstract 
 

Issues involved in mutual exclusion and background of mutual exclusion are discussed. A Ricart and 
Agrawala mutual exclusion algorithm is investigated. Simulation model of the system based on Petri 
Nets is described. Simulation results are presented and evaluated 
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1. Introduction 

 

Mutual exclusion algorithms, which are frequently 
named mutex, are utilized in concurrent programming in 
order to prevent critical sections’ concurrent utilization 
of non-shareable resources. These resources can be 
exemplified with fine-grained flags, counters, queues, and 
other data utilized in order to communicate between 
code running when an interrupt is being serviced, and 
the code running during the rest of time. If there is no 
special attention, an interrupt can easily emerge between 
2 non-interrupt code instructions, and this problem can 
be defined to be acute for this reason. When the 
protection of the critical section isn’t ensured, this 
situation may lead to serious failures. The routine 
method utilized for achieving the mutual exclusion is to 
eliminate the interrupts for the smallest possible number 
of instructions. These instructions will eliminate any 
corruption within the shared data structure named 
"critical region". By implementing this method, the 
interrupt code will not run in the critical region (Khanna, 
2014), (Peterson, 1981). 

Many processors utilize the shared memory in any 
computer, and the reason of using an indivisible test-and-
set of a flag is to wait until the other computer clears the 
flag. A test-and-set CPU instruction ensures that it will 
test and change the content in determined memory 
locations. In multi-processor settings, this is used to 
implement semaphores. In uniprocessor settings, it can 
eliminate the interrupts before the access to semaphore. 
On the other hand, in multiprocessor settings, 
synchronously disabling the interrupts in all of the 
processors is not possible, as well as it is not desired. 
Even if it is succeeded, it is possible that two or more 
processors would try to attempt to access the same 
semaphore's memory concurrently. The test-and-set 
instruction allows any processor to atomically test and 
modify a memory location, and it also eliminates such 
multiple processor collisions. The test-and-set executes 
all the operations without allocating the memory bus to 
the other processor. When the code stops running in 
critical region, it will clear the flag. This process is named 
"spin lock" or "busy-wait." The spinlock is the lock where 
the thread keeps checking in a loop (named "spins") until 
the lock becomes available. This process is also named 
"busy waiting" since the thread keeps existing but it 

doesn’t execute a useful task. Once acquired, spinlocks 
will be held until they are released or the thread blocks 
(goes to sleep) (Khanna, 2014), (Peterson, 1981). 

Mutexes have some forms having various side-effects. 
For example, classic semaphores allow deadlocks. In 
these deadlocks, while a process gets a semaphore, 
another process also gets a semaphore. They both wait 
for the other semaphore to be released. Another side-
effect includes "starvation", in which an essential process 
does not run enough, and "priority inversion" in which a 
higher priority task waits for a lower-priority task, and 
"high latency" in which response to interrupts is not 
prompt (Khanna, 2014), (Peterson, 1981). 

 
1.1 Issues Involved in Mutual Exclusion 

 
While there is an entry section at the beginning of the 
code’s critical section, while the section has an exit 
section at its ending. The lock of that section is arranged 
by these sections. About the distributed and concurrent 
algorithms, there are two kinds of properties; the safety 
property and the progress property. As it can be 
understood from its name, the safety property eliminated 
the possibility of any bad thing. Since the static status of 
any setting at certain time point is taken, it is obviously 
easy to talk about proving them in algorithms. But, the 
other property, the progress property, ensures the 
occurrence of good things. It is much more complicated 
to prove this, because the factor “time” must be taken 
into account. An important part of programming is to 
prove the accurateness of the program with concurrent 
algorithms since the values of the variables can vary 
depending on the statements even if there is no change 
done by the process we are designing, and it violates our 
intuitive notion of program flow. The satisfaction of the 
properties mentioned above can be proved only via 
formal proof techniques (Khanna, 2014), (Peterson, 
1981). With the problem of mutual exclusion, one safety 
property is that of mutual exclusion; that is, not more 
than one process should have its program counter (PC) in 
the critical code at the same time. In order to validate 
this, it is enough to demonstrate that one process's PC 
cannot leave the entry section while that of other process 
is between the entry and exit sections. Freedom from any 
deadlock is another desirable safety property. This 
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feature ensures that all processes won’t be stuck in 
critical section (Khanna, 2014), (Peterson, 1981). 
      In mutex algorithms, there are 2 desirable progress 
properties. First one is the freedom from livelock. This 
feature can be explained with sentence “If some process 
wants to enter the critical section, then some process will 
eventually enter the critical section”. The other progress 
property, freedom from starvation, is stronger than the 
first and is phrased as, “If any process wants to enter into 
the critical section, then that process will do it sooner or 
later”. The second one indicates the other one, but it is 
much harder to guarantee it. Please note that the 
freedom from livelock also indicates the freedom from 
deadlock (Khanna, 2014), (Peterson, 1981).  
      In literature, we frequently see that the terms process 
and processor may be used interchangeably. This is 
because it is generally thought that only one kernel-level 
process is running on each processor. But it is also 
possible to handle multiple processes on a single 
processor through a traditional way.  
 
1.2 History of Mutual Exclusion 

 
A lot of research has been done in the field of mutual 
exclusion. In year 1962, T. Dekker has proposed the 
problem of multiprocessor mutex firstly. But until 1965, 
there was no accurate solution for 2+ processes. In that 
year, Edsger Dijkstra has written his one-page article 
(Dijkstra, 1965) which provided a working but very 
complicated solution for this problem. In his proposal, 
the mutual exclusion, freedom from deadlock, and 
freedom from livelock were guaranteed, but the proposal 
also allowed the possibility of one process being forever 
stuck in the entry section while other ones are allowed 
into the critical section. Right after his paper, Donald 
Knuth proposed an equally complicated solution (Knuth, 
1966) guaranteeing the freedom from starvation.  
      There was a fault in both of the mentioned algorithms. 
In that fault, if a single processor fails at any point within 
the entry section, the entire system might become 
blocked indefinitely. Moreover, both of two solution 
proposals were assuming atomic reads and writes to 
memory. This means that they assumed that the reading 
and writing actions to single memory locations will never 
overlap thanks to the hardware. This assumption doesn’t 
always work well, and we should be ready for a read 
overlapping a write. This situation will lead to invalid 
partial results. If the writes overlap, this situation would 
lead to writing invalid or partial data.  
      8 year after the writing of Knuth, Leslie Lamport 
proposed a solution (Lamport, 1974) which is not only 
simpler that the first two, but which both allows any 
processor to halt anywhere in the entry section and 
allows a read to return any arbitrary value if it overlaps a 
write. In Lamport's algorithm, there was an additional 
property of “first come-first served”. This property has 
not been offered by Dijkstra's and Knuth's algorithms.  
      In year 1981, Gary Peterson has designed his 
algorithm (Peterson, 1981) for processes just 7 years 
after the article of Knuth, besides the algorithm for more 
than 2 processes. The two-process algorithm was very 
simple. For this reason he has through that there was no 
need for any validation of accuracy: 
 
 /*  Entry section for P1  */             /*  Entry section for P2  */ 
         Q1 := True;                                      Q2 := True; 
         TURN := 1;                                      TURN := 2; 

         wait while Q2 and TURN := 1;       wait while Q1 and TURN := 2; 
 /* Exit section for P1 */                 /* Exit section for P2 */ 
         Q1 := False;                                    Q2 := False; 

      In both of algorithms, the processes wait until they 
will be able to enter into the critical section.  
      When it comes to multiprocessor systems, re-
assessment of the solutions utilized in the uniprocessor 
systems is of significant importance. For example; the 
mutex is a rational solution in uniprocessor systems 
since only 1 process can be executed at any one time, and 
then the mutex really just specifies their order of 
scheduling. On the other hand, when it comes to 
multiprocessor systems, the mutex is not a cost-efficient 
operation. The reason is not the overhead involved, is 
also that one processor will sit idle while another is able 
to access to the data.  
      Leslie Lamport introduced an algorithm (Lamport, 
1977) that will always allow a single writer to write 
without any blockage. The core point was to allow the 
writer to write at any time, and the reader to read the 
data over and over until it is clear that it has a valid copy. 
It is important for the writer to write data version 
numbers before and after the update, for the reader to 
read and compare them.  
      If the mutex is the only option, then, especially when it 
comes to largely distributed systems, we will maybe need 
to face with the large delays in the entry section. Among 
the designers of operating systems, the thought that most 
of the processes entering into the entry section are 
allowed to enter the critical section without any delay 
has become a belief. For this reason, many algorithms 
trying to reduce the O(N) access time of the initial mutual 
exclusion algorithms have been developed. Leslie 
Lamport has introduced his mutual exclusion algorithm 
leading once again (Lamport, 1987) and requiring only 7 
memory accesses in the case of no contention.  
      As it is known, majority of the distributed systems 
have been adjusted so that each processor has rapid 
access to its local memory and slow access to other 
processors' ones. Generally, all of the processors utilize 
the same interconnect network, and the communication 
between the processors, even ones not attempting to 
enter into any critical section, is significantly affected by 
the remote spin-locking. The expectations focused on the 
minimization of the Attention turned to minimizing the 
remote memory accesses, and then Mellor-Crummey and 
Scott has designed a new algorithm (Mellor-Crummey, 
1991) which had O(1) remote references.  
      One of the core parts of the distributed and 
concurrent computing is the access to the common-used 
data. The algorithms to mediate the concurrent accesses 
are the core features of the distributed operating 
systems. The algorithm of choice is based on the 
hardware support and also the hardware configuration. If 
the durability is expected, then the wait-free designs will 
ensure that unexpected processor dysfunctions won’t 
affect the other parts of the systems.  
      The rest of the paper is structured as follows. In 
Section 2, Ricart and Agrawala’s mutual algorithm is 
described. The simulation model based on Petri Nets is 
discussed. Section 3 presents and evaluates the results of 
the simulation. 

 
2. Ricart and Agrawala’s Algorithm 

 
This paper is related to Ricart and Agrawala’s Mutual 
Exclusion Algorithm (Ricart, Agrawala, 1981) and the 
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Petri net (Murata, 1989) implementation of this model 
using Winsim (Kostin, Ilushechkina, 2005) simulation 
tool. Let us first understand the basic idea of this 
algorithm in detail. 
 
2.1 Description of the Algorithm 

  
The Ricart-Agrawala algorithm aiming to achieve mutual 
exclusion in a network is one of the important and 
famous algorithms in distributed computing domain. 
Ricart and Agrawalas algorithm generated mutex in 
computer setting where the nodes communicate through 
the messages and there is no shared memory. 2*(N-1) 
messages are sent by the algorithm and the N here refers 
to the number of nodes within the network. The 
assumption of this algorithm is that there is an errorless 
underlying communications network in which transit 
times may differentiate and the messages may not be 
delivered in the order sent. Nodes are supposed to run 
correctly.   
      For attempting to call for mutex, the node transmits a 
REQUEST message to all of the other nodes. Once that 
message is received, then the other node either transmits 
a REPLY instantly or delays its response until it leaves its 
own critical section. A node enters its critical section 
after all other nodes have been notified of the request 
and have sent a reply granting their permission. 
      The algorithm relies on the fact that a node that 
receives the REQUEST message is able to immediately 
determine whether the requesting node or itself should 
be allowed to enter its critical section first. The node 
transmitting the REQUEST massage is never informed 
about the result of that comparison. Then the REPLY 
message is sent back immediately if the transmitter of 
the REQUEST message has the priority; otherwise the 
REPLY will be postponed. 
      Through comparing the sequence number in each of 
REQUEST messages, the order decision is made. In case 
of the equal sequence numbers, the node numbers will be 
compared in order to determine the one having the 
priority.  
      There are N nodes within the network. Each of the 
nodes performs same algorithm but refers to is own 
unique node as ME.  
      The node has three processes to implement the 
mutual exclusion: 

• One is awakened when mutual exclusion is 
invoked on behalf of this node. 

• Another receives and processes REQUEST 
messages. 

• The last receives and processes REPLY 
messages. 

      These processes don’t operate synchronously, but 
their operation is based on some shared variables. In 
order to serialize the access to the shared variables, the 
semaphore is utilized when needed. If a node is able to 
create multiple internal mutex requests, then it is 
expected to own a method for serializing the requests.   
      From the algorithm, it can easily be understood that 
there is no possibility of occurrence of any deadlocks and 
starvations with Ricart and Agrawala’s mutex model. The 
algorithm is depicted in Figure 1 and 2 by flowcharts. 

Start

OSN=HSN+1

RCS=True

ORC=N-1

j=0

j==NOCR==0Receive_Message

ORC=ORC-1

Access_Critical_Section

Release_Critical_Section

Using Critical 

Section

j==N END

RD[j] == True Send_Message(REPLY,j)

j=0

RCS=False

RD[j]=False

No

Yes

Yes
No

No

Yes

Yes

No

Variables

OSN : Integer (*Our Sequence Number*)

HSN : Integer (*Highest Sequence Number   initially 0*)

OCR : Integer (*Outstanding Reply Count*)

j : integer (*counter for loops*)

me : Constant (*This processors unique identifier*)

N : Constant (*Number of Processes in the system*)

RCS : Boolean (*Requesting Critical Section initially False

Becomes True when this process requests 

access to its critical section*)

RD[N] : Boolean (*Array of Reply’s Deferred initially False

 Becomes True when this process defers a

 a reply to another process j’s Request 

 message*)

j=j+1 Send_Message(REQUEST(OSN,me),j)

j=j+1

 
Figure 1. Flowchart for a process which invokes mutual 
exclusion in Ricart and Agrawala’s mutual exclusion 
algorithm. 
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RD[j]=True
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Variables

OSN : Integer (*Our Sequence Number*)

HSN : Integer (*Highest Sequence Number   initially 0*)

j : integer (*Process identifier  for Process making request*)

k : integer (*Sequence Number of the Request*)

me : Constant (*This processors unique identifier*)

N : Constant (*Number of Processes in the system*)

RCS : Boolean (*Requesting Critical Section initially False

Becomes True when this process requests 

access to its critical section*)

RD[N] : Boolean (*Array of Reply’s Deferred initially False

 Becomes True when this process defers a

 reply to another process j’s Request 

 message*)

RCS == True

k<OSN

No

No

Endk=OSN

j<me

Yes

Yes

No

Yes

Receive_Message(REQUEST(k,j))

 
Figure 2. Flowchart for a process which receives a 
request message in Ricart and Agrawala’s mutual 
exclusion algorithm. 

2.2 Petri Net Model for Ricart and Agrawala’s 
Algorithm of Mutual Exclusion 

  
A Petri net can be defined as a graphical and 
mathematical modelling tool. Its parts can be listed as the 
places, the transitions, and the arcs connecting them. 
Input arcs link the places with transitions, while output 
arcs originate from a transition and end at a place. The 
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places may involve tokens; the actual status of the 
modelled system is determined according to the number 
of tokens in each place. Transitions are the active 
components. These components are responsible for 
modelling the activities that can emerge (the transition 
fires) and, for this reason, they can affect the state of the 
system (the important feature of the Petri net). When 
enabled, the transitions can only fire, and it means that 
all of the prerequisites of the activity must be satisfied. 
Once the transition fires, it will take tokens from its input 
places to its output places. The number of tokens 
removed / added is determined based on the cardinality 
of each of the arcs.  
      Petri nets are accepted as the promising tool for 
defining and evaluating systems that have special 
features such as being concurrent, asynchronous, 
distributed, parallel, nondeterministic, and/or stochastic. 
Given that they are graphical tools, it can easily be seen 
that Petri nets can be utilized as a visual-communication 
solution like flow charts, block diagrams, and networks. 
Besides that, the reason of the utilization of the tokens in 
these nets is to simulate the dynamic and concurrent 
activities of the real systems. As a mathematical tool, it is 
possible to establish the state equations, algebraic 
equations, and other mathematical models controlling 
the behavior of the systems.  
      While investigating the performance and 
dependability issues of the systems, it is significantly 
important to involve the timing concept in the model. 
Although there are various ways of doing this for a Petri 
net, the most widely used method is to associate a firing 
delay with each transition. This delay determines the 
time that the transition must be enabled, before it can 
actually fire. When the delay is considered to be a 
random distribution function, then the net class would be 
named stochastic Petri net. They types of the transitions 
can be named based on their associated delay such as the 
immediate transitions having no delay, the exponential 
transitions having delay being an exponential 
distribution, and the deterministic transitions where the 
delay is fixed. 
 
2.3 Model of a Process in Ricart and Agrawala’s 
Mutual Exclusion Algorithm 

  
The Petri net model for the first module is described in 
Figure 3. This module takes a message through the 
network from other processes and after processing these 
messages it sends a message to the respective processes 
through the network.  

The process receives a message in place S1 and this 
causes transition X1 to fire. Transition X1 sorts the 
message and finds out if it is a message that was sent by 
this process, in which case it is absorbed by placing the 
token in place S13 and hence firing of transition T13. If 
this is not a message from this process then it has to be 
either a REQUEST message or REPLY message. The 
REQUEST messages are routed to place S11 and the 
REPLY messages to S12. The Transition T12 is fired 
whenever a token is placed in place S12 and this 
transition causes the counter of replies received for this 
processes request by one. The presence of a token in 
place S11 implies that a REQUEST for critical section has 
been made by some process in the system and this causes 
transition X11 to fire. This transition determines the 
priority of the REQUEST it this process itself has also 

made a REQUEST to other processes for access to its 
critical section.   If this process has not made such a 
request then the REPLY message is sent immediately by 
transferring the token to place S700 and Firing of 
Transition Y1000 which passes the token to Place S1000, 
from where the token is handled by the module for the 
network (described later). If there is a REQUEST made by 
this process then the priority of the received REQUEST 
message is compared by the priority of this processes 
REQUEST message. The process with smaller sequence 
number gets higher priority and incase both the 
processes have the same sequence number then the 
process with lower process id gets the higher priority. In 
case the message received has higher priority then the 
token is again placed in Place S700 and transition Y1000 
fires placing the token in place S1000 from where the 
network module processes it. If the REQUEST message of 
this processes has higher priority then the transition X11 
directs the token to be placed in queue place Q1 meaning 
that the reply to this message is postponed until this 
process gets access to critical section and after utilizing 
its critical section it replies to these so-called deferred 
messages.  

The simulation model assumes that the process in the 
beginning is busy in doing its main work. This is 
illustrated in figure 3 by a marking in place S5. The 
transition T1 is the first transition to fire in this 
simulation model and depicts that this process is doing 
the main work. The duration of the main work is 
simulated by exponential distribution with varying mean 
time. This mean time is different when the simulation is 
executed for different number of processes in the system 
and for different work loads on the processes. After the 
delay for main work is over the processes always asks for 
access to critical section and hence a token is placed in 
place S900 which simulates the creation of REQUEST 
message by this process and this REQUEST message is 
propagated through the network by the network module 
after firing of transition Y1000 and placing of a token in 
place S1000.  

Transition T1 also places a token in place S20 which 
invokes the transition Y20. Transition Y20 waits for the 
reply messages from all the other processes to come 
before allowing this process to access its shared 
resource. This transition checks if all N-1 replies have 
been accounted for and then places a token in place S21. 
Hence the time the token stays in place S20 shows the 
average waiting time for this process. The presence of a 
token in place S21 causes the transition T2 to invoke its 
procedure. This transition is used to show the usage of 
shared resource by this process. Using of shared resource 
is represented in this transition by using delay of 
exponential distribution. Once this exponentially 
distributed delay is over the transition T2 fires and 
places the token in place S22. Hence the time the token 
stayed in place S21 shows the average time this process 
used the shared resource. Furthermore it can be noted 
that the combined token time in places S20 and S21 mark 
the average response time for this process. The transition 
S22 summons transition Y22 to start.  

Transition Y22 collects inputs from place S23 and 
place S22 and replaces a token in place S24. This causes 
transition X24 to fire. The transition X24 puts the token 
in place S5 if there is no deferred reply for other 
processes (i.e. if Q1 is empty). If Q1 is not empty then it 
places token in place S25 which causes transition T25 to 
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place token in S800. The presence of a token in place 
S800 means that transition Y1000 has to forward a reply 
to processes whose reply was deferred earlier because 
this process had higher priority for critical section. 
Transition Y1000 does so by placing a token in place 
S1000. Once all the deferred messages are replied, token 
is again placed in place S5 through transition Y22 and 
transition X24. Figure 3 is shown below for better 
understanding of this module.  
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REPLY (Deferred)

REQUEST
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Yes

REQUEST

REPLY

My Own Mesage
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S21 S22
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S24

Y22 X24

T25
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if REPLY to this 
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Q1 Empty?

Using Shared 
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Waiting for N-1 
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(CNT=0?)

Send Reply 

immediately? 

X1

 
Figure 3. E-net scheme of a process for the Ricart and 
Agrawala mutual exclusion algorithm. 

2.4 Model of a Network in Ricart and Agrawala’s 
Mutual Exclusion Algorithm 

  
This module deals with the handling of the messages in 
the network and is illustrated by Figure 4. The place S1 is 
dedicated for the messages generated by process 1, S2 is 
dedicated for the messages coming from process 2 and 
hence Sn is reserved for messages coming from process 
number n. The working of the entire model is based on 
one routine ad that is when ever a message is generated 
or posted by any process then it is placed by this module 
in a fixed S place for that message. Let’s assume, for the 
purpose of explaining this working that process 3 placed 
a token in its place S1000, then this network module will 
take that token and place it in place S3, this will cause the 
firing of transition T3 and hence the token will be taken 
from place S3 and put into the queue place Q3. Place Q3 
contains token, each representing a message from 
process 3 and is processed by transition Y1 in a cyclic 
manner. Transition Y1 gives each queue attached to its 
input location equal chance and places its in all the 
output places attached to transition Y1, hence it 
propagates the message to all the processes in the 
system. Transition Y1 is also used in this simulation 
model to depict network delay of uniform distribution 
with mean 2 and variance 3. 
 

S1

Y1

T1 Q1

S2

T2
Q2

S101

S102

Sn
Tn

Qn S10n

Model of a 

process n 

RIC0n

S1000 S1

 
Figure 4. E-net scheme of a network for the Ricart and 
Agrawala mutual exclusion algorithm. 

3. Results and Discussion 
 

In this simulation the most important parameters of 
simulation for the purpose of understanding the behavior 
of the algorithm are the average response time for a 
process to get access to the shared resource and the 
number of messages passed for a process to get access to 
the shared resource. It is not desirable for any of these 
parameters to be high, because if the response time 
increases for the processes with the increase in the 
number of processes in the system then it means that the 
algorithm is less scalable. Furthermore if the number of 
messages passed by each process to make an access to 
the shared resource  increases with the increase in the 
number of processes then the system becomes 
overloaded with messages as the number of processes 
increase, another undesirable situation.  

As it is clear from the simulation results, the model 
was simulated for varying number of processes in the 
system under varying loads. The system was tested with 
3, 6, 9, 12 and 15 processes at a time with first low then 
medium and finally high loads.  

Table 1 details the Average Response time for all the 
processes with the different loads and it is obvious from 
the graph shown in Figure 5 (graph is obtained from 
table 1) that with low and medium load the system is 
very scalable as the response time does not change 
drastically for low and medium load even with 15 
processes in the system. However for high load the 
response time grows almost exponentially (in the worst 
case) or linearly (at the best), the response time for a 
process on average with three processes in the system 
was only 1054ms but with 15 processes in the system 
with high load it becomes 2148(ms).  

 
Table 1. Average Response time for all the processes with low 

medium and high loads. 
 

Table 1 Average Response Time 

Number of 
Processes / 

Load 
3 6 9 12 15 

0.1 
535.08047

33 
555.9
543 

573.3
28 

574.7
297 

587.8
243 

0.5 696.4963 
813.8

13 
875.1
746 

914.5
269 

938.4
804 

0.9 1054.0936 
1475.
622 

1770.
787 

1996.
961 

2148.
411 
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Figure 5. Graph of Average Response Time vs Number of 
processes for high, medium and low loads. 

Table 2 shows the data related to average number of 
messages per use of shared resource for 3, 6, 9, 12,and 15 
processes with low, medium and high load. Figure 6, 7 
and Figure 8 illustrate the respective graphs for low, 
medium and high load performance of the system in 
relation to average number of messages per use of 
shared resource. These figures show that the model is 
highly scalable with respect to average number of 
messages per use of shared resource, as N for all, 3, 6, 9, 
12, and 15 processes. 

 
Table 2. Average number of messages per use of shared resource 

for all the processes with low medium and high loads. 

Table 2 
Average Number of Messages per use of 

Shared Resource 
Number of 

Procersses / 
Load 

3 6 9 12 15 

0.1 3 6 9 12 15 

0.5 
3.00012

6127 
6 

9.000
419 

12 15 

0.9 
3.00012

5337 
6.000
156 

9.000
162 

12.00
017 

15.00
062 

 

 
Figure 6. Graph of Average Number of messages per use 
of shared resource vs number of processes for high load.

Figure 7. Graph of Average Number of messages per use 
of shared resource vs number of processes for medium 
load.

Figure 8. Graph of Average Number of messages per use 
of shared resource vs number of processes for low load. 

4. Conclusion 
 

In this paper, a Petri net based simulation model for 
Ricart and Agrawala mutual exclusion algorithm was 
presented. Performance of the algorithm was measured 
in terms of average response time for a process to get 
access to the shared resource and the number of 
messages passed for a process to get access to the shared 
resource. The model was simulated for varying number 
of processes in the system under varying loads. 
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