
Bitlis Eren Univ J Sci & Technol
6 (1), 16-21, 2016

E - ISSN 2146-7706

Research Article

Received 27 January 2016
Available online June 2016

Petri Net Model for Ricart and Agrawala’s Mutual Exclusion Algorithm

Vassilya Uzun 1 *

1 Alanya HEP University, Department of Graphics Design, Alanya - Turkey
* Corresponding author: vassilya.abdulova@gmail.com

Abstract

Issues involved in mutual exclusion and background of mutual exclusion are discussed. A Ricart and
Agrawala mutual exclusion algorithm is investigated. Simulation model of the system based on Petri
Nets is described. Simulation results are presented and evaluated

Keywords: Mutual exclusion, Petri nets, simulation.

1. Introduction

Mutual exclusion algorithms, which are frequently
named mutex, are utilized in concurrent programming in
order to prevent critical sections’ concurrent utilization
of non-shareable resources. These resources can be
exemplified with fine-grained flags, counters, queues, and
other data utilized in order to communicate between
code running when an interrupt is being serviced, and
the code running during the rest of time. If there is no
special attention, an interrupt can easily emerge between
2 non-interrupt code instructions, and this problem can
be defined to be acute for this reason. When the
protection of the critical section isn’t ensured, this
situation may lead to serious failures. The routine
method utilized for achieving the mutual exclusion is to
eliminate the interrupts for the smallest possible number
of instructions. These instructions will eliminate any
corruption within the shared data structure named
"critical region". By implementing this method, the
interrupt code will not run in the critical region (Khanna,
2014), (Peterson, 1981).

Many processors utilize the shared memory in any
computer, and the reason of using an indivisible test-and-
set of a flag is to wait until the other computer clears the
flag. A test-and-set CPU instruction ensures that it will
test and change the content in determined memory
locations. In multi-processor settings, this is used to
implement semaphores. In uniprocessor settings, it can
eliminate the interrupts before the access to semaphore.
On the other hand, in multiprocessor settings,
synchronously disabling the interrupts in all of the
processors is not possible, as well as it is not desired.
Even if it is succeeded, it is possible that two or more
processors would try to attempt to access the same
semaphore's memory concurrently. The test-and-set
instruction allows any processor to atomically test and
modify a memory location, and it also eliminates such
multiple processor collisions. The test-and-set executes
all the operations without allocating the memory bus to
the other processor. When the code stops running in
critical region, it will clear the flag. This process is named
"spin lock" or "busy-wait." The spinlock is the lock where
the thread keeps checking in a loop (named "spins") until
the lock becomes available. This process is also named
"busy waiting" since the thread keeps existing but it

doesn’t execute a useful task. Once acquired, spinlocks
will be held until they are released or the thread blocks
(goes to sleep) (Khanna, 2014), (Peterson, 1981).

Mutexes have some forms having various side-effects.
For example, classic semaphores allow deadlocks. In
these deadlocks, while a process gets a semaphore,
another process also gets a semaphore. They both wait
for the other semaphore to be released. Another side-
effect includes "starvation", in which an essential process
does not run enough, and "priority inversion" in which a
higher priority task waits for a lower-priority task, and
"high latency" in which response to interrupts is not
prompt (Khanna, 2014), (Peterson, 1981).

1.1 Issues Involved in Mutual Exclusion

While there is an entry section at the beginning of the
code’s critical section, while the section has an exit
section at its ending. The lock of that section is arranged
by these sections. About the distributed and concurrent
algorithms, there are two kinds of properties; the safety
property and the progress property. As it can be
understood from its name, the safety property eliminated
the possibility of any bad thing. Since the static status of
any setting at certain time point is taken, it is obviously
easy to talk about proving them in algorithms. But, the
other property, the progress property, ensures the
occurrence of good things. It is much more complicated
to prove this, because the factor “time” must be taken
into account. An important part of programming is to
prove the accurateness of the program with concurrent
algorithms since the values of the variables can vary
depending on the statements even if there is no change
done by the process we are designing, and it violates our
intuitive notion of program flow. The satisfaction of the
properties mentioned above can be proved only via
formal proof techniques (Khanna, 2014), (Peterson,
1981). With the problem of mutual exclusion, one safety
property is that of mutual exclusion; that is, not more
than one process should have its program counter (PC) in
the critical code at the same time. In order to validate
this, it is enough to demonstrate that one process's PC
cannot leave the entry section while that of other process
is between the entry and exit sections. Freedom from any
deadlock is another desirable safety property. This

Uzun / Bitlis Eren Univ J Sci & Technol / 6 (1), 16 – 21, 2016

17

feature ensures that all processes won’t be stuck in
critical section (Khanna, 2014), (Peterson, 1981).
 In mutex algorithms, there are 2 desirable progress
properties. First one is the freedom from livelock. This
feature can be explained with sentence “If some process
wants to enter the critical section, then some process will
eventually enter the critical section”. The other progress
property, freedom from starvation, is stronger than the
first and is phrased as, “If any process wants to enter into
the critical section, then that process will do it sooner or
later”. The second one indicates the other one, but it is
much harder to guarantee it. Please note that the
freedom from livelock also indicates the freedom from
deadlock (Khanna, 2014), (Peterson, 1981).
 In literature, we frequently see that the terms process
and processor may be used interchangeably. This is
because it is generally thought that only one kernel-level
process is running on each processor. But it is also
possible to handle multiple processes on a single
processor through a traditional way.

1.2 History of Mutual Exclusion

A lot of research has been done in the field of mutual
exclusion. In year 1962, T. Dekker has proposed the
problem of multiprocessor mutex firstly. But until 1965,
there was no accurate solution for 2+ processes. In that
year, Edsger Dijkstra has written his one-page article
(Dijkstra, 1965) which provided a working but very
complicated solution for this problem. In his proposal,
the mutual exclusion, freedom from deadlock, and
freedom from livelock were guaranteed, but the proposal
also allowed the possibility of one process being forever
stuck in the entry section while other ones are allowed
into the critical section. Right after his paper, Donald
Knuth proposed an equally complicated solution (Knuth,
1966) guaranteeing the freedom from starvation.
 There was a fault in both of the mentioned algorithms.
In that fault, if a single processor fails at any point within
the entry section, the entire system might become
blocked indefinitely. Moreover, both of two solution
proposals were assuming atomic reads and writes to
memory. This means that they assumed that the reading
and writing actions to single memory locations will never
overlap thanks to the hardware. This assumption doesn’t
always work well, and we should be ready for a read
overlapping a write. This situation will lead to invalid
partial results. If the writes overlap, this situation would
lead to writing invalid or partial data.
 8 year after the writing of Knuth, Leslie Lamport
proposed a solution (Lamport, 1974) which is not only
simpler that the first two, but which both allows any
processor to halt anywhere in the entry section and
allows a read to return any arbitrary value if it overlaps a
write. In Lamport's algorithm, there was an additional
property of “first come-first served”. This property has
not been offered by Dijkstra's and Knuth's algorithms.
 In year 1981, Gary Peterson has designed his
algorithm (Peterson, 1981) for processes just 7 years
after the article of Knuth, besides the algorithm for more
than 2 processes. The two-process algorithm was very
simple. For this reason he has through that there was no
need for any validation of accuracy:

 /* Entry section for P1 */ /* Entry section for P2 */
 Q1 := True; Q2 := True;
 TURN := 1; TURN := 2;

 wait while Q2 and TURN := 1; wait while Q1 and TURN := 2;
 /* Exit section for P1 */ /* Exit section for P2 */
 Q1 := False; Q2 := False;

 In both of algorithms, the processes wait until they
will be able to enter into the critical section.
 When it comes to multiprocessor systems, re-
assessment of the solutions utilized in the uniprocessor
systems is of significant importance. For example; the
mutex is a rational solution in uniprocessor systems
since only 1 process can be executed at any one time, and
then the mutex really just specifies their order of
scheduling. On the other hand, when it comes to
multiprocessor systems, the mutex is not a cost-efficient
operation. The reason is not the overhead involved, is
also that one processor will sit idle while another is able
to access to the data.
 Leslie Lamport introduced an algorithm (Lamport,
1977) that will always allow a single writer to write
without any blockage. The core point was to allow the
writer to write at any time, and the reader to read the
data over and over until it is clear that it has a valid copy.
It is important for the writer to write data version
numbers before and after the update, for the reader to
read and compare them.
 If the mutex is the only option, then, especially when it
comes to largely distributed systems, we will maybe need
to face with the large delays in the entry section. Among
the designers of operating systems, the thought that most
of the processes entering into the entry section are
allowed to enter the critical section without any delay
has become a belief. For this reason, many algorithms
trying to reduce the O(N) access time of the initial mutual
exclusion algorithms have been developed. Leslie
Lamport has introduced his mutual exclusion algorithm
leading once again (Lamport, 1987) and requiring only 7
memory accesses in the case of no contention.
 As it is known, majority of the distributed systems
have been adjusted so that each processor has rapid
access to its local memory and slow access to other
processors' ones. Generally, all of the processors utilize
the same interconnect network, and the communication
between the processors, even ones not attempting to
enter into any critical section, is significantly affected by
the remote spin-locking. The expectations focused on the
minimization of the Attention turned to minimizing the
remote memory accesses, and then Mellor-Crummey and
Scott has designed a new algorithm (Mellor-Crummey,
1991) which had O(1) remote references.
 One of the core parts of the distributed and
concurrent computing is the access to the common-used
data. The algorithms to mediate the concurrent accesses
are the core features of the distributed operating
systems. The algorithm of choice is based on the
hardware support and also the hardware configuration. If
the durability is expected, then the wait-free designs will
ensure that unexpected processor dysfunctions won’t
affect the other parts of the systems.
 The rest of the paper is structured as follows. In
Section 2, Ricart and Agrawala’s mutual algorithm is
described. The simulation model based on Petri Nets is
discussed. Section 3 presents and evaluates the results of
the simulation.

2. Ricart and Agrawala’s Algorithm

This paper is related to Ricart and Agrawala’s Mutual
Exclusion Algorithm (Ricart, Agrawala, 1981) and the

Uzun / Bitlis Eren Univ J Sci & Technol / 6 (1), 16 – 21, 2016

18

Petri net (Murata, 1989) implementation of this model
using Winsim (Kostin, Ilushechkina, 2005) simulation
tool. Let us first understand the basic idea of this
algorithm in detail.

2.1 Description of the Algorithm

The Ricart-Agrawala algorithm aiming to achieve mutual
exclusion in a network is one of the important and
famous algorithms in distributed computing domain.
Ricart and Agrawalas algorithm generated mutex in
computer setting where the nodes communicate through
the messages and there is no shared memory. 2*(N-1)
messages are sent by the algorithm and the N here refers
to the number of nodes within the network. The
assumption of this algorithm is that there is an errorless
underlying communications network in which transit
times may differentiate and the messages may not be
delivered in the order sent. Nodes are supposed to run
correctly.
 For attempting to call for mutex, the node transmits a
REQUEST message to all of the other nodes. Once that
message is received, then the other node either transmits
a REPLY instantly or delays its response until it leaves its
own critical section. A node enters its critical section
after all other nodes have been notified of the request
and have sent a reply granting their permission.
 The algorithm relies on the fact that a node that
receives the REQUEST message is able to immediately
determine whether the requesting node or itself should
be allowed to enter its critical section first. The node
transmitting the REQUEST massage is never informed
about the result of that comparison. Then the REPLY
message is sent back immediately if the transmitter of
the REQUEST message has the priority; otherwise the
REPLY will be postponed.
 Through comparing the sequence number in each of
REQUEST messages, the order decision is made. In case
of the equal sequence numbers, the node numbers will be
compared in order to determine the one having the
priority.
 There are N nodes within the network. Each of the
nodes performs same algorithm but refers to is own
unique node as ME.
 The node has three processes to implement the
mutual exclusion:

• One is awakened when mutual exclusion is
invoked on behalf of this node.

• Another receives and processes REQUEST
messages.

• The last receives and processes REPLY
messages.

 These processes don’t operate synchronously, but
their operation is based on some shared variables. In
order to serialize the access to the shared variables, the
semaphore is utilized when needed. If a node is able to
create multiple internal mutex requests, then it is
expected to own a method for serializing the requests.
 From the algorithm, it can easily be understood that
there is no possibility of occurrence of any deadlocks and
starvations with Ricart and Agrawala’s mutex model. The
algorithm is depicted in Figure 1 and 2 by flowcharts.

Start

OSN=HSN+1

RCS=True

ORC=N-1

j=0

j==NOCR==0Receive_Message

ORC=ORC-1

Access_Critical_Section

Release_Critical_Section

Using Critical

Section

j==N END

RD[j] == True Send_Message(REPLY,j)

j=0

RCS=False

RD[j]=False

No

Yes

Yes
No

No

Yes

Yes

No

Variables

OSN : Integer (*Our Sequence Number*)

HSN : Integer (*Highest Sequence Number initially 0*)

OCR : Integer (*Outstanding Reply Count*)

j : integer (*counter for loops*)

me : Constant (*This processors unique identifier*)

N : Constant (*Number of Processes in the system*)

RCS : Boolean (*Requesting Critical Section initially False

Becomes True when this process requests

access to its critical section*)

RD[N] : Boolean (*Array of Reply’s Deferred initially False

 Becomes True when this process defers a

 a reply to another process j’s Request

 message*)

j=j+1 Send_Message(REQUEST(OSN,me),j)

j=j+1

Figure 1. Flowchart for a process which invokes mutual
exclusion in Ricart and Agrawala’s mutual exclusion
algorithm.

Start

HSN=maximum(HSN,k)

Send_Message(REPLY,j)

RD[j]=True

Yes

No

Variables

OSN : Integer (*Our Sequence Number*)

HSN : Integer (*Highest Sequence Number initially 0*)

j : integer (*Process identifier for Process making request*)

k : integer (*Sequence Number of the Request*)

me : Constant (*This processors unique identifier*)

N : Constant (*Number of Processes in the system*)

RCS : Boolean (*Requesting Critical Section initially False

Becomes True when this process requests

access to its critical section*)

RD[N] : Boolean (*Array of Reply’s Deferred initially False

 Becomes True when this process defers a

 reply to another process j’s Request

 message*)

RCS == True

k<OSN

No

No

Endk=OSN

j<me

Yes

Yes

No

Yes

Receive_Message(REQUEST(k,j))

Figure 2. Flowchart for a process which receives a
request message in Ricart and Agrawala’s mutual
exclusion algorithm.

2.2 Petri Net Model for Ricart and Agrawala’s
Algorithm of Mutual Exclusion

A Petri net can be defined as a graphical and
mathematical modelling tool. Its parts can be listed as the
places, the transitions, and the arcs connecting them.
Input arcs link the places with transitions, while output
arcs originate from a transition and end at a place. The

Uzun / Bitlis Eren Univ J Sci & Technol / 6 (1), 16 – 21, 2016

19

places may involve tokens; the actual status of the
modelled system is determined according to the number
of tokens in each place. Transitions are the active
components. These components are responsible for
modelling the activities that can emerge (the transition
fires) and, for this reason, they can affect the state of the
system (the important feature of the Petri net). When
enabled, the transitions can only fire, and it means that
all of the prerequisites of the activity must be satisfied.
Once the transition fires, it will take tokens from its input
places to its output places. The number of tokens
removed / added is determined based on the cardinality
of each of the arcs.
 Petri nets are accepted as the promising tool for
defining and evaluating systems that have special
features such as being concurrent, asynchronous,
distributed, parallel, nondeterministic, and/or stochastic.
Given that they are graphical tools, it can easily be seen
that Petri nets can be utilized as a visual-communication
solution like flow charts, block diagrams, and networks.
Besides that, the reason of the utilization of the tokens in
these nets is to simulate the dynamic and concurrent
activities of the real systems. As a mathematical tool, it is
possible to establish the state equations, algebraic
equations, and other mathematical models controlling
the behavior of the systems.
 While investigating the performance and
dependability issues of the systems, it is significantly
important to involve the timing concept in the model.
Although there are various ways of doing this for a Petri
net, the most widely used method is to associate a firing
delay with each transition. This delay determines the
time that the transition must be enabled, before it can
actually fire. When the delay is considered to be a
random distribution function, then the net class would be
named stochastic Petri net. They types of the transitions
can be named based on their associated delay such as the
immediate transitions having no delay, the exponential
transitions having delay being an exponential
distribution, and the deterministic transitions where the
delay is fixed.

2.3 Model of a Process in Ricart and Agrawala’s
Mutual Exclusion Algorithm

The Petri net model for the first module is described in
Figure 3. This module takes a message through the
network from other processes and after processing these
messages it sends a message to the respective processes
through the network.

The process receives a message in place S1 and this
causes transition X1 to fire. Transition X1 sorts the
message and finds out if it is a message that was sent by
this process, in which case it is absorbed by placing the
token in place S13 and hence firing of transition T13. If
this is not a message from this process then it has to be
either a REQUEST message or REPLY message. The
REQUEST messages are routed to place S11 and the
REPLY messages to S12. The Transition T12 is fired
whenever a token is placed in place S12 and this
transition causes the counter of replies received for this
processes request by one. The presence of a token in
place S11 implies that a REQUEST for critical section has
been made by some process in the system and this causes
transition X11 to fire. This transition determines the
priority of the REQUEST it this process itself has also

made a REQUEST to other processes for access to its
critical section. If this process has not made such a
request then the REPLY message is sent immediately by
transferring the token to place S700 and Firing of
Transition Y1000 which passes the token to Place S1000,
from where the token is handled by the module for the
network (described later). If there is a REQUEST made by
this process then the priority of the received REQUEST
message is compared by the priority of this processes
REQUEST message. The process with smaller sequence
number gets higher priority and incase both the
processes have the same sequence number then the
process with lower process id gets the higher priority. In
case the message received has higher priority then the
token is again placed in Place S700 and transition Y1000
fires placing the token in place S1000 from where the
network module processes it. If the REQUEST message of
this processes has higher priority then the transition X11
directs the token to be placed in queue place Q1 meaning
that the reply to this message is postponed until this
process gets access to critical section and after utilizing
its critical section it replies to these so-called deferred
messages.

The simulation model assumes that the process in the
beginning is busy in doing its main work. This is
illustrated in figure 3 by a marking in place S5. The
transition T1 is the first transition to fire in this
simulation model and depicts that this process is doing
the main work. The duration of the main work is
simulated by exponential distribution with varying mean
time. This mean time is different when the simulation is
executed for different number of processes in the system
and for different work loads on the processes. After the
delay for main work is over the processes always asks for
access to critical section and hence a token is placed in
place S900 which simulates the creation of REQUEST
message by this process and this REQUEST message is
propagated through the network by the network module
after firing of transition Y1000 and placing of a token in
place S1000.

Transition T1 also places a token in place S20 which
invokes the transition Y20. Transition Y20 waits for the
reply messages from all the other processes to come
before allowing this process to access its shared
resource. This transition checks if all N-1 replies have
been accounted for and then places a token in place S21.
Hence the time the token stays in place S20 shows the
average waiting time for this process. The presence of a
token in place S21 causes the transition T2 to invoke its
procedure. This transition is used to show the usage of
shared resource by this process. Using of shared resource
is represented in this transition by using delay of
exponential distribution. Once this exponentially
distributed delay is over the transition T2 fires and
places the token in place S22. Hence the time the token
stayed in place S21 shows the average time this process
used the shared resource. Furthermore it can be noted
that the combined token time in places S20 and S21 mark
the average response time for this process. The transition
S22 summons transition Y22 to start.

Transition Y22 collects inputs from place S23 and
place S22 and replaces a token in place S24. This causes
transition X24 to fire. The transition X24 puts the token
in place S5 if there is no deferred reply for other
processes (i.e. if Q1 is empty). If Q1 is not empty then it
places token in place S25 which causes transition T25 to

Uzun / Bitlis Eren Univ J Sci & Technol / 6 (1), 16 – 21, 2016

20

place token in S800. The presence of a token in place
S800 means that transition Y1000 has to forward a reply
to processes whose reply was deferred earlier because
this process had higher priority for critical section.
Transition Y1000 does so by placing a token in place
S1000. Once all the deferred messages are replied, token
is again placed in place S5 through transition Y22 and
transition X24. Figure 3 is shown below for better
understanding of this module.

REPLY (Immediate)

REPLY (Deferred)

REQUEST

No

Yes

REQUEST

REPLY

My Own Mesage

S1000

Y1000 S700

S800

T1

S5

S900

S20

Y20 T2

S21 S22

S23

S24

Y22 X24

T25

S25

Q1

X11

S11

S12

T12

S13

T13

S1

Doing main workTo Network

From Network

Decrement CNT

if REPLY to this

process

Q1 Empty?

Using Shared

Resource

Waiting for N-1

Replies

(CNT=0?)

Send Reply

immediately?

X1

Figure 3. E-net scheme of a process for the Ricart and
Agrawala mutual exclusion algorithm.

2.4 Model of a Network in Ricart and Agrawala’s
Mutual Exclusion Algorithm

This module deals with the handling of the messages in
the network and is illustrated by Figure 4. The place S1 is
dedicated for the messages generated by process 1, S2 is
dedicated for the messages coming from process 2 and
hence Sn is reserved for messages coming from process
number n. The working of the entire model is based on
one routine ad that is when ever a message is generated
or posted by any process then it is placed by this module
in a fixed S place for that message. Let’s assume, for the
purpose of explaining this working that process 3 placed
a token in its place S1000, then this network module will
take that token and place it in place S3, this will cause the
firing of transition T3 and hence the token will be taken
from place S3 and put into the queue place Q3. Place Q3
contains token, each representing a message from
process 3 and is processed by transition Y1 in a cyclic
manner. Transition Y1 gives each queue attached to its
input location equal chance and places its in all the
output places attached to transition Y1, hence it
propagates the message to all the processes in the
system. Transition Y1 is also used in this simulation
model to depict network delay of uniform distribution
with mean 2 and variance 3.

S1

Y1

T1 Q1

S2

T2
Q2

S101

S102

Sn
Tn

Qn S10n

Model of a

process n

RIC0n

S1000 S1

Figure 4. E-net scheme of a network for the Ricart and
Agrawala mutual exclusion algorithm.

3. Results and Discussion

In this simulation the most important parameters of
simulation for the purpose of understanding the behavior
of the algorithm are the average response time for a
process to get access to the shared resource and the
number of messages passed for a process to get access to
the shared resource. It is not desirable for any of these
parameters to be high, because if the response time
increases for the processes with the increase in the
number of processes in the system then it means that the
algorithm is less scalable. Furthermore if the number of
messages passed by each process to make an access to
the shared resource increases with the increase in the
number of processes then the system becomes
overloaded with messages as the number of processes
increase, another undesirable situation.

As it is clear from the simulation results, the model
was simulated for varying number of processes in the
system under varying loads. The system was tested with
3, 6, 9, 12 and 15 processes at a time with first low then
medium and finally high loads.

Table 1 details the Average Response time for all the
processes with the different loads and it is obvious from
the graph shown in Figure 5 (graph is obtained from
table 1) that with low and medium load the system is
very scalable as the response time does not change
drastically for low and medium load even with 15
processes in the system. However for high load the
response time grows almost exponentially (in the worst
case) or linearly (at the best), the response time for a
process on average with three processes in the system
was only 1054ms but with 15 processes in the system
with high load it becomes 2148(ms).

Table 1. Average Response time for all the processes with low

medium and high loads.

Table 1 Average Response Time

Number of
Processes /

Load
3 6 9 12 15

0.1
535.08047

33
555.9
543

573.3
28

574.7
297

587.8
243

0.5 696.4963
813.8

13
875.1
746

914.5
269

938.4
804

0.9 1054.0936
1475.
622

1770.
787

1996.
961

2148.
411

Uzun / Bitlis Eren Univ J Sci & Technol / 6 (1), 16 – 21, 2016

21

Figure 5. Graph of Average Response Time vs Number of
processes for high, medium and low loads.

Table 2 shows the data related to average number of
messages per use of shared resource for 3, 6, 9, 12,and 15
processes with low, medium and high load. Figure 6, 7
and Figure 8 illustrate the respective graphs for low,
medium and high load performance of the system in
relation to average number of messages per use of
shared resource. These figures show that the model is
highly scalable with respect to average number of
messages per use of shared resource, as N for all, 3, 6, 9,
12, and 15 processes.

Table 2. Average number of messages per use of shared resource

for all the processes with low medium and high loads.

Table 2
Average Number of Messages per use of

Shared Resource
Number of

Procersses /
Load

3 6 9 12 15

0.1 3 6 9 12 15

0.5
3.00012

6127
6

9.000
419

12 15

0.9
3.00012

5337
6.000
156

9.000
162

12.00
017

15.00
062

Figure 6. Graph of Average Number of messages per use
of shared resource vs number of processes for high load.

Figure 7. Graph of Average Number of messages per use
of shared resource vs number of processes for medium
load.

Figure 8. Graph of Average Number of messages per use
of shared resource vs number of processes for low load.

4. Conclusion

In this paper, a Petri net based simulation model for
Ricart and Agrawala mutual exclusion algorithm was
presented. Performance of the algorithm was measured
in terms of average response time for a process to get
access to the shared resource and the number of
messages passed for a process to get access to the shared
resource. The model was simulated for varying number
of processes in the system under varying loads.

References

Baier, C.; Daum, M.; Engel, B.; Härtig, H.; Klein, J.;
Klüppelholz, S.; ... & Völp, M. (2015). Locks: Picking key
methods for a scalable quantitative analysis, Journal of
Computer and System Sciences, Vol. 81, No. 1, 258-287.

Dijkstra, E. W. (1965). Solution of a problem in concurrent
programming control, Communications of the ACM, Vol. 8,
No. 9, 569.

Khanna, A.; Singh, A. K.; Swaroop, A. (2014). A leader-based
k-local mutual exclusion algorithm using token for
MANETs. Journal of Information Science And
Engineering, Vol. 30, 1303-1319.

Knuth, D. E. (1966). Addition comments on a problem in
concurrent programming control, Communications of the
ACM, Vol. 9, No. 5, 321-322.

Kostin, A.; Ilushechkina, L. (2005). Winsim: a tool for
performance evaluation of parallel and distributed
systems, Proceedings of the International Conference on
Advances in Information Systems, 312-321.

Lamport, L. (1974). A new solution of Dijkstra's concurrent
programming problem, Communications of the ACM, Vol.
17, No. 8, 453-455.

Lamport, L. (1977). Concurrent reading and writing,
Communications of the ACM, Vol. 20, No. 11, 806-811.

Lamport, L. (1987). A fast mutual exclusion algorithm, ACM
Transactions on Computer Systems, Vol. 5, No. 1, 1-11.

Mellor-Crummey, J. M.; Scott, M. L. (1991). Algorithms for
scalable synchronization on shared-memory
multiprocessors, ACM Transactions on Computer Systems,
Vol. 9, No. 1, 21-65.

Murata, T. (1989). Petri nets: Properties, analysis and
applications. Proceedings of the IEEE, Vol. 77, No. 4, 541-
580.

Peterson, G. L. (1981). Myths about the mutual exclusion
problem, Information Processing Letters, Vol. 12, No. 3,
115-116.

Ricart, G., & Agrawala, A. K. (1981). An optimal algorithm for
mutual exclusion in computer networks. Communications
of the ACM, 24(1), 9-17.

Wang, J.; Wang, Z. (2014). Mutual Exclusion Algorithms in
the Shared Queue Model, Proceedings of the International
Conference on Distributed Computing and Networking,
29-43.

Wong, M., Ayguadé, E., Gottschlich, J., Luchangco, V., de
Supinski, B. R., & Bihari, B. (2014). Towards
Transactional Memory for OpenMP, Proceedings of the
10th International Workshop on OpenMP, 130-145.

Average Number of Messages per use of Shared Resource (Load 0.9)

0

3

6

9

12

15

18

3 6 9 12 15
Number of Processes

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

M
e
s
s
a
g

e
s
 p

e
r

u
s
e
 o

f

S
h

a
re

d
 R

e
s
o

u
rc

e
(m

s
)

0.9

Average Number of Messages per use of Shared Resourse (Load 0.5)

0

3

6

9

12

15

18

3 6 9 12 15

Number of Processes

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

M
e
s
s
a
g

e
s
 p

e
r

u
s
e
 o

f

S
h

a
re

d
 R

e
s
o

u
rc

e
(m

s

0.5

Average Number of Messages per use of Shared Resourse (Load 0.1)

0

3

6

9

12

15

18

3 6 9 12 15

Number of Processes

A
v
e
ra

g
e
 N

u
m

b
e
r

o
f

M
e
s
s
a
g

e
s
 p

e
r

u
s
e
 o

f

S
h

a
re

d
 R

e
s
o

u
rc

e
(m

s

0.1

